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ABSTRACT: Green, eco-benign, and sustainable synthesis is
paramount in present chemistry. Here, a facile, efficient, and [H2-
DABCO][HSO4]2 ionic-liquid-catalyzed one-pot multicomponent
synthesis of hexahydroquinolines was reported under ambient
reaction conditions. The reaction of 1,3-dicarbonyls, malononitrile,
and ammonium acetate with various aldehydes in the presence of an
ionic liquid catalyst and EtOH solvent at room temperature
afforded excellent yields (76−100%) of hexahydroquinolines under
a short reaction time (5−15 min). Mild reaction conditions, broad
substrate scope (28 derivatives), and column-chromatography-free
synthesis with excellent catalytic efficiency and good recyclability
rendered this protocol superior and practical. The greenness of the
present method was assessed through eco-score and E-factor. The
significant results in gram-scale synthetic conditions validate its applicability in industries as well as academia in the near future.

1. INTRODUCTION
Nitrogen-based heterocycles possess arguably a rich history
with huge applications and a high impact on synthetic,
medicinal, and industrial chemistry. Several natural products,
drugs, and materials prominently possess a variety of
heterocyclic molecules and are very essential for mankind.1−3

They continue to play an overwhelming role in the
advancement of new treatments against life-threatening
diseases. 1,4-Dihydropyridine (1,4-DHP) nuclei are key
fragments in various natural compounds as well as in synthetic
molecules because of their interaction properties with different
proteins.4 Since 1,4-DHP is an analogue of the coenzyme
NADH (nicotinamide adenine dinucleotide), biochemists are
highly attracted toward its green synthesis with its applications
in medicinal chemistry.5−7 The 1,4-DHP skeleton works as a
calcium channel modulator and cardiovascular agent (nicardi-
pine, amlodipine, and nifedipine) and shows antitubercular,
antitumor, antiatherosclerotic, vasodilator, neuroprotective,
hepatoprotective, and bronchodilator activity.5−13 Polyhydro-
quinoline (PHQ) is a derivative of 1,4-DHP, a large family of
medicinal and industrially important compounds, and has
fascinated researchers.14

The Hantzsch one-pot multicomponent synthesis of 1,4-
DHP was first reported by Hantzsch in 1881, and after that,
several advancements have been made in their synthetic route
in the context of economy, environment, and sustainability.15

One-pot multicomponent reactions (MCRs)16−18 are facile,
fast, and provide efficient pathways to synthesize diversified

and complex hybrid compounds via the formation of several
bonds in a single process with high regio- and stereo-
selectivity.19−22 MCRs are valuable in the field of medicinal
chemistry and drug design due to their various features such as
operational simplicity, atom-economy, simple purification,
minimal waste production, and eco-friendliness.23 All of
these features support the green chemistry principles and
have prompted intensive research toward more proficient
synthetic pathways for diversity-oriented and combinatorial
synthesis.
Catalysis is one of the important pillars of green chemistry

that improves the reaction process and lowers the negative
impact of chemical reactions on the environment. Ionic liquids
(ILs) are employed as eco-friendly reaction media and catalysts
and sometimes show dual behavior as solvent catalysts in
various reactions.24 ILs possess a wide range of combination of
anions and cations and show unique properties such as
nonvolatility, low vapor pressure, high chemical and thermal
stability, and recyclability with low waste generation.25

Functionalized ILs are also known as ‘task-specific ionic
liquids’’ due to their utility in specific reactions. DABCO (1,4-
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diazabicyclo[2.2.2]octane)-based ionic liquids [DABCO]-
(SO3H)2(Cl)2 ,

26 [DABCO(C4H8SO3H)2][HSO4]2 ,
[DABCO-PDO][OAc], and [DABCO](SO3H)2(HSO4)2
have been utilized in various chemical transformations like
Aza-Michael addition,27 Knoevenagel condensation,28 and
oxathioacetalization29 and many more. DABCO is a cagelike
tertiary amine having weak alkalinity. This cagelike structure
increases the energy barrier of nitrogen inversion so the lone
pair is localized and makes DABCO more susceptible toward
quaternization and ionic liquid preparation and further applied
in organic reactions.29−32 Regarding the abovementioned
notable properties of 1,4-DHP derivatives, their synthetic
methods have been investigated in various environmental
conditions.33−37 However, most of the research studies have
been done on the synthesis of 3-carboxylate derivatives of
1,4,5,6,7,8-hexahydroquinoline compared to 3-carbonitrile
derivatives. 1,4,5,6,7,8-Hexahydroquinoline-3-carbonitrile was
previously synthesized using NH4OAc, sulfonated rice husk,
nanosized MgO, nano-Fe3O4@TDI@TiO2, citric acid/MCM-
48, and K2CO3 catalyst.

38−43 Despite the undeniable
advantages of these processes, some disadvantages are also
present, like the involvement of metal catalysts, nonrecyclable
catalysts, high catalyst loading, long reaction time, high
temperature, and small substrate scope. Therefore, further
efforts are needed to present more proficient and eco-benign
methods for the synthesis of hexahydroquinoline-3-carbon-
itriles. In our continuous efforts to utilize eco-friendly catalysts
for the green synthesis of nitrogen-based heterocyclic
compounds,44−46 we envisioned that the ionic liquid [H2-
DABCO][HSO4]2 efficiently catalyzed the Hantzsch-type
synthesis of hexahydroquinolines by employing 1,3-dicarbonyl,
malononitrile, and ammonium acetate with substituted
aldehydes as a coupling partner. To the best of our knowledge
and literature studies, this economical, sustainable, and eco-
friendly [H2-DABCO][HSO4]2-catalyzed 1,4,5,6,7,8-hexahy-
droquinoline-3-carbonitrile synthesis is not reported to date.
Good productivity, operational simplicity, mild and ambient
reaction conditions, use of green catalyst, high catalyst
recyclability, high yields in short reaction time, column-
chromatography-free synthesis, and diversified substrate scope
are notable advantages of the present protocol.

2. RESULTS AND DISCUSSION
The ionic liquid [H2-DABCO][HSO4]2 was synthesized via a
previously reported method47 and characterized on the basis of

melting point, IR, 1H, 13C, and XRD (Scheme 1, spectral
studies are provided in the Supporting Information).
Keeping the Hantzsch strategy in mind, we concentrated on

the optimization of reaction conditions using dimedone (1a),
malononitrile (2), and ammonium acetate (3) with p-Cl
benzaldehyde (4b) as a model substrate (Table 1). To our
delight, [H2-DABCO][HSO4]2 (30 mg) in EtOH worked as
an effective catalyst for this protocol at room temperature
(Scheme 2).

A brief optimization study was performed using different
solvents (H2O, EtOH, and EtOH + H2O) and catalyst
loadings. During the course of this study, it has been found
that EtOH was an ideal solvent for this synthesis, which
remarkably enhanced the reaction rate (Table 1 entry 8). The
reaction did not show any incremental effect on the use of
H2O and the EtOH + H2O solvent system (Table 1 entries 6,
7, 9). Reaction yields were increased with increasing the
catalyst amount up to 30 mg. Afterward, on increasing catalyst
loading, no significant effect was observed (Table 1 entries 5, 8,
10). To study the effect of the catalyst, the model reaction was
also performed with H2SO4, DABCO, and without catalyst
conditions in different solvents. In the absence of a catalyst and
in H2SO4, the results were not good, and traces were obtained
with lots of impurities. After that, DABCO showed good
results; however, these catalytic activities were comparatively
low to [H2-DABCO][HSO4]2 IL. So, the reaction was
continued with this IL (Table 1 entries 1−4).
Intrigued by this [H2-DABCO][HSO4]2-catalyzed protocol,

the generality of the present strategy was first investigated by

Scheme 1. Synthesis of [H2-DABCO][HSO4]2 Catalyst

Table 1. Optimization of Reaction Conditions on Model
Reaction for the Synthesis of Compound A2a

sl.
no. catalyst (amount) solvent time yieldsb (%)

1 without catalyst EtOH 1 h traces
2 without catalyst H2O 1 h traces
3 H2SO4 (100%, 0.5 mL) EtOH 10 min 40 (with

lots of
mixing)

4 DABCO (30 mg) EtOH 10 min 80
5 [H2-DABCO][HSO4]2

(20 mg)
EtOH 10 min 88

6 [H2-DABCO][HSO4]2
(20 mg)

H2O 10 min 50

7 [H2-DABCO][HSO4]2
(30 mg)

H2O 10 min 60

8 [H2-DABCO][HSO4]2
(30 mg)

EtOH 5 min 98

9 [H2-DABCO][HSO4]2
(30 mg)

EtOH + H2O 10 min 64

10 [H2-DABCO][HSO4]2
(40 mg)

EtOH 5 min 98

aReaction conditions: 1,3-dicarbonyl (1a), malononitrile (2),
ammonium acetate (3), 4-Cl benzaldehyde (4b), and stirring at
room temperature. bIsolated yield.

Scheme 2. [H2-DABCO][HSO4]2-Catalyzed
Hexahydroquinoline Synthesis
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reacting a variety of aromatic aldehydes, and the results are
summarized in Figure 1. A range of aromatic aldehydes having
electron-donating and electron-withdrawing groups worked
well and afforded corresponding products (A) in good to
excellent yields. A range of functional groups like fluoro, nitro,
chloro, methoxy, ethoxy, bromo, and hydroxy at different
positions were well tolerated in the present methodology and
afforded good yields of expected products (A). Gratifyingly,
heteroaromatic and benzylic aldehydes also proved to be
suitable in reaction and afforded desired products with high
efficiency.
To further check the versatility of the reaction, the scope of

1,3-dicarbonyl compound was next explored using cyclo-
hexane-1,3-dione (1b) as a substrate. This dicarbonyl worked
as an elegant coupling partner with substituted aldehydes and
afforded moderate to good yield of corresponding hexahy-
droquinoline (Figure 2). Overall, the electronic nature of
substituents did not affect the reaction progress significantly.
Thus, this facile synthetic method provides an elegant route to
synthesize several hexahydroquinolines in one step under eco-
benign conditions. The structure, reaction time, and yield of all
of the synthesized hexahydroquinoline derivatives are depicted
in Figures 1 and 2.
The structure of all of the synthesized derivatives was

confirmed by melting point and FT-IR, 1H, and 13C NMR
spectra. In the IR spectrum, the absorption band in the range
of 3200−3440 cm−1 was seen due to the presence of >NH2
and −NH groups. 1H NMR showed a significant CH proton

peak as a singlet in the range of δ 3−5 ppm, which validated
the formation of desired compound. The −NH2 proton peak
appeared as a singlet in the range of δ 4−6 ppm. However, the
−NH peak sometimes appeared broad and sometimes
disappeared due to exchangeable proton. The singlet at δ
30−35 ppm in 13C NMR exhibited the presence of methine
carbon in molecule (Figure 3).
The postulated mechanism for the synthesis of hexahy-

droquinoline is depicted in Scheme 3 based on previous
literature studies.38,39,47,48 Here, IL activated all of the
reactants via hydrogen bonding, and this interaction was
displayed by dashed lines. Initially, the carbonyl group of
aldehyde was activated from IL and showed Knoevenagel
condensation with activated malononitrile and changed into
intermediate (III). And in the other part, IL activated 1,3-
dicarbonyls, which further reacted with NH4OAc and afforded
enamine (V). Intermediate (III) and (V) showed Michael
addition and formed adduct (VI), which further cyclized,
displayed tautomerization, and afforded final hexahydroquino-
lines.

2.1. Recyclability of the Ionic Liquid. The ionic liquid is
soluble in water, so it can be easily recovered from filtration
and then dried under reduced pressure to further utilize for the
next reaction (Table 2). The recovered IL was reused for up to
five cycles and showed a minimal loss in catalytic activity in the
context of decreasing product yield in the same reaction time
(Figure 4). The IR spectrum of the IL reused for the fifth time
is shown in Figure 5.

Figure 1. Library of synthesized hexahydroquinoline (A series).
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2.2. Gram-Scale Synthesis. For the study of the
applicability of the present methodology at the industrial
level, gram-scale synthesis was performed. Here, dimedone
(1a, 1.40 g, 10 mmol), malononitrile (2, 0.66 g), ammonium
acetate (3, 0.848 g), and 4-Cl benzaldehyde (4b, 1.40 g, 10
mmol) were stirred for 15 min with [H2-DABCO][HSO4]2
catalyst in ethanol at room temperature and afforded good
yields (92%) of the desired product (A2).

2.3. Green Chemistry Matrix.49−52 The green chemistry
matrix represents the eco-friendliness of any method. As per
the above green score calculation, it was concluded that the
reaction has a low Environmental factor (E-factor = 0.32), high
atom economy (AE = 77.34%), high process mass intensity
(PMI = 1.32), and high reaction mass efficiency (RME =
75.76%), with excellent eco-score (78%) (calculation is given
in the Supporting Information). These values validate the
greenness of the present methodology.

Figure 2. Library of synthesized hexahydroquinoline (B series).

Figure 3. Significant 1H and 13C NMR peaks of 1,4,5,6,7,8-
hexahydroquinoline-3-carbonitrile.
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3. EXPERIMENTAL SECTION
3.1. General Procedure of Hexahydroquinoline

Derivatives (A1−A12) (B1−B16) Synthesis. To a mixture
of 1,3-dicarbonyl (0.5 mmol), substituted benzaldehyde (0.5
mmol), malononitrile (0.5 mmol), and ammonium acetate (0.5
mmol) were added, and the reaction mixture was stirred in the
[H2-DABCO][HSO4]2 catalyst (30 mg, 0.097 mmol) and
EtOH (3−4 mL) solvent at room temperature for up to 5−20
min. After completion of the reaction as confirmed by TLC

(hexane/ethyl acetate), the reaction mixture was dried and
cold water was added for catalyst recovery and then filtered to
isolate the product. The isolated product was purified using
simple crystallization from ethanol.

3.2. Spectral Data. The synthesis process of ionic liquid
and its characterization data (IR, 1H, 13C NMR, and XRD)
with FT-IR, 1H, 13C NMR, and mass spectra of synthesized
compounds are given in the Supporting Information.

4. CONCLUSIONS

The catalytic efficiency of [H2-DABCO][HSO4]2 ionic liquid
for the synthesis of a broad range of substituted hexahy-
droquinoline-3-carbonitriles has been demonstrated. The
synthesized IL is green, inexpensive, readily available,
biodegradable,53 and recyclable. The desired hexahydroquino-
lines were synthesized in eco-friendly conditions using a mild
solvent at room temperature with high purity in a short
reaction time. Aldehydes having various key functional groups
such as fluoro, chloro, methoxy, ethoxy, nitro, bromo with
benzylic, heteroaromatic, and aliphatic groups are well
tolerated in this reaction. These superfluous properties of the
present protocol make it superior as compared to the
previously reported methods.

Scheme 3. Plausible Mechanism of Ionic-Liquid-Assisted Hexahydroquinoline Synthesis

Table 2. Comparative Study of the Efficiency of Present Catalyst and Other Reported Catalysts for A2 Synthesis

sl. no. catalyst conditions time (min) yield (%) derivative catalyst recycle-ability ref

1 NH4OAc (2 mmol) H2O, reflux 57−81 80−90 17 38
2 sulfonated rice husk (60 mg) solvent-free, 60−80 °C 60 90−98 17 7 39
4 nanosized MgO [65 mol %] EtOH, reflux 18−29 88−91 6 40
5 n-Fe3O4@TDI@TiO2 [0.028 g] solvent-free, 70 °C 14−40 82−95 22 6 41
6 citric acid/MCM-48 [50 mg] EtOH, RT 15 92−98 11 7 42
7 K2CO3 [5 mol %] H2O, ultrasound 12−15 85−92 7 43
8 [H2-DABCO][HSO4]2 (30 mg) EtOH, stirring, room temperature 5−15 76−99 28 5 present work

Figure 4. Graphical representation of [H2-DABCO][HSO4]2
reusability.
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