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Abstract: Ubiquitination regulates several biological processes, however the role of specific members of
the ubiquitinome on intracellular membrane trafficking is not yet fully understood. Here, we search for
ubiquitin-related genes implicated in protein membrane trafficking performing a High-Content siRNA
Screening including 1187 genes of the human “ubiquitinome” using amyloid precursor protein (APP) as
a reporter. We identified the deubiquitinating enzyme PSMD14, a subunit of the 19S regulatory particle of
the proteasome, specific for K63-Ub chains in cells, as a novel regulator of Golgi-to-endoplasmic reticulum
(ER) retrograde transport. Silencing or pharmacological inhibition of PSMD14 with Capzimin (CZM)
caused a robust increase in APP levels at the Golgi apparatus and the swelling of this organelle. We
showed that this phenotype is the result of rapid inhibition of Golgi-to-ER retrograde transport, a pathway
implicated in the early steps of the autophagosomal formation. Indeed, we observed that inhibition of
PSMD14 with CZM acts as a potent blocker of macroautophagy by a mechanism related to the retention
of Atg9A and Rab1A at the Golgi apparatus. As pharmacological inhibition of the proteolytic core of the
20S proteasome did not recapitulate these effects, we concluded that PSMD14, and the K63-Ub chains, act
as a crucial regulatory factor for macroautophagy by controlling Golgi-to-ER retrograde transport.
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1. Introduction

Several post-translational modifications (PTMs) contribute to membrane transport [1,2]. Among
these, ubiquitination acts as a relevant player in protein membrane trafficking [3–5] participating as an
important protein localization signal [3,6–8]. However, to date, most studies have focused on its role in
endocytosis, particularly in the inclusion of cargoes in intraluminal vesicles (ILVs) of multivesicular
bodies (MVBs) [9–11] such as cell-surface receptors [12]. Ubiquitination is a regulated post-translational
modification that conjugates ubiquitin (Ub) to lysine (K) residues and is involved in many cellular
pathways including the degradation of target proteins through the proteasomes and autophagy [13,14].
Ubiquitin modification is a cascade of reactions catalyzed by three classes of enzymes (E1, E2 and
E3). An ATP-dependent E1 activating enzymes first forms a covalent intermediate with ubiquitin,
followed by the transfer of Ub to E2 conjugating enzymes and finally the covalent attachment of Ub to
a K residue in the target protein by E3 Ub ligases [15]. Ubiquitination is a reversible reaction, with
specific deubiquitinating enzymes (DUBs) that catalyze the removal of Ub-moieties for their recycling.
DUBs serve to counterbalance ubiquitination reactions within the cell, thus dynamically contributing
to the regulation of various cellular processes, such as endosomal sorting [11,16–18].

Ub increases proteome complexity, providing an additional surface for protein-protein interactions
and functional regulation [19,20]. Ub-modified proteins and Ub chains are recognized by several Ub
receptors including a family of specialized proteins carrying Ub binding domains (UBDs). To date, over
20 UBD families have been identified and characterized in mammals participating in the recognition of
Ub monomers or Ub chains on specific substrates [4,14,21]. Together, the Ub network offers a variety of
choices to modulate cellular processes including protein membrane trafficking. However, the contribution
of the ubiquitinome regarding its impact on intracellular membrane trafficking is not yet fully understood.

To investigate the contribution of most of the members of the ubiquitinome in protein membrane
trafficking, we performed high-content siRNA screening (HCS) including 1187 genes of the human
“ubiquitinome”. For this screening we used a stable cell line expressing amyloid precursor protein
(APP) fused to the enhanced green fluorescent protein (EGFP). APP was the protein selected as target
because it traffics dynamically through the secretory and endocytic pathways containing specific
sorting signal motifs [22–24] and specific lysine residues targets of ubiquitination [25–28]. We thus
identified the deubiquitinating (DUB) enzyme PSMD14, a subunit of the 19S regulatory particle (RP) of
the proteasome, as a crucial player of Golgi-to-Endoplasmic reticulum (ER) retrograde transport. The
DUB enzyme PSMD14 has been shown to be specific for K63-Ub chains in cells [29]. Here, we found
that the inhibition of its activity blocks Golgi-to-ER retrograde transport, causing the swelling of the
Golgi apparatus. We also found that PSMD14 inhibition acts as a potent blocker of macroautophagy as
a result of its negative impact in Golgi-to-ER retrograde transport. Inhibition of the proteolytic core of
the 20S proteasome by MG132 did not recapitulate these effects, indicating that the 19S RP plays a role
in macroautophagy by controlling membrane trafficking at the early secretory pathway.

2. Materials and Methods

2.1. Chemical Reagents

Earle’s balanced salt solution (EBSS) and the cocktail of protease inhibitors were purchased from
Sigma-Aldrich (St. Louis, MO, USA). MG132 was purchased from Millipore (Burlington, MA, USA).
Torin-1 was purchased from Tocris Bioscience (Bristol, UK). Dr. Raymond Deshaies from California
Institute of Technology (Caltech, CA, USA) and Dr. Yuyong Ma from The University of California, CA,
USA kindly donated Capzimin (CZM).
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2.2. Antibodies

The following monoclonal antibodies were used: mouse anti-ubiquitin clone P4D1 (Cytoskeleton,
Inc, Denver, CO, USA), mouse anti-β-actin clone BA3R (Thermo Fisher Scientific, Waltham, MA, USA),
rabbit anti-RAB1A clone D3X9S, mouse anti-GM130 clone 35/GM130, rabbit anti-PSMD14 clone D18C7
(Cell Signaling Technology, Danvers, MA, USA) and rabbit anti-ATG9A clone EPR2450(2) (Abcam,
Cambridge, UK). We used the following polyclonal antibodies: rabbit anti-ubiquitin (cat: Z0458, Dako,
Carpintería, CA, USA), rabbit anti-giantin (cat: AB24586, Abcam, Cambridge, UK), rabbit anti-LC3 (cat:
2775S, Cell Signaling Technology, Danvers, MA, USA), rabbit anti-APP CT695 (cat: 51-2700, Thermo
Fisher Scientific). Horseradish peroxidase-conjugated secondary antibodies were purchased from
Jackson ImmunoResearch Laboratories (West Grove, PA, USA), and DAPI probe, Alexa and Dylight
fluorophore-conjugated secondary antibodies were purchased from Thermo Fisher Scientific.

2.3. Cell Culture

H4 ATCC ® HTB-148™ Homo sapiens brain neuroglioma cells, referred to here as H4 human
neuroglioma cells and HeLa ATCC ® CCL-2™ cells were obtained from the American Type Culture
Collection (Manassas, VA, USA). Cell lines were cultured in Dulbecco’s modified Eagle’s medium
(DMEM; Thermo Fisher Scientific) supplemented with 10% (vol/vol) heat-inactivated fetal bovine
serum (FBS; Thermo Fisher Scientific), and penicillin/streptomycin (Thermo Fisher Scientific), in a 5%
CO2 atmosphere at 37 ◦C. The generation of the H4 stable cell line expressing hemagglutinin-tagged
APP695-F/P-D/A-EGFP (APP-EGFP) and the HeLa stable cell line expressing KDELR1-GFP were
previously reported [30–32]. Stably transfected cells were maintained in culture medium supplemented
with 100 µg/mL Cells were grown to sub confluence and then treated with drugs or transfected with
siRNAs for further western blot and immunofluorescence analyses. Nutrient starvation assays were
performed in the presence of EBSS. Assays to detect Mycoplasm were performed periodically.

2.4. High Content siRNA Transfection and Imaging

The primary siRNA screen for levels of APP-EGFP was performed in duplicates with our
custom-assembled “Ubiquitinome” siRNA library, which consists of 1187 SMARTpools siRNAs
targeting all known and assumed components of the ubiquitin and ubiquitin-like systems in
96-well format, as previously reported [33,34]. The H4 cells stably expressing APP-EGFP were
reverse transfected [33,34] in µClear bottom 96-well plates (Greiner Bio-One, Kremsmünster, Austria)
with ON-TARGETplus SMARTpools siRNAs (GE Dharmacon, Lafayette, CO, USA). Additionally,
ON-TARGETplus Non-targeting pool (NT siRNA) was used together with untransfected cells (Mock) as
neutral control; siRNA against GFP (GFP siRNA) was used as a positive control for APP downregulation.
Briefly, 10 µL siRNA (200 nM) were stamped from 96-well plates of the library on to µClear bottom
96 well plates. Thereafter, 10 µL of Opti-MEM I Reduced Serum Medium (Thermo Fisher Scientific)
containing Lipofectamine RNAiMAX transfection reagent (Thermo Fisher Scientific) was added to the
siRNA (dilution 1:50). Plates were shaken at 900 rpm for 1 min followed by incubation for 20 min at
room temperature. During this incubation, cells were resuspended in DMEM supplemented with 10%
(v/v) FBS and 1× Normocin (InvivoGen, San Diego, CA, USA) and 6000 cells were dispensed onto each
well loaded with medium for a final siRNA concentration of 20 nM. Plates were incubated for 72 h and
further prepared for high content measurement.

After transfection, cells were stained using 100 µL of reagent per step, dispensed by the automated
reagent dispenser XPP-721 (fluidX, Manchester, UK), according to the following protocol: two washes
in phosphate buffered saline (PBS); fixation in 3.7% (v/v) paraformaldehyde for 10 min; one wash in
PBS; incubation with 0.2% (v/v) Triton X-100 in PBS for 10 min; two washes in PBS; incubation with
0.1 µg/mL DAPI for 5 min; two washes with PBS. Finally, 100 µL of PBS was left in each well. Images
were acquired and analyzed using the automated microscope IN Cell 2000 Analyzer (GE Healthcare,
Little Chalfont, UK). Images of six randomized fields per well with ~600 cells each were acquired, and
further analyzed the total fluorescence intensity in n > 2000 cells per condition. A secondary siRNA
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screening was performed in triplicate targeting the 35 most responsive hits, using each single siRNA
duplex derived from the SMARTpools used in the primary siRNA screening.

2.5. siRNA Transfection for the siRNA Screening Validation Stage

Four single siRNA sequences targeting human PSMD14 (Accession number: NM_005805), derived
from the ON-TARGETplus SMARTpool used in the siRNA Screening (Figure S1) were purchased from
GE Dharmacon (Lafayette, CO, USA). siRNA transfections were carried out in 60 mm tissue culture
plates using the Lipofectamine RNAiMax transfection reagent (Thermo Fisher Scientific) according to
the manufacturer’s protocol, and after 72 h cells were collected for further analysis.

2.6. RNA isolation and RT-qPCR Analysis

Total RNA extraction from H4 cells was carried out using the E.Z.N.A.® Total RNA Kit I (Omega
Biotek, Norcross, GA, USA), and either purity (260/280 nm ratio and 260/230 nm ratio) or quantity
(260 nm absorbance) were determined by spectrophotometry using NanoVue Spectrophotometer
(GE Healthcare). The cDNA synthesis was performed from 2.5 µg of total RNA and oligo-dT and
MMLV reverse transcriptase (Promega, Madison, WI, USA) according to supplier instructions. Specific
primer pairs for tbp (NM_003194), psmd14 (NM_005805) and app (NM_000484) human genes were
designed for quantitative reverse transcription PCR on cDNA template (RT-qPCR) (Figure S2). First,
the specificity of amplicons was verified by cloning and sequencing, including tbp (223 bp), psmd14
(150 bp) and app (247 bp). mRNA levels were quantified in cDNA by qPCR with GoTaq qPCR Master
Mix (Promega) according to supplier’s instructions in a M×3000 Real-Time Thermocycler (Stratagene,
San Diego, CA, USA). In a 40-cycle PCR reaction, each cycle consisted of 20 s at 94 ◦C, 15 s at 55 ◦C
and 15 s at 72 ◦C, followed by a final heating at 95 ◦C, revealing melting curves that confirmed
single amplification products. All analyses were performed in triplicate. The expression level of each
gene was normalized to tbp expression as reference gene using exon-spanning primers to control for
genomic DNA contamination since no DNAse treatment of total RNA was included. RT-qPCR assays
were analyzed with 2(-∆∆Ct) method [35] via MxPro software (Stratagene) and expressed as relative
quantity to normalizer [36].

2.7. Preparation of Protein Extracts, Electrophoresis, SDS-PAGE and Western Blot Analysis

Cells were washed in ice-cold phosphate buffered saline (PBS) and lysed at 4 ◦C in lysis buffer
(50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% (v/v) Triton X-100) supplemented with a
cocktail of protease inhibitors (Sigma-Aldrich). All lysates were cleared by centrifugation at 16,000× g
for 20 min at 4 ◦C, and protein concentration was determined with a protein assay dye reagent (Bio-Rad
Laboratories, Hercules, CA, USA). Samples with an equivalent amount of protein were boiled for 5 min
with Laemmli SDS-PAGE sample buffer, and then analyzed by SDS-PAGE. Proteins were electroblotted
onto nitrocellulose membranes, blocked by incubation for 30 min in PBS containing 5% (wt/vol) free-fat dry
milk, and incubated sequentially with primary and secondary antibodies, both diluted in blocking solution,
for 1 h at room temperature, or overnight at 4 ◦C. Chemiluminescence protein detection was performed
using SuperSignal West Pico (Thermo Fisher Scientific). β-actin was used as an internal loading control.

2.8. In vitro Proteasomal Activity Assay

Proteasome activity was quantitatively assessed in H4 cell extracts using the
β5-selective fluorogenic substrate succinyl-leucine-leucine-valine-tyrosine-4-methyl-7-courmarylamide
(Suc-LLVY-AMC, Calbiochem, Burlington, MA, USA) using an adapted protocol [37]. Briefly, cells were
left untreated or treated for 4 h with different amounts of CZM (between 2 and 10 µM) or with 10 µM
MG132. Cells were lysed in lysis buffer (20 mM Tris-HCl, pH 7.2, 1 mM EDTA, 1 mM dithiothreitol
(DTT) and 0.1% (v/v) Nonidet P-40) supplemented with a cocktail of protease inhibitors (Sigma-Aldrich).
Lysates were cleared by centrifugation at 16,000 × g for 20 min at 4 ◦C, and protein concentration
was determined with a protein assay dye reagent (Bio-Rad Laboratories, Hercules, CA, USA). Soluble
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extracts (20 µg) were incubated for 60 min at 37 ◦C in proteasome assay buffer (50 mM Tris-HCl, pH 7.2,
1 mM DTT, 0,5 mM EDTA and 100 µM Suc-LLVY-AMC) all dispensed in triplicate into a 96-well black
opaque plate (Nunc, Thermo Fisher Scientific). Proteasome activity was measured by monitoring the
production of free AMC using a Synergy HT Multi-detection Microplate Reader (BioTek Instruments,
VT, USA) with excitation and emission wavelengths of 360 and 460 nm, respectively, and the data
were obtained by Gen5 Version 2.09.1 data analysis software (BioTek Instruments, VT, USA). Statistical
significance was determined by One-Way ANOVA, followed by Dunnett’s test. Value of p < 0.01(**)
and p < 0.001(***) were regarded as statistically significant and are indicated in the figure.

2.9. Immunofluorescence

Cells grown on glass coverslips were washed with PBS and fixed in 4% (v/v) paraformaldehyde
for 30 min at room temperature. After fixation, cells were washed in PBS and permeabilized with 0.2%
(v/v) Triton X-100 in PBS for 10 min at room temperature. Cells were incubated with the indicated
primary antibodies diluted in immunofluorescence buffer (PBS containing 10% (v/v) FBS and 0.1% (w/v)
saponin for 30 min at 37 ◦C. Coverslips were washed in PBS and incubated with the corresponding
Alexa-conjugated secondary antibody diluted in immunofluorescence buffer for 30 min at 37 ◦C. For
nuclei staining, cells were washed with PBS and incubated for 10 min at room temperature with
0.1 mg/mL DAPI. After the final wash, coverslips were mounted onto glass slides with Fluoromount-G
(SouthernBiotech, Birmingham, AL, USA).

2.10. Fluorescence Microscopy

Images of fixed cells were acquired by using a TCS SP8 laser-scanning confocal microscope (Leica
Microsystems, Wetzlar, Germany) equipped with a 63× oil immersion objective (1.4 NA), 405 nm,
488 nm and 561 nm laser lines, with Photomultiplier (PMT), a hybrid detector system (Leica HyD)
and the Leica Application Suite LAS X software. For quantification of fluorescent signals, 8-bit images
were acquired under identical settings avoiding signal saturation and corrected for background signal
on each image. The corrected fluorescent signal in each cell of each image was used in Image J
(version 1.44o; Wayne Rasband, NIH, http://imagej.nih.gov) to determine the total integrated pixel
intensity per cell area. Colocalization analyses were performed with sets of immunofluorescence
images (Z-stack, with 0.2 µm intervals) of the same cells for each marker. Quantification of the acquired
images was performed with the ICY software (Quantitative Image Analysis Unit, Institut Pasteur,
http://icy.bioimageanalysis.org/) using the protocols plugin to create a pipeline to analyze the images in
batch, the active contours plugin to perform the cell segmentation, the hk-means plugin for threshold
detection, the wavelet spot detector plugin for spot detection and the colocalization studio plugin for
colocalization analysis.

For live cell imaging assays, H4 cells were grown in glass bottom culture dishes (MatTek
Corporation, Ashland, MA, USA) and transiently transfected for 48-h with KDELR-VSVG-YFP, using
TransIT-LT1 Transfection Reagent (Mirus Bio LLC, Madison, Wi, USA) according to the manufacturer’s
protocol. Before the live cell imaging assay, the culture medium was replaced with phenol red-free
DMEM supplemented with HEPES (10 mM, pH 7.4), and the cells were treated with CZM (10 µM)
at 32 ◦C in a controlled temperature chamber in the TCS SP8 laser-scanning confocal microscope.
Cells were kept at 32 ◦C to allow KDELR-VSVG-YFP localization on the Golgi, followed by a shift
in temperature to 40 ◦C. Imaging was done with a 63x oil immersion objective (1.4 NA), running the
Leica Application Suite LAS X software, acquiring 8-bit images at 1-min interval for 15 min at 40 ◦C
(488 laser for excitation; HyD: 510–550 nm; 1024 × 1024 pixels; frame average 1). Quantification of the
acquired images was performed with the MetaMorph Software version 7.0.

2.11. D Golgi Reconstruction and Golgi Volume and Area Measurements

H4 and HeLa cells stably expressing KDELR1-GFP, under the specified conditions, were fixed
and immunostained with anti-GM130 or anti-Giantin, respectively. The immunofluorescence protocol

http://imagej.nih.gov
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was performed as described above to visualize the Golgi structure. For Golgi volume and area
measurements, Z-stack (250 nm) fluorescence images were acquired by using a TCS SP8 laser-scanning
confocal microscope (Leica Microsystems, Wetzlar, Germany) equipped with a 63x oil immersion
objective (1.4 NA) running the Leica Application Suite LAS X software. Images were then processed
with ImageJ software version FIJI to remove the background by using a threshold. The threshold
images were then visualized using the “3D Viewer” plugin. The Golgi volume was quantified using
ImageJ software version FIJI by setting a threshold region to select only the Golgi fluorescence. Then,
the Golgi structures were separated by ROI (Regions of Interest), and the individual Golgi volume
was measured with the plugin “Voxel Counting”. The Golgi volume in µm3 was determined by the
number of voxels contained in the stack of images (voxel 0.2 × 0.2 × 0.25 nm). The Golgi area was
quantified using ICY software, and the Golgi marker GM130 was used to determine the ROI. To
separate the specific signal from the background, the “k means threshold” plugin was used, using the
same threshold level to all images. Data analysis was performed using GraphPad Prism 6 (GraphPad
Software, La Jolla, CA, USA), and the results are represented in graphs depicting the mean ± SEM of at
least 20 cells. The statistical significance of the data was determined with Student’s T-test. The value of
p < 0.001(***) was regarded as statistically significant and is indicated in the respective figures.

2.12. Densitometric Quantification and Statistical Analysis

The amount of immunoblot signal was estimated using Image J software version 1.48v (Wayne
Rasband, NIH, http://imagej.nih.gov). For each condition, protein bands were quantified from at
least three independent experiments in order to ensure adequate statistical power. Data analysis was
performed using Microsoft Excel 2013 for Windows (Redmond, WA, USA) or GraphPad Prism Results
are represented in graphs depicting the mean ± standard deviation. Statistical significance of data
comparisons from two groups comparisons was determined with Student’s T-test for parametric data.
Values of p < 0.05 (*), p < 0.01 (**), p < 0.001 (***) were regarded as statistically significant and are indicated
in the figures. The statistical significance of data from many groups was analyzed using One-Way
ANOVA, followed by Tukey’s test in order to evaluate pair-wise comparisons. The value of p < 0.05 was
regarded as statistically significant and indicated in the figure in different letters above bars mean.

3. Results

3.1. High-Content siRNA Screening Revealed PSMD14 Deubiquitinating Enzyme as a Novel Regulator of
Protein Trafficking

To investigate the contribution of the ubiquitinome in protein membrane trafficking, an automated
HCS using a human small interfering RNA (siRNA) “ubiquitinome” library was performed consisting of
1187 siRNA duplex pools targeting all known and predicted Ub-genes (Supplementary Materials). This
library was used previously in mammalian screening assays [33,34], and includes E1 activating enzymes
(0.8%), E2 conjugating enzymes (4.7%), E3 Ub ligases (61.2%), UBD-containing proteins (12.8%), DUBs
(8.8%), SUMO-specific proteases (SENPs) (0.2%) and others (11.4%) (Figure 1A). This library was
used to identify novel regulators of protein membrane trafficking using an H4 neuroglioma cell line
stably expressing APP-EGFP, a cell line previously characterized and used in siRNAs knockdown
experiments [24,30,38]. We standardized the basal (background) and maximum fluorescence intensity
by analyzing the total fluorescence of silenced and non-silenced APP-EGFP, respectively. A reduction
in total fluorescence intensity from 100% to 6% was observed with the EGFP siRNA, compared to
the non-target (NT) siRNA with a Z factor of 0.69 (Figure 1B). Representative images of basal and
maximum levels of total fluorescence intensity in reporter cells are shown in Figure 1C. Cells were
further assessed with a primary siRNA screening consisting of a pool of four-different siRNA duplexes
for each of the 1187 genes selected. Each siRNA targeted a distinct region to minimize their off-targets
effects [39]. Figure 1D shows a summary of the results with all siRNA pools tested and normalized in
respect to the expression of the NT siRNA. Among the 1187 tested genes, we found that the highest
total fluorescence increase (4.15-fold increase) corresponded to protein PSMD14 (POH1, also known as

http://imagej.nih.gov


Cells 2020, 9, 777 7 of 24

Rpn11/MPR1/SS13/CepP1) (Figure 1D), a subunit of the 19S regulatory particle (RP) of the proteasome,
which has DUB activity [40,41]. Representative images of reporter cells knock-down (KD) of PSMD14
in comparison to cells transfected with NT siRNA are shown in Figure 1E.
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Figure 1. High-content siRNA screening assay revealed PSMD14 as a novel regulator of amyloid
precursor protein (APP) levels. (A) Graphical distribution of the targets evaluated in the primary high
content siRNA screening using the siRNA "ubiquitinome" library in H4 cells. (B) Quantification of the
total fluorescence intensity of reporter APP-EGFP cells transfected for 72 h with NT siRNA and EGFP
siRNA. Bars represent the mean ± SD with a statistical Z factor = 0.69. (C) High content images (20×)
captured in reporter APP-EGFP cells transfected for 72 h with non-target (NT) siRNA and EGFP siRNA.
(D) Graphical representation of total fluorescence intensity of all 1187 genes analyzed in primary siRNA
screening with the reporter APP-EGFP cells. PSMD14 appears indicated as the top hit. (E) High content
images (20×) in pseudo color of reporter APP-EGFP cells transfected for 72 h with siRNA SMARTpool
targeted against PSMD14 (PSMD14 siRNA) in comparison to cells transfected with NT siRNA. The
fluorescence intensity in these images was reduced to avoid saturation with the PSMD14 siRNA. Scale
Bar of the images indicates the scale of fluorescence intensity.

Further, we validated these results by analyzing the effect of PSMD14 KD on the levels of full-length
endogenous APP in parental H4 cells by western blot. The effect of all four PSMD14 siRNAs in KD
cells tested on endogenous APP levels are shown in Figure 2A (first panel, lanes 3-6) and compared to
un-transfected cells (Mock) or cells transfected with NT siRNA (Figure 2A, first panel, lanes 1 and 2,
respectively). In addition, we found that silencing PSMD14 caused a strong increase in high molecular
weight Ub conjugates, consistent with the role of PSMD14 as a proteasomal subunit with DUB activity
(Figure 2A, second panel, lanes 3–6 compared to lanes 1 and 2). For quantification analysis, we used
the most effective siRNA for the reduction in PSMD14 expression that corresponded to siRNA#1
according to quantitative reverse transcription PCR (RT-qPCR) (Figure 2D). We found a 3.13-fold
increase in full-length endogenous APP levels in PSMD14 KD cells, compared to Mock cells (Figure 2B).
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In addition, we observed a 5.22-fold decrease in PSMD14 levels (Figure 2C). Moreover, efficiency KD
of PSMD14 was determined by RT-qPCR (Figure 2D) and confirmed by western blot (Figure 2A, third
panel, lanes 3–6 compared to lanes 1 and 2). Finally, to evaluate whether the increase in APP protein
levels in PSMD14 KD cells could be the result of an up-regulation of APP transcription, APP mRNA
levels were evaluated by RT-qPCR observing no significant changes (Figure 2E). Altogether, these
findings indicate that the silencing of PSDM14 caused a robust increase in APP protein levels, a finding
that could suggest impairment in its turnover due to trafficking alterations.
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Figure 2. PSMD14 is validated as a regulator of the endogenous APP levels. (A) Protein extracts of
parental H4 cells either untransfected (Mock), transfected with NT siRNA, or transfected with four
different PSMD14 siRNA sequences for 72 h were analyzed by western blot. Polyclonal antibodies
to endogenous APP (CT695) and to Ub (that recognizes all types of Ub conjugates), and monoclonal
antibodies to PSMD14 (clone D18C7) and to β-actin (clone BA3R), were tested. The position of molecular
mass markers are indicated on the left. Densitometric quantification of the levels of endogenous APP
(B) and PSMD14 (C) in H4 cells transfected with PSMD14 siRNA#1, compared to untransfected cells
(Mock). Statistical significance was determined by Student’s t-test. Bars represent the mean ± SD of
biological replicates (APP n =5; PSMD14 n = 4). **p < 0.01 and ***p < 0.001. (D) mRNA levels of psmd14
and (E) mRNA levels of app were measured using RT-qPCR from parental H4 cells transfected for 72 h.
All data were normalized for TATA binding protein expression in either untransfected cells (Mock),
cells transfected with NT siRNA or cells transfected with four different PSMD14 siRNAs duplexes.
Statistical significance was determined by One-Way ANOVA, followed by Tukey’s test. Bars represent
the mean ± SD of biological replicates (psmd14 n = 3; app n = 3). Different letters above the mean bars
apply to significant differences between groups p < 0.01.
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3.2. Acute Inhibition of the Deubiquitinating Enzyme PSMD14 of the 19S RP Accumulates APP in a Swollen
Golgi Apparatus

To determine whether PSMD14 is involved in the control of endogenous APP levels, we investigated
the effect of incubating cells with Capzimin (CZM), a potent and specific inhibitor of the DUB activity
of PSMD14 [42], a subunit of the 19S RP of the proteasome (Figure 3A). We observed that CZM
led to a significant increment in full-length endogenous APP levels in a dose-dependent manner,
compared to untreated cells (Figure 3B,C). Interestingly, compared to untreated cells, and in contrast to
CZM, treatment with a standard concentration of 10 µM MG132, a reversible inhibitor of the β1, β 2
and β 5 subunits of the 20S catalytic core of the proteasome [43,44] (Figure 3A), caused a significant
decrease in full-length endogenous APP levels (Figure 3B,C). To confirm the inhibition of PSMD14
by CZM, the effect of this inhibitor on the levels of high molecular weight Ub conjugates was tested,
comparing it with MG132. In agreement with the effect of PSMD14 KD, it was observed that CZM
caused a robust increase in high molecular weight Ub conjugates in a dose-dependent manner, finding
a maximum effect with 10 µM CZM (Figure 3D). However, we noticed that 10 µM MG132 caused a
more powerful increase in Ub conjugates (Figure 3D). To confirm the accumulation of Ub conjugates by
these treatments, we performed immunofluorescence analysis. We found that 10 µM CZM (Figure 3E,
middle panel) and 10 µM MG132 (Figure 3E, right panel) showed the appearance of Ub conjugates
puncta, compared to untreated cells (Figure 3E, left panel), which showed the expected cytosolic
distribution of Ub. Together, our results confirm that acute inhibition of PSMD14 by CZM replicates
the phenotype obtained by PSMD14 KD regarding the impact on the endogenous APP levels. Thus,
CZM offers a pharmacological tool addressing whether the activity of PSDM14 is required for APP
membrane trafficking.

To unveil this possibility, immunofluorescence analysis of endogenous APP in parental H4
cells was performed. We observed that the treatment with 10 µM CZM resulted in a perinuclear
redistribution of APP, which is highly indicative of Golgi apparatus localization (Figure 4D, compared
to 4A). Moreover, similar to the PSMD14 KD, it was observed that the CZM treatment caused a
significant 2.50-fold increase in APP total fluorescence intensity compared to untreated cells (Figure 4G).
We also observed a significant 1.92-fold increase in the amount of APP in the area positive to the Golgi
matrix protein GM130 (GM130), compared to the total area (Figure 4F, compared to 4C and Figure 4H).
Moreover, we observed that the treatment with CZM caused a significant 1.30-fold increase in the
total cell area (Figure 4I). In addition, we found that CZM caused the swelling of the Golgi apparatus
(Figure 4E compared to Figure 4B), a phenotype that is shown in a zoom in Figure 4J. To confirm
this phenotype, measurements of GM130 images were performed from confocal 3D reconstructions
from the Z-stacks of cells treated with CZM (Figure 4K). We observed a 1.53-fold increase in the Golgi
apparatus volume in CZM treated cells, compared to control cells (Figure 4L). Similar results were
observed in quantitative 2D image analysis, observing a significant 2.53-fold increase in the Golgi
apparatus area upon CZM treatment (Figure S3). Altogether, our results show that acute inhibition of
PSMD14 by CZM accumulates APP in a swollen Golgi apparatus. These findings strongly suggest that
CZM impairs the Golgi apparatus due to perturbations of the trafficking through this organelle.
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Figure 3. Acute inhibition of PSMD14 by Capzimin CZM shows a similar phenotype as that of PSMD14
KD on the levels of APP and high molecular weight Ub conjugates. (A) Schematic diagram of the
molecular targets of Capzimin and MG132 in the 19S RP and 20S catalytic core of the proteasome,
respectively. (B) Parental H4 cells were treated either with vehicle (DMSO; Control), or increasing
doses of CZM for 4 h, or MG132 for 6 h. Protein extracts were analyzed by western blot with a
polyclonal antibody to endogenous APP. Monoclonal antibody to β-actin (clone BA3R) was used as a
loading control. The position of molecular mass markers is indicated on the left. (C) Densitometric
quantification of APP protein levels as shown in (D). Statistical significance was determined by one-way
ANOVA, followed by Tukey’s test. Bars represent the mean ± SD of biological replicates (n = 4).
Different letters above the mean bars apply to significant differences between groups p < 0.05. (D)
Parental H4 cells were treated as in (B), and the protein extracts were analyzed by western blot with a
polyclonal antibody to Ub that recognizes all types of Ub conjugate. Monoclonal antibody to β-actin
(clone BA3R) was used as a loading control. The position of molecular mass markers is indicated
on the left. (E) Immunofluorescence microscopy images of the cellular localization of Ub in parental
H4 cells treated with either the vehicle (DMSO; Control), CZM for 4 h or MG132 for 6 h. Cells were
fixed, permeabilized and stained with a mouse monoclonal antibody to Ub (clone P4D1) followed by
Alexa-488-conjugated donkey anti-mouse IgG. Scale bar, 10 µm. (n = 3).
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Figure 4. Acute inhibition of PSMD14 by CZM triggers the accumulation of APP in a swollen Golgi
apparatus. Immunofluorescence analysis of endogenous APP in H4 parental cells treated either with
the vehicle (DMSO; Control) (A–C) or CZM (D–F) for 4 h. Cells were fixed, permeabilized, and double
stained with a rabbit polyclonal antibody to APP (CT695) (A,D) and a mouse monoclonal antibody
to GM130 (clone35/GM130) (B,E), followed by Alexa-594-conjugated donkey anti-Rabbit IgG and
Alexa-488-conjugated donkey anti-Mouse IgG. Merging of the images generated the third picture (C,F).
Scale bar, 10 mm. (G) Quantitative analysis of the mean of total fluorescence intensity of APP upon
treatment with CZM, in comparison to control cells. The statistical significance was determined by
Student’s t-test. Bars represent the mean ± SD of the fluorescent signal per cell area (n = 43 cells).
***p < 0.001. (H) Quantitative analysis of the fraction of APP colocalizing with GM130 under CZM
treatment and compared to control cells. Statistical significance was determined by Student’s t-test.
Bars represent the mean ± SD of the fluorescent signal per cell area (n = 43 cells). ***p < 0.001. (I)
Quantitative analysis of the cell area. Statistical significance was determined by Student’s t-test. Bars
represent the mean ± SD of the cell area (n = 43 cells) **p < 0.001. (J) Immunofluorescence microscopy
analysis of GM130 in parental H4 cells treated either with the vehicle (DMSO; Control) or CZM for
4 h. Cells were fixed, permeabilized and stained with mouse monoclonal antibody to GM130 (clone
35/GM130) followed by Alexa-488-conjugated donkey anti-mouse IgG, and nuclei were stained with
DAPI. Scale bar, 10 µm. (K) 3D reconstructions of the Golgi apparatus using GM130 as Golgi marker
were generated from Z-stacks (250 nm). (L) Golgi Volume was measured from 3D reconstructions as
shown in (K). Statistical significance was determined by Student’s t-test. Bars represent the means ±
SEM (n = 20 cells). *** p < 0.001.
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3.3. Acute Inhibition of the Deubiquitinating Enzyme PSMD14 Perturbs Golgi-to-ER Retrograde Transport

The Golgi apparatus is a highly dynamic organelle that requires fine regulation of trafficking
pathways in order to maintain its size, shape and composition. In particular, it has been shown that
Golgi-to-ER retrograde transport plays a crucial role in the maintenance of Golgi morphology. Indeed,
inhibition of this specific trafficking pathway results in a significant swelling of this organelle [32,45–49].
To investigate whether the swelling of the Golgi by the inhibition of PSMD14 with CZM could be
the result of the inhibition of the Golgi-to-ER retrograde transport, we first validated our findings in
HeLa cells. We measured Golgi apparatus volume in 3D reconstructions from the Z-stacks of untreated
HeLa cells or treated with CZM and MG132 by using Giantin as a Golgi apparatus reporter. Similar
to our findings in H4 cells, we found that the inhibition of PSMD14 DUB activity by CZM causes a
2.14-fold increase in Golgi apparatus volume (Figure 5A, middle panel compared to the left panel and
5B). Interestingly, in contrast to CZM, we observed that MG132 caused no effect on Golgi apparatus
volume (Figure 5A, right panel compared to the left panel and 5B), strongly suggesting that Golgi
homeostasis is regulated by the PSMD14 DUB activity. Then, we investigated whether this phenotype
was the result of Golgi-to-ER retrograde transport inhibition. We assessed the distribution of stably
overexpressed KDEL (Lys-Asp-Glu-Leu) Receptor 1 (KDELR1) fused to GFP (KDELR1-GFP) in HeLa
cells. As was previously reported [32,50], overexpressed KDELR1-GFP is mostly distributed to the
ER due to its efficient transport from the Golgi apparatus to the ER (Figure 5C, left panel and 5D).
Thus, impairment of Golgi-to-ER retrograde transport causes the accumulation of KDELR1-GFP in the
Golgi apparatus, working as an assay to identify novel regulators of this pathway [32]. Interestingly,
we found that CZM caused a rapid time-dependent accumulation of KDELR1-GFP at the Golgi
apparatus, observing a maximal effect after 90 min of treatment (Figure S4). At this time, we observed
a significant 1.50-fold increase in the amount of KDELR1-GFP within the Giantin-positive Golgi
apparatus, compared to the total area (Figure 5C, middle panel compared to the left panel, and 5D).
As before, we tested the effect of MG132, observing no effect on the distribution of KDELR1-GFP
(Figure 5C, right panel compared to left panel, and 5D), which strongly supports that MG132 has no
effect on Golgi-to-ER retrograde transport. Next, to confirm the blockage of Golgi-to-ER retrograde
transport by the acute inhibition of the PSMD14, we tracked the redistribution of the transiently
overexpressed thermo-sensitive KDELR1-VSVG-YFP chimera (vesicular stomatitis virus G protein
fused to KDEL receptor 1 and YFP) in HeLa cells upon treatment with CZM by live cell imaging
at different temperatures. Briefly, at a permissive temperature of 32 ◦C, KDELR1-VSVG-YFP cycles
between the Golgi apparatus and the ER, showing distribution mainly at the Golgi apparatus. Upon
shifting to a restrictive temperature of 40◦C KDELR1-VSVG-YFP is progressively accumulated at the
ER due to its specific retention in this compartment at this temperature. In addition, as the Golgi-to-ER
retrograde transport is not affected at 40ºC, the rapid decay of KDELR1-VSVG-YFP fluorescence at
the Golgi apparatus is a measurement used to evaluate inhibition of Golgi-to-ER retrograde transport
pathway [51]. We found that in control cells, nearly 50% of the fluorescence of KDELR1-VSVG-YFP
decayed after 15 min of shifting the temperature to 40 ◦C (Figure 5E, upper panels and 5F) indicating
that retrograde transport is working normally [51]. In contrast, when cells were treated with CZM,
the decay of KDELR1-VSVG-YFP fluorescence was not apparent, confirming that acute inhibition of
the PSMD14 blocked Golgi-to-ER retrograde transport (Figure 5E, lower panels and 5F). In contrast,
MG132-treated cells showed similar results to controls (data not shown), confirming that the 20S
proteasome has no effect on retrograde transport. Importantly, we found that CZM is able to block
retrograde transport for short times having no effect on the catalytic activity of the 20S proteasome
(Figure S5). In contrast, a rapid and robust inhibition of the catalytic activity of the 20S proteasome was
observed with MG132 (Figure S5). These findings strongly indicate that acute inhibition of PSMD14
DUB activity by CZM acts as a powerful blocker of Golgi-to-ER retrograde transport, explaining the
swelling of the Golgi apparatus and the accumulation of protein cargoes such as APP at this location.
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Figure 5. The PSMD14 DUB inhibitor CZM impairs Golgi-to-ER retrograde transport. (A)
Three-dimensional reconstructions of the Golgi apparatus using giantin as a Golgi marker were
generated from Z-stacks (250 nm) obtained from HeLa cells stably expressing KDELR1-GFP treated for
90 min either with vehicle (DMSO; Control), CZM or MG132. (B) Golgi volume was measured from
3D reconstructions as shown in (A). Statistical significance was determined by Student’s t-test. Bars
represent the means ± SEM (n = 30 cells). *** p < 0.001. (C) HeLa cells stably expressing KDELR1-GFP
were treated for 90 min either with vehicle (DMSO; Control), CZM or MG132. Cells were fixed, and
representative confocal images were acquired. (D) Measurement of giantin and total KDELR1-GFP
total fluorescent intensity. Statistical significance was determined by Student’s t-test. Bars represent
the means ± SEM (n = 34 cells). *** p < 0.001. (E) H4 cells were transiently transfected to express the
thermo-sensitive retrograde transport reporter KDELR-VSVG-YFP. Cells were kept at 32 ◦C to allow
KDELR-VSVG-YFP localization at the Golgi. Cells were then shifted to 40 ◦C (restrictive temperature)
and images acquired at 1 min interval for 15 min. (F) Quantitative image analysis was performed to
measure the integrated fluorescence of KDELR-VSVG-YFP at the Golgi at 1 min interval for 15 min.
Statistical significance was determined by Student’s t-test. Bars represent the mean ± SEM (n = 3 cells).
*p < 0.05.
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3.4. Inhibition of Golgi-to-ER Retrograde Transport by CZM Has a Negative Impact on Macroautophagy

Several lines of evidence have shown that Golgi-to-ER retrograde transport plays a relevant
role in autophagosome biogenesis at the level of the ER [52–55]. In addition, it has been shown
that PSMD14 participates in the activation of the aggresome clearance by cleaving K63 Ub chains
of aggregate proteins [56,57]. Thus, we investigated the effect of acute inhibition of PSMD14 DUB
activity on the levels of the classical marker microtubule-associated protein 1 light chain 3B (LC3B) [58],
compared to the treatment with MG132 (Figure 6A). We observed that CZM alone did not increase
the levels of LC3B-II (Figure 6A and Figure S6B). As expected, and in contrast to CZM, higher levels
of LC3B-II were found with MG132 treatment (Figure 6A). In agreement with these findings, we
observed that CZM alone did not increase the number of autophagosomes (Figure 6E compared
to 6B), in contrast to the effect of MG132 (Figure S6A). In addition, parental H4 cells were treated
under nutrient starvation with Earle’s balanced salt solution (EBSS), an established culture medium
used for the activation of autophagosomal formation [59]. As expected, we found that starvation
strongly increased the number of autophagosomes (Figure 6C), compared to cells treated under normal
nutrients conditions (Figure 6B). In contrast, it was observed that treatment with CZM abolished the
appearance of autophagosomes upon EBSS treatment (Figure 6D compared to 6C). We also tested the
effect of CZM in cells under normal nutrients conditions, but in the absence or presence of Torin-1, a
potent and selective inhibitor of mammalian target of rapamycin complexes (mTORC1/2), a trigger of
autophagosomal formation [60]. Similar to the results with EBSS, we observed that CZM prevented
the appearance of autophagosomes promoted by Torin-1 (Figure 6G compared to 6F). To confirm these
results, we quantified the number of LC3-positive structures under all conditions tested, observing
a significant decrease in the number of autophagosomes when cells, treated with EBSS solution or
Torin-1, were also treated with CZM (Figure 6H). In addition, we biochemically validated these results
performing western blot analysis of endogenous LC3B (Figure 6I). We found that the levels of LC3B-II
were strongly increased with EBSS or Torin-1 treatment (Figure 6I, lanes 2 and 4). In contrast, when
cells were treated with EBSS or Torin-1 in the presence of CZM, LC3B-II levels did not change (Figure 6I,
lanes 3 and 5) compared to control cells (Figure 6I, lane 1), results that are quantified and depicted in
Figure 6K. Interestingly, this biochemical analysis also showed that CZM increased LC3B-I levels under
all conditions tested (Figure 6I, lanes 3, 5 and 6, and Figure 6J) compared to control cells (Figure 6I,
lane 1) suggesting that the reduction of the autophagosomal structures caused by CZM was not due to
a reduction in LC3B total levels. Altogether, these results confirm that acute inhibition of PSMD14
DUB activity acts as a potent blocker of autophagosome biogenesis induced by EBSS or Torin-1. In
addition, these findings suggest that blockage of autophagosomal biogenesis could be a consequence
of Golgi-to-ER retrograde transport inhibition.
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followed by the treatment with EBSS or Torin-1 for 4 h in the presence of CZM. Cells were fixed, 
permeabilized and stained with a rabbit polyclonal antibody to LC3B followed by Alexa-594-
conjugated donkey anti-Rabbit IgG, and nuclei were stained with DAPI. Scale bar 10 µm. (H) 
Quantification of the puncta positive to LC3B. Statistical significance was determined by one-way 
ANOVA, followed by Tukey’s test. Bars represent the mean ± SEM (n = 50 cells). Different letters 
above the mean bars indicate the significant differences between groups p < 0.05. (I) Protein extracts 
from parental H4 cells treated as in (B–G) were analyzed by western blot with a rabbit polyclonal 
antibody to LC3B. Monoclonal antibody to β-actin (clone BA3R) was used as a loading control. The 
position of molecular mass markers is indicated on the left. (J) Densitometric quantification of LC3B-
I levels and (K) LC3B-II levels. Statistical significance was determined by One-Way ANOVA, 
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Figure 6. Inhibition of autophagosome formation by CZM. (A) Parental H4 cells were treated either
with the vehicle (DMSO; Control), CZM for 4 h or MG132 for 6 h and protein extracts were analyzed
by western blot with a polyclonal antibody to LC3B. Monoclonal antibody to β-actin (clone BA3R)
was used as a loading control. The positions of the molecular mass markers are indicated on the
left. Immunofluorescence microscopy analysis of the subcellular localization of endogenous LC3B in
parental H4 cells treated with either the vehicle (DMSO; Control) (B), EBSS for 4 h (C), CZM for 6 h (E)
or Torin-1 for 4 h (F). EBSS (D) and Torin-1 (G) were tested using a 2-h pretreatment with CZM followed
by the treatment with EBSS or Torin-1 for 4 h in the presence of CZM. Cells were fixed, permeabilized
and stained with a rabbit polyclonal antibody to LC3B followed by Alexa-594-conjugated donkey
anti-Rabbit IgG, and nuclei were stained with DAPI. Scale bar 10 µm. (H) Quantification of the puncta
positive to LC3B. Statistical significance was determined by one-way ANOVA, followed by Tukey’s
test. Bars represent the mean ± SEM (n = 50 cells). Different letters above the mean bars indicate the
significant differences between groups p < 0.05. (I) Protein extracts from parental H4 cells treated as in
(B–G) were analyzed by western blot with a rabbit polyclonal antibody to LC3B. Monoclonal antibody
to β-actin (clone BA3R) was used as a loading control. The position of molecular mass markers is
indicated on the left. (J) Densitometric quantification of LC3B-I levels and (K) LC3B-II levels. Statistical
significance was determined by One-Way ANOVA, followed by Tukey’s test. Bars represent the mean
± SEM of biological replicates (LC3B-I n = 3; LC3B-II n = 3). Different letters above the mean bars
indicate the significant differences between groups p < 0.05.



Cells 2020, 9, 777 16 of 24

3.5. Inhibition of Golgi-to-ER Retrograde Transport by CZM Accumulates RAB1A and ATG9A at the Golgi
Apparatus

To evaluate this hypothesis, we tested the effect of acute inhibition of the PSMD14 DUB activity
on the distribution of proteins implicated in the initial steps of autophagosome formation, which
traffics in early compartments of the secretory pathway. We first tested RAB1A, a small GTPase with
an essential role in the initiation of autophagy, facilitating the recruitment of the unc-51-like kinase 1
(ULK1) complex to subdomains of the ER, a crucial early step during autophagosome formation [61,62].
We found that CZM treatment caused a redistribution of RAB1A to the perinuclear zone (Figure 7A).
Measuring these images confirmed a significant increase in RAB1A in this area (Figure 7B), a result
that was accompanied by a decrease in RAB1A in the cell periphery defined as radial zone (Figure 7B).
Importantly, we found that RAB1B was not affected by the same condition (data not shown). Moreover,
we observed that RAB1A was distributed in the swollen Golgi apparatus, similar to GM130, upon
CZM treatment (Figure S7). With the same aim, we studied the distribution of ATG9A, an essential
transmembrane protein involved in macroautophagy, which plays a crucial role in the early steps of
autophagosome formation [63,64]. ATG9A-containing vesicles are formed from the Golgi apparatus
translocating to the ER to form the initiation site at the ER for autophagosome formation [65]. Similar to
RAB1A, we found that acute inhibition of PSMD14 caused a redistribution of ATG9A to the perinuclear
zone, together with a decrease in its distribution in the radial zone (Figure 7C). The quantification
analysis of these images is shown in Figure 7C. Moreover, and similar to RAB1A, we observed that
ATG9A is distributed to the swollen GM130-Golgi apparatus area upon CZM treatment (Figure S8).
These results strongly indicate that blockage of Golgi-to-ER retrograde transport by acute inhibition of
PSMD14 DUB activity causes the retention at the Golgi apparatus of key proteins implicated in early
steps of autophagosome formation. The PSDM14-dependent inhibition of autophagy explains the
accumulation of APP at the Golgi apparatus since macroautophagy has been recently demonstrated
as a positive regulator of protein secretion from the Golgi apparatus [66]. Collectively, these results
show the strong interplay between membrane transport and autophagy through a novel mechanism
involving the proteasome complex through the deubiquitinating activity of PSMD14.Cells 2020, 9, x 17 of 25 
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Figure 7. Redistribution of RAB1A and ATG9A to the Golgi apparatus with CZM. (A)
Immunofluorescence analysis of endogenous RAB1A and ATG9A in H4 parental cells treated for
4 h either with the vehicle (DMSO; Control) (left panel) or CZM (right panel). Cells were fixed,
permeabilized, and stained with a rabbit monoclonal antibody to RAB1A (clone D3X9S) (upper
panel) and a rabbit monoclonal antibody to ATG9A (clone EPR2450(2)) (lower panel), followed by
Alexa-594-conjugated donkey anti-Rabbit IgG. Scale Bar, 10 µm. (B) Quantitative analysis of the
fluorescence intensity of RAB1A upon treatment with CZM, in comparison to control cells. Statistical
significance was determined by Student’s t-test. Bars represent the mean ± SEM of the fluorescent signal
per cell area (n = 227 cells). **p < 0.01; ***p < 0.001; n.s., not significant. (C) Quantitative analysis of the
fluorescence intensity of ATG9A upon treatment with CZM, in comparison to control cells. Statistical
significance was determined by Student’s t-test. Bars represent the mean ± SEM of the fluorescent
signal per cell area (n = 95 cells). *p < 0.05; ***p < 0.001; n.s., not significant.

4. Discussion

We report here that PSMD14 DUB activity, a subunit of the 19S RP of the proteasome, functions as a
novel regulator of autophagosome formation. To our knowledge, this is the first report demonstrating that
impairment of the proteasome can have a negative impact on the initiation of macroautophagy. In general,
several studies have shown that the inhibition of the 20S catalytic core with the use of blockers of the
β-subunits triggers the enhancement of the biogenesis of LC3B-positive autophagosomes [67–72]. In this
regard, we showed that MG132 caused an increment of the LC3II/LC3I ratio and a significant decrease in
full-length endogenous APP levels, strongly indicating a reduction in APP by macroautophagy [38,73–76].
Here, we show that blockage of the PSMD14 DUB activity, a component of the 19S RP, plays a negative
role in the biogenesis of LC3B-positive autophagosomes, given new insights about the control
of macroautophagy.
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In addition, and because only CZM but not MG132 blocked Golgi-to-ER retrograde transport,
a pathway implicated in the initiation of autophagosomes [52–55], we postulated that PSMD14
DUB activity controls macroautophagy by a process independent of bulk proteasomal degradation
but dependent on K63-Ub chains. In agreement with this possibility, K63-Ub chains have been
directly involved in the control of protein membrane trafficking in C. elegans [77] and as a regulator
of mTORC and macroautophagy [78,79]. Likewise, free unanchored K63-Ub chains released in a
PSMD14-dependent manner have shown to be crucial in coordinating the elimination of protein
aggregates by macroautophagy [56], relocating the aggregates to the aggresome for final autophagic
clearance by a mechanism related with deacetylase HDAC6 activity [80]. Here, we unveil the first
insight into the regulation of Golgi-to-ER retrograde transport by K63-Ub chains, highlighting the
deubiquitinating enzyme PSMD14 as a key regulator in the control of early events of the secretory
pathway. In this regard, and in agreement with the role of the deubiquitination in membrane protein
trafficking [81,82], we hypothesize that Golgi-to-ER retrograde transport must be controlled by the
deubiquitination of cytosolic proteins modified with K63-Ub chains.

In this regard, key regulatory proteins involved in Golgi-to-ER transport are regulated by the
state of ubiquitination/deubiquitination. In yeast, the deletion of the DUB Ube3p and its co-factor
Bre5p accumulates ubiquitinated β´-COP facilitating its rapid degradation by the proteasome [81,83].
As β´-COP is a subunit of the COP-I coatomer complex, a key machinery implicated in Golgi-to-ER
retrograde transport, reduction in β´-COP levels perturbs this trafficking pathway [81]. Interestingly, it
has been previously proposed that full-length APP can traffic retrogradely between the Golgi apparatus
and the ER mediated by the COP-I complex. In fact, the silencing of COP-I subunits by siRNAs induces
APP accumulation at the Golgi apparatus, which reduces APP proteolytic processing [84].

Two other proteins that participates in this retrograde trafficking pathway, such as PKA and
UVRAG [32,85], have been shown to be regulated by ubiquitination. Blockers of PKA signaling
cause the inhibition of this trafficking pathway, a process that is accompanied by the swelling of the
Golgi apparatus [32,49]. It has been shown that the catalytic PKA subunit (PKAc) is ubiquitinated
by the CHIP E3 ligase, resulting in proteasomal degradation of PKAc and signaling shutdown [86].
UVRAG mediates the interaction of β´-COP with ER tethers and COP-I coatomer for efficient fusion of
retrograde vesicles to the ER, a crucial step during Golgi-to-ER retrograde transport [53]. UVRAG
is ubiquitinated by SMURF1 [87] and its silencing causes the swelling of the Golgi apparatus and
the inhibition of the Golgi-to-ER retrograde transport [53]. Whether these proteins are regulated by
K63-Ub chains is unknown and should be further addressed.

In addition, we propose that Golgi-to ER retrograde transport inhibition by PSMD14 dysfunction
might result in the accumulation of structural and/or autophagy regulatory elements. In fact, the
inhibition of PSMD14 caused the accumulation of ATG9A at the Golgi. ATG9A is a multispanning
membrane protein essential for autophagy [63,64]. ATG9A is actively transported through Golgi-to-ER
retrograde transport [65] and participates as a key player in the biogenesis of autophagosomes [63,88].
Moreover, along with the accumulation of ATG9A at the Golgi, we found increased levels of RAB1A at
the Golgi apparatus. RAB1A is an essential small GTPase that participates in the recruitment of the
ULK1 complex to subdomains of the ER for autophagy initiation [61,62]. Interestingly, and similar to
PSMD14 inhibition, ATG9A deficiency causes an increase in LC3B-I levels, accompanied by a reduction
in the number of autophagosome structures [63,88,89]. Together, our results strongly support that
PSMD14 inhibition perturbs autophagosome biogenesis due to the sequestration of key proteins of this
process at the Golgi apparatus. In addition, it supports the hypothesis of a closed intersection between
Golgi-to-ER retrograde and autophagy pathway [53,85]. whereas PSMD14 DUB activity emerged as a
new regulatory element of this intersection.

The PSDM14-dependent inhibition of macroautophagy might affect protein secretion from the
Golgi apparatus since autophagy has been recently demonstrated as a positive regulator of this
process [66], which is in agreement with the strong accumulation of APP at the Golgi apparatus. The
crosstalk between macroautophagy and protein secretion was recently discovered, observing that
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the arrival of cargo to the Golgi apparatus induces lysosome repositioning to the perinuclear region
along with the activation of the autophagy flux by a mechanism dependent on KDELR signaling [66].
Importantly, the abolishment of either lysosomal repositioning or autophagosome biogenesis strongly
reduced cargo exit from the Golgi apparatus, demonstrating that protein transport from the Golgi
apparatus to the plasma membrane requires macroautophagy [66]. Collectively, the results demonstrate
the strong functional interplay between membrane transport and macroautophagy mediated by a
novel mechanism involving the proteasome complex through the deubiquitinating activity of PSMD14
(Model in Figure 8). We propose that inhibition of PSDM14 DUB activity by CZM is a new strategy for
causing inhibition of the Golgi-to-ER retrograde pathway. Thus, CZM should now be considered as a
new pharmacological tool to study the impact of Golgi-to-ER retrograde transport inhibition in other
cell biology processes, such as autophagy. Moreover, because CZM was discovered as a new drug for
cancer treatment [42], it would now be interesting to investigate whether part of its anti-cancer effects
could be the result of inhibiting the Golgi-to-ER retrograde pathway. Interestingly, recent studies have
shown that PSMD14 is upregulated (mRNA and protein levels) in different tumoral cell types [90,91].
Whether cancer cells are more dependent on the Golgi-to-ER retrograde pathway than normal cells,
as it happens regarding the mechanisms of protein quality control [92], is still unclear. CZM could
offer an interesting tool to evaluate this hypothesis, positioning PSMD14 as a promising target for
therapeutic intervention.
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Figure 8. Model of the mechanism underlying the regulation of protein membrane trafficking and
macroautophagy by the proteasome 19S RP PSMD14 DUB activity. The model depicts the closed
interplay between membrane transport and macroautophagy by a novel mechanism involving the
proteasome complex through the deubiquitinating activity of PSMD14. We propose that active PSMD14
and the K63-Ub chains (1, left panel) positively regulate Golgi-to-ER retrograde transport (2, left
panel), a pathway implicated in the retrieval of key proteins for autophagosome biogenesis and
macroautophagy (3, left panel). Reduction of free K63-Ub chains by inactive PSMD14 (1, right panel)
results on the blockage of Golgi-to-ER retrograde transport (2, right panel) causing the accumulation
of ATG9A and RAB1A at the Golgi apparatus. Thus, blockage of Golgi-to-ER retrograde transport
inhibits the biogenesis of autophagosomes and macroautophagy (3, right panel). Macroautophagy has
been recently demonstrated to act as a potent positive regulator of protein transport from the Golgi
apparatus to the cell surface (Golgi-secretion ON; 4, left panel). Thus, inhibition of macroautophagy
upon inactive PSMD14 (siRNA/CZM) blocks protein transport from the Golgi apparatus to the cell surface
(Golgi-secretion OFF; 4 right panel), explaining the effect on APP transport (5 left and 5 right panels).
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Figure S1: siRNA sequences directed against human PSMD14 used for Validation Stage; Figure S2: Primer
pairs sequences used for RT-qPCR; Figure S3: The PSMD14 DUB inhibitor CZM increases the Golgi apparatus
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Distribution of RAB1A upon CZM treatment; Figure S8: ATG9A is distributed in the swollen Golgi apparatus
upon CZM treatment.
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