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Abstract: Human activity recognition and classification are some of the most interesting research
fields, especially due to the rising popularity of wearable devices, such as mobile phones and
smartwatches, which are present in our daily lives. Determining head motion and activities through
wearable devices has applications in different domains, such as medicine, entertainment, health
monitoring, and sports training. In addition, understanding head motion is important for modern-day
topics, such as metaverse systems, virtual reality, and touchless systems. The wearability and usability
of head motion systems are more technologically advanced than those which use information from a
sensor connected to other parts of the human body. The current paper presents an overview of the
technical literature from the last decade on state-of-the-art head motion monitoring systems based
on inertial sensors. This study provides an overview of the existing solutions used to monitor head
motion using inertial sensors. The focus of this study was on determining the acquisition methods,
prototype structures, preprocessing steps, computational methods, and techniques used to validate
these systems. From a preliminary inspection of the technical literature, we observed that this was
the first work which looks specifically at head motion systems based on inertial sensors and their
techniques. The research was conducted using four internet databases—IEEE Xplore, Elsevier, MDPI,
and Springer. According to this survey, most of the studies focused on analyzing general human
activity, and less on a specific activity. In addition, this paper provides a thorough overview of the
last decade of approaches and machine learning algorithms used to monitor head motion using
inertial sensors. For each method, concept, and final solution, this study provides a comprehensive
number of references which help prove the advantages and disadvantages of the inertial sensors
used to read head motion. The results of this study help to contextualize emerging inertial sensor
technology in relation to broader goals to help people suffering from partial or total paralysis of
the body.

Keywords: head activity recognition; inertial sensors; wearable device; intelligent computing; track-
ing systems; metaverse systems; body motion recognition; motion detection; deep learning; machine
learning; pattern recognition

1. Introduction

Sensors are the most important component of intelligent devices; they can read and
quantify information about the world around us. Sensor components have multiple appli-
cations, such as in home automation, elderly care applications, smart farming, automation,
etc. Modern wearable devices are equipped with multiple sensors. To facilitate a sensor
comparison in order to provide a comprehensive overview of sensing technology, the
research community has tried categorizing the different types. Depending on different
technologies, sizes, and costs, sensory technologies can be divided into three classes based
on the sensed property (physical, chemical, or biological) [1]. This study focused on sensing
technology used in head motion detection based on inertial sensors. In the last decade,
head motion detection has been made possible through the use of various sensors, such
as video-camera-based [2], radar-based [3], and radio-based [4]. To determine the best
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approach regarding multiple criteria, including cost, wearability, and classification perfor-
mance, multiple surveys have been proposed in the literature. However, most studies have
focused on determining the technologies and computational methods used for general
human body motion [5].

Sensor placement [6], background clustering, and the inherent variability of how
different people perform activities have been other areas of focus. Although the information
from studies already conducted in this area is suggestive, a comparison between the
applications of various detection methods to identify specific tasks performed by a certain
part of the body with the help of inertial sensors is still missing. The current study focused
on head motion technology based on inertial sensors. This idea can be considered a
subdomain of the human activity recognition (HAR) technical field. This survey was
proposed to provide helpful information for researchers and practitioners in the HAR
domain who plan on using inertial sensors in head motion detection. This survey provides
comprehensive information about solutions developed in the last decade. This information
can be beneficial in many human-centric applications, such as home care support, gesture
detection, and the detection of abnormal activities. The novelty of our proposal is that our
study was focused on investigating the literature related to the existing methodologies
applied to understanding the motion of a specific body part (in this case, the head). We have
not yet discovered a similar approach in the literature, even for other human body parts.
Most existing surveys focused on activity recognition methods, classification algorithms for
activity recognition systems, or wearable inertial systems. To summarize the actual status
of the literature, Table 1 presents 13 surveys relevant to understanding human motion
based on inertial sensors.

Table 1. Existing human activity recognition surveys.

Paper
Reference

Publication
Year

Main
Focus

Body
Part

Reviewed
Papers

[5] 2020 Activity recognition
methods Full body 8

[6] 2020 Classification of the position
and number of inertial sensors Full body 58

[7] 2019
Deep learning

Human activity recognition
(HAR)

Full body 75

[8] 2019 HAR in healthcare Full body 256
[9] 2019 HAR in a multi-data system Full body 309

[10] 2018 Smartphone-based HAR Full body 273

[11] 2018 Classification algorithms
for HAR systems Full body -

[12] 2017 Smartphone-based HAR Full body 37
[13] 2016 Wearable HAR Full body 225
[14] 2013 Wearable HAR Full body 28

[15] 2020 Classification algorithms
for HAR systems Full body 147

[16] 2016 Activity recognition
methods Full body 36

[17] 2020 Activity recognition
methods Full body 95

This paper is organized as follows: Section 2 presents an overview of existing head
motion detection applications based on inertial sensors; Section 3 provides a discussion on
the literature review methods and review findings; Section 4 presents information related
to different feature extraction and preprocessing methods; Section 5 presents a discus-
sion on computational algorithms; and the discussion and conclusion are presented in
Sections 6 and 7, respectively.
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2. Related Work
2.1. Head Motion Literature Overview

In the last decade, understanding human behavior has become an interesting research
topic for researchers worldwide. Consequently, multiple methods have been proposed to
detect and interpret body motion patterns. In this paper, our focus is to determine and
provide an overview of the methods used in the literature for head motion detection based
on inertial (IMU) sensors. An IMU typically has three types of sensors in its structure, or a
combination of them, characterized by an accelerometer, gyroscope, and magnetometer
sensor. The identification of human motion using IMU sensors has gained importance
due to its small size and low manufacturing costs [18,19]. For this reason, the reading and
classification of human motion patterns have become an exciting topic in the last decade.
Most proposed studies focus more on the determination of general human activity and
less on detecting specific activities (e.g., head motion, neck motion, foot motion, etc.). The
position and number of inertial sensors used in motion recognition are essential aspects of
human motion recognition systems from the perspectives of both cost and wearability.

In the literature, in the field of human activity recognition (HAR), the most commonly
used sensor in the detection of human motion is an accelerometer. The performances
reported based on this type of sensor are promising and have classification value up to
90% [8,9]. This observation is treated in most of the surveys proposed. Lara et al. [14]
provide an overview of the features and computational methods used in motion recognition.
Another study, proposed by Reich et al. [6], treats the problem of the number of inertial
sensors included in HAR systems. This survey provides a good overview related to the
position of the inertial sensor on the body, which is a common approach in HAR systems.
Accordingly, it was observed that, in most cases, the inertial sensors are positioned on the
chest, right wrist, right waist, or right upper leg. The least common approach was when
the inertial sensor was positioned on a body extremity (neck, head, left ankle, etc.). This
observation shows that the determination of a specific human activity in the HAR technical
field is a new topic; few studies have addressed this issue. In addition, this leads to the fact
that our proposal is unique and provides a good overview of the current status of head
motion tracking systems based on inertial sensors. The topic of how many inertial sensors
need to be used and positioned in motion tracking systems is also approached in the paper
proposed by Bao and Intille [20]. Their study provides additional information about the
accuracy of different existing solutions with a focus on the accelerometer sensor. Another
topic approached by the existing surveys is related to the computational models used.
Demrozi et al. [15] focused on the study of machine learning algorithms in developing HAR
applications based on inertial sensors in conjunction with psychological and environmental
sensors. According to their observation, the interest in deep learning (DL) has increased
due to higher classification accuracy in the HAR systems. This positive result was obtained
based on large activity datasets. In relation, most HAR results published in the last decade
have focused on studying classical machine learning (CML) models. These computational
models might be better suited due to the small training datasets, lower dimensionality of
the input data, and availability of expert knowledge in developing the problem [21].

Another survey study, conducted by Nava and Melendez [16], analyzed the problem
of the type of inertial sensor and system used in evaluating human activity. In their study,
they suggested that it was possible to capture human activity through systems based on a
single inertial sensor (accelerometer, gyroscope, or magnetometer), or on a complex unit
sensing device based on the use of a sensor network. Most movement measurements are
performed in the upper limb, lower limb, multiple limbs (upper and lower limbs at the
same time), or in other body regions (head, trunk, back, or hip). According to their study,
from 107 relevant papers, only 7 addressed the topic of monitoring body regions other than
the upper and lower limbs, which is conventional. This fact highlights the contribution of
this paper in the field of HAR systems. Previous observations related to human activity
distribution systems are supported by a study published in 2020 by Rast and Labruyère [17].
Their survey focused on a literature review to determine the application of wearable inertial
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sensors used to monitor human motion. Consequently, from a total of 95 relevant papers,
they concluded that an accelerometer and gyroscope represent the sensors used the most
in detecting body motion.

Regarding sensor placement, the most common areas are the trunk and the pelvis.
On the other hand, the most uncommon approach is to place wearable sensors on the
head. This information highlights the contribution brought by this survey. This obser-
vation is also highlighted in Table 1, where 13 surveys relevant to human motion under-
standing based on inertial sensors are centralized. According to this information, most
existing studies are focused on understanding general body motion, and very few on a
specific part.

The following chapters will present the results obtained and the conclusion.

2.2. Taxonomy of Head Motion Analyses Using Inertial Sensors

Inertial sensors (i.e., accelerometers, gyroscopes, or magnetometers) have been used
in the last decade in diverse applications in medicine or other interconnected fields. In
Figure 1, the taxonomy based on existing applications in the field of head motion recog-
nition is presented. The first class described corresponds to papers which are focused on
proposing and designing proper techniques for measuring and quantifying head motion.
The second case represents works based on the analysis and interpretation of classify-
ing head motion activity. This step is possible by using a computational model (clas-
sical machine learning vs. deep learning). In addition, at this level diverse calibration
computational methods beneficial for improving head motion classification performance
are studied.
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In the first class of our taxonomy work, we focused on designing head-wearable de-
vices with diverse applicability. A common example is the detection of daily activities (e.g.,
sitting, standing, walking, etc.) [22,23], medical assistance (e.g., upper limb disabilities,
elderly care, etc.) [24,25], or focusing on the understanding of head motion patterns [26,27].
For the second class, the published papers include an overview of the classification perfor-
mance provided by computational models (classical machine learning vs. deep learning
algorithms) [28,29], and various studies focusing on proposing and improving existing
computational models [27,30]. Regarding the existing review studies focused on human
motion understanding, most of them mainly address the device technology used [6], the
placement of the IMU sensor [31], computational algorithms [32], inertial time series feature
selection [32], or body rehabilitation [33]. All the previously mentioned categories are
focused on general body inspection. In this study, our purpose was to review the technical
literature to determine and present the existing state-of-the-art solutions in the field of
head motion recognition systems. Thus, this survey focuses on determining the acquisition
methods used, prototype structure, preprocessing steps, computational methods, and the
techniques used to validate these systems. In addition, this paper provides a good overview
of approaches, computational algorithms, and techniques used to monitor head motion
with the help of inertial sensors in the last decade.
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2.3. Literature Review Method

The literature review was performed on four relevant public databases: IEEE, Elsevier,
Springer, and MDPI. Selection of the relevant papers was performed by applying the filter
in the “Web of Science” core collection web page. To achieve this task, two groups of
keywords were used in the structure of the final filter, i.e., Group 1 (“Head gesture” OR
“Head” OR “Head HCI” OR “Head Motion Classification”) and Group 2 (“inertial sensor”
OR “accelerometer” OR “gyroscope” OR “magnetometer” OR “IMU”). Consequently, a
total of 1361 studies were reviewed on the basis of the criteria for inclusion/exclusion.
For selecting the relevant papers for this survey, the publication date had to be within the
period 2011 to 2021.

Applying the previously mentioned steps, we obtained 213 from the first selection.
A full-paper revision was performed to finally select the most suitable papers for this
study. Therefore, we selected only 51 papers. The stages of the paper selection process
are presented in Figure 2. Most papers analyzed the head motion topic in the fields of
electrical and electronic engineering, instruments and instrumentation, telecommunica-
tions, biomedical engineering, automation control systems, computer science and artificial
intelligence, analytical chemistry, computer science information systems, applied physics,
and robotics. The distribution of the relevant papers can be seen in Figure 3.
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In Figure 3, the results presented are cumulated on the four public databases used
(IEEE, Elsevier, Springer, and MDPI). Consequently, the general interest is to design and
develop electrical and electronic systems for the automatization of several tasks of daily
activities or to provide support for ill persons in a medical environment.

Since 2011, researchers’ interest in the field of head motion recognition has constantly
increased. Excluding the current year, the trend in this area is expected to increase in the
next years. This affirmation is supported by the graphic presented in Figure 4.
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2.4. Review Findings

After the literature review, we noticed that the relevant selected papers had the fol-
lowing distribution: 49% focused on medical problems such as head tremor [34], cerebral
palsy [30–33], fall detection [15,34], vestibular rehabilitation [35], physical and mental ac-
tivity analysis [20,36,37], forward head posture [17,38], and musculoskeletal disorders [39];
20% focused on the general problem of human–computer interaction [35,40–42]; and 10%
focused on the development of new computational and calibration methods [39,43,44]. The
last two topics were the development of sports devices (swimming, hokey, golf, motorcycle
ride or spinning exercises: 10%) [45–50], and 8% focused on prevention and safety systems
(drivers’ attention) [51–53]. All the selected papers used an electronic device with an
inertial sensor placed on a specific part of the head. In this regard, the most common
approach is the placing of the inertial sensor on the left or right forehead (20.73%), on the
forehead (18.86%), and on top of the head (16.98%). Other commonly used areas are the
back of the head (11.32%), the ear (11.32%), the eye or the neck (7.52%), and other areas on
the head (5.64%). The anatomical distribution of inertial sensors on the head is illustrated
in Figure 5.
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Regarding the type of sensor, the distribution suggests that 31% of studies used a
9DOF(Degree Of Freedom) inertial sensor (accelerometer, gyroscope, and magnetometer),
25% used a 6DOF inertial sensor (accelerometer and gyroscope), and 21% used a 3DOF
accelerometer inertial sensor, whereas the remaining studies used a 3DOF gyroscopic (4%),
3DOF magnetometer (4%), and inertial sensors working together with other types of sensors
(8%), such as an EMG (electromyography) sensor [24], video camera [28], thermometer [36],
or flex sensor [47].

3. Head Motion Systems

Head motion recognition systems rely on head activities which need to be recognized,
and the type of sensor, its placement, and the complexity of head motion can affect the
classification performance. For this reason, in the technical community, researchers meet
several challenges in the construction of portable systems with low costs and adequate data
acquisition, or in determining the proper signal attributes to be measured. Other challenges
were related to computational performance improvements regarding the extraction of
inertial features and designing the inference methods, and the recognition of a new user
path without retraining computational models. The last challenges observed during the
literature review were related to the implementation and evaluation of head motion systems
in the online mode. In this section, we will present the existing approaches related to head
recognition motion (HRM). The most important aspects of HRM systems are the motion
sensors. Most proposed solutions are based on 9DOF inertial sensors (accelerometer,
gyroscope, and magnetometer), 6DOF inertial sensors (accelerometer and gyroscope),
and 3DOF accelerometer inertial sensors. Each type of inertial sensor provides several
benefits in the process of head motion path detection. For example, an accelerometer sensor
can measure the acceleration component; however, it cannot determine velocity or head
positional changes with high precision. With gyroscopic sensors, the angular velocities
can be recognized with high accuracy, whereas magnetometers can determine the head
orientation with high accuracy, based on measurements of variation in the magnetic field
values. The majority of proposed head motion devices focus on medical problems (49%).
Cerebral palsy [38,54,55] is one of the most studied topics in HRM systems. Even in the
last decade, multiple proposals have contributed to this area, with this topic remaining a
challenging task for researchers. One study conducted by Rudigkeit et al. [38] investigated
the possibility of controlling a robotic arm based on head motion. In their study, the
inertial sensor included a 3D accelerometer, a 3D gyroscope, and a 3D magnetometer in
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its structure. Here, the sensor was placed on the head, aligned with the user’s spine. The
acquisition and processing steps were performed on a desktop computer. In another study,
Ruzaij et al. [29] proposed a method based on 9DOF inertial sensors to control a traditional
wheelchair. In their study, they used an ARM (Acorn RISC Machine) microcontroller
for the acquisition and computational steps. The inertial sensor, similar to the previous
example [38], was placed on the head using a prototype headset. Another study analyzing
the problem of cerebral palsy was conducted by Guilherme et al. [54]. In their study, the
authors used an Arduino platform and MATLAB to simulate and test the real conditions
of head motion. In addition to the 9DOF inertial sensors approach, we noticed that 6DOF
inertial sensors (accelerometer and gyroscope) had been used to study cerebral palsy in
the papers reviewed. Prannah et al. [37] proposed a prototype based on 6DOF IMU and
Arduino platform. In their case, the sensor was placed on the head using a prototype
headset. Evaluation of the compartmental behavior was performed using the Proteus
program. In addition to cerebral palsy, in the field of head motion analysis there are
several other topics which are beginning to be studied. These include head tremor [34], fall
detection [40], sleep quality [56], general physical and mental activity analysis [41], and
musculoskeletal disorders [39].

In a study conducted by Elble et al. [34], the authors analyzed the possibility of
determining head motion tremor using a 6DOF inertial sensor placed on the vertex of the
head. The tremor component in this case was detectable through calculations of the mean
and maximum three-burst displacements in the spectral analysis. In determining body
equilibrium, multiple methods have been proposed and studied based on the interpretation
of head motion information. Such a system was proposed by Lin et al. [40] to determine
involuntary fall disorder. Their method used inertial information provided by a 6DOF
inertial sensor (accelerometer and gyroscope) with an additional magnetometer. The
sensors were placed on the left ear using a self-designed eyeglasses prototype. The motion
pattern was sent over a Wi-Fi connection using the cheapest ESP8064 module. In detecting
falls, the system is capable of sending an alert to the emergency contact. The proposed
system could observe the condition of portability for an estimated autonomy of at least 68
h. In their study, only 3 falls from 700 falling motions were selected. Another study related
to fall detection was carried out by Chen et al. [25]. Similar to the aforementioned study,
the inertial sensor was designed in a 9DOF topology and placed on the left ear. The inertial
signals were sent to the computational block using a Wi-Fi module. Another study area
is characterized by the identification of daily activities. Such a system was proposed by
Cristiano et al. [23]. Their system contained a 6DOF inertial sensor and was designed to
identify static and dynamic body activities. The inertial sensor was placed on the left side
of the forehead. In a study published by Loh et al. [42], the authors studied the possibility
of determining fitness activities. Here, the proposed device contained five inertial sensors.
The inertial sensors were placed on a helmet, the left arm, left wrist, left pant, and left
ankle. All inertial data were transmitted to a portable laptop. For validation, in addition
to inertial sensors, they attached a video camera for tagging the activities. Regarding the
sports activity, as well as the previous example, we observed that multiple solutions have
been proposed to assist users in performing activities such as swimming [52], hokey [53],
golf [57], or motorcycle VR [58]. Such a system was proposed by Michaels et al. [52] in order
to coach new users to use inertial sensors. Their system used only a tri-axial accelerometer
and considered the following requirements: to be lightweight, waterproof, have a long life
battery, and to save acquired data for a long period. The HDM (Hardware Device Module)
device was placed on the back of the athlete’s head, underneath the swimming cap. They
indicated that this placement of the inertial sensor was relevant for their particular study,
suggesting that the main disadvantage of their solution was related to the fact that fore–aft
acceleration of the head was largely representative of the center of the body, whereas
Euler angles (roll and pitch) are unrepresentative of the entire body. For data analysis and
validation, the MATLAB development environment was utilized. Another category of
applications related to head motion analysis is human–computer interaction (HCI) devices,
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which have general applicability [27,45,46,59–62]. The main purpose of most of these
systems is to determine an accurate solution for the augmented reality field. Such a study
was proposed by Young et al. [45]. They proposed and studied two interaction methods
used to control a virtual object by combining touch interaction and head motions. The touch
interaction was performed based on a nail-mounted inertial measurement unit. The head
motion was tracked from inertial sensors built in an augmented reality (AR) environment
on a head-mounted display (HMD), which could be used in a mobile environment. In
another study conducted by Tobias et al. [46], the authors studied the topic of orientation
estimation by combining information from a single inertial sensor located on the user head
with inaccurate positional tracking. For their experiment, they used a smartphone with a
6DoF IMU sensor attached to an ARHMD device. To validate the experiment, they used an
optical-laser-based system with an accuracy of <10 mm at 20 Hz.

Other categories related to head motion analyses which have been proposed in the
last decade include safety devices used in the identification of drivers’ behavior with
the purpose of avoiding car accidents. One such study was proposed by Han et al. [63],
who studied the possibility of determining the driver’s posture. Detection of the driver’s
postural path was possible through a tri-axial magnetometer attached on the back of
the driver’s neck. Summarizing the papers reviewed, we observed that the acquisition
and analysis were performed based on two approaches: a microcontroller and a portable
device (laptop or cell phone). The inertial acquisition rates which were used in over 51
papers reviewed were in the range of 10 Hz [28] to 48 kHz [39]. In the case of lower
acquisition frequency, around 10–20 Hz, the proposed studies focused on determining
head motion patterns, which has applicability in medical fields [28,40]. The most common
acquisition frequency was observed to be within a range of 48 Hz to 100 Hz, with diverse
applicability (general HCI solutions, physical and mental activity analyses, sports training,
and medical) [23,36,41,42,47,62,64–66]. Another range which we determined had been used
in the papers reviewed was an acquisition frequency of 120 Hz to 48 kHz. However, this
range frequency was rarely used in comparison with 48–100 Hz. Existing studies utilizing
this acquisition range are mostly focused on medical fields, such as the study of palsy as a
human disorder or to improve the users’ physical and mental state [35,38,56,67].

4. Preprocessing and Feature Extraction

In intelligent motion systems, the feature extraction and preprocessing steps consist
of some of the main tasks in the process of proposing, designing, and implementing a
new solution based on inertial sensors. In a study conducted by Khusainov et al. [68], the
authors concluded that the choice of features was more important than other steps because,
in the case of low-quality features, the performance of computational models could be
directly affected.

Signals from inertial sensors are characterized by noise, which poses difficulties when
using these signals in raw form. For this reason, the preprocessing step is critical in the
process of developing novel detected head motion systems. In head motion recognition
(HMR) systems, the most common approach is characterized by digital and statistical
filters [30,33,34,48,50], data normalization [41], and feature extraction [69–71]. The feature
extraction step explores two domains: time [66] and frequency [43]. Approaches based
on handling inertial signals in the time domain are used the most, because these have
a small computational time compared with the frequency domain. Approaches based
on the identification of features in the time domain describe statistical information using
mathematical formulas. In this study, we observed that the most common statistical
features were characterized by the calculation of average values, minimum or maximum
amplitudes, standard deviations, kurtosis, correlation coefficients, variance, periodicity,
and root mean square error (RMSE). In the case of frequency domain, most of the inertial
features are based on fast Fourier-transforms (FFTs). Another method is characterized by
wavelet transform [34]. This technique is similar to FFT, except that the wavelet transform
replaces infinite trigonometric functions with finite wavelet attenuation functions [72]. This
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method is advantageous because both time and frequency domains are considered. In this
review, we found that the most common frequency features are the cross-power spectrum:
energy and entropy.

Table 2 presents an overview of the time taken and frequency domain feature extrac-
tion applied to the most relevant papers reviewed. For this survey, the computational
models were split into two categories: classical machine learning (CMLs) models and deep
learning models (DLMs). One key difficulty we met in the review process consisted of
information missing (e.g., computational models, preprocessing models, etc.) from the pa-
pers selected, affecting the finding of relevant information (e.g., accuracy, subjects, filtering
technique, etc.). According to the information presented in Table 2, we observed that the
computational models used the most were the classical machine learning models (CML).
In the preprocessing and filtering steps, we observed that diverse methods were used for
their low complexity as median or average filters, to the more complex methods such as
Kalman, Butterworth, Savitzky–Golay, or low/high-pass filters. In most studies related to
head motion detection, Kalman-filter-based algorithms were preferred. These techniques
use information derived from the expected dynamics of an inertial head motion system to
predict a future state given both the current state and a set of control inputs [48,50]. In the
selected head motion papers [42,58,59,64,70,73], this estimator was applied to estimate the
head orientation in a tridimensional space.

Another aspect is related to the fact that existing studies produced analyses in the time
domain. The analyses were performed using data acquired from 1 person [31,32] up to
63 persons [36]. Regarding the age of the volunteers participating in the experiments, there
was a wide variation: from 20 years [56] to 68 years old [34]. Most of the values of data
acquisition frequency were as follows: 4 Hz [53], 10 Hz [28], 20 Hz [40], 48 Hz [20,36,54,71],
100 Hz [6,36,41,50,55], 125 Hz [38], 128 Hz [35], 200 Hz [47,74], 3.2 kHz [67], and 48 kHz [70].
The maximum sampling rate was found in a paper which proposed an inertial device
which enabled psychotherapists to analyze mental-health-related communications [70]. The
minimum sampling rate was found in a study which proposed a mouthguard-based inertial
safety device for athletes. The classification rate obtained and reported was excellent,
suggesting that the inertial sensor was capable of identifying and recognizing head motion
patterns. For most papers reviewed, inertial data were acquired from a single inertial
sensor placed on the head. Another important aspect is related to the inertial sensor
configuration. For this case, we discovered that two main approaches were used. The
first approach was characterized by six degrees of freedom sensors, which integrate three
axial accelerometer sensors (Acc) and three axial gyroscope sensors (Gyro). The second
approach was characterized by nine degrees of freedom sensors, which integrate three
axial accelerometer sensors (Acc), three axial gyroscope sensors (Gyro), and three axial
magnetometers (Mag). Even though in most of the relevant papers a single inertial sensor
was used, head motion patterns were recognized with a good classification rate.

In the reviewed papers, the lowest classification performance was equal to 72.6% [56];
the maximum classification rate was equal to 99.1% [46]. The results were based on data
acquired in each independent experiment without using an existing public database. This
aspect (missing relevant benchmark datasets) is the main contemporary problem in the
field of head motion recognition systems based on inertial sensors.

In the next section, we present the types of intelligent computational models used in
the classification of head motion patterns.
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Table 2. Preprocessing and feature extraction for HMR systems. “x” means that analyses are applicable to the specified
domain. For the case of “-”, this means that is not applicable to that specific domain.

Computational
Models

Noise
Removal

Time
Domain

Frequency
Domain

Paper
References

Number of
Features

Head
Recognition

Accuracy
Subjects Number of

Sensors
Type of
Sensors

CHMR - - x [34] 1 95% 26 - Acc and Gyro
CHMR Median filter x - [75] - 97.5% 12 1 Acc and Gyro

CHMR - x - [36] 9 98.56% 63 1 Acc, Gyro,
and Mag

DHMR Butterworth
filter x - [57] 7 - 20 1 Acc and Gyro

DHMR Kalman and
low-pass filter x - [58] 7 99.1% - 1 Acc, Gyro,

and Mag

CHMR

Savitzky–
Golay and

low/high-pass
filter

x - [46] 4 95% 33 1 Acc and Gyro

CHMR Kalman filter x - [64] - 88% 10 2 Acc, Gyro,
and Mag

CHMR - x - [25] - 92.1% 48 1 Acc, Gyro,
and Mag

CHMR - x - [76] 1 85.66% 6 1 Acc and Gyro

CHMR - x - [77] - 78% 5 1 Acc, Gyro,
and Mag

CHMR Average filter x - [28] - 95.6% 6 1 Mag

5. Computational Motion Models

In the context of proposing and designing precise head motion systems, computational
models play an important role, and have the key objective of classifying head motion
activity based on data gathered by inertial sensors. In the literature, there are two categories:
based on classic machine learning models (CMLs) and deep learning models (DLMs).
According to the results reported thus far, we observed that both categories provided a
good classification rate based on inertial signals. In this section, each category will be
described based on the papers reviewed in this study.

5.1. Classical Machine Learning Models

This category of computational models represents a branch of the artificial intelligence
research field which has the key purpose of developing algorithms capable of identifying
and inferring patterns given an inertial training dataset [78]. The algorithms categorized
as such can be divided into two other classes: supervised computational models and
unsupervised computational models. The objective of supervised computational models
is to design a mathematical model based on the relationship between input and output
data to predict future unseen inertial data. On the other hand, in the unsupervised class,
the focus is on the identification of head motion patterns from the input dataset without
any knowledge of the desired output. Based on the papers related to this study, the most
common classical machine learning algorithms are regression models (RMs) [34], random
forest (RF) [36], feedforward artificial neural network (FANNs) [58,63,75], dynamic time
warping (DTW) [76], decision tree (DTs) [28,36], support vector machines (SVMa) [42,64], k-
nearest neighbor (k-NN) [46], fuzzy logic (FL) [79], naïve Bayes classifiers (NBCs) [50,51,62],
Euclidian distance classifiers (EDCs) [54], Mahalanobis distance classifiers (MDCs) [54],
Gaussian mixture (GM) models [25], Gauss–Newton models (GNMs) [49], adaptive boost-
ing classifiers (ADABs) [80], and multilayer perceptron (MLP) classifiers [81]. Classical
machine learning models are usually preferred in the field of head motion recognition or
human activity recognition, especially when the training dataset is small, or when a rapid
training process is necessary.

In case with a small training database (i.e., data acquired from fewer than 10 people),
we observed that the accuracy was in the range of 64.63% [81] to 95.62% [28]. The best
classification performances were obtained with KNN (95.62%) [28], SVM (94.80%) [28],
DT (92.04%) [28] or RF (91.04%) techniques [80]. In cases with a large training database
(data acquired from more than 10 people), we observed that the accuracy was in the
range of 89% [23] to 98.61% [36]. For this case, the best classification performances were
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obtained using RF (98.61%) [36], DT (97.57%) [36], cropped random forest (98.56%) [36],
or Gaussian mixture models (92%) [25]. In both situations, we observed that the most
suitable computational models for head motion recognition were characterized by bagged
computational models. The reported results depend on the complexity of head motion
activity and the acquisition period. In the data acquisition period, this process can take
from a few seconds or minutes [23,66,77] to the real condition period (15 min [24,60], half
an hour or one hour [41,47,70], 3 days [56], or 15 weeks [52]).

Based on this observation, we can conclude that the main advantages of inertial
sensors in the process of head motion detection and classification are related to their
portability and ease-of-use in real-life scenarios.

5.2. Deep Learning Models

Other categories of computational models used in the classification of head motion
activity are deep learning models. These have recently become popular in multiple research
areas because of their computational performance. The advantage of this category is the
fact that this model is based on the idea of data representation, meaning that the desired
features can be automatically generated without human intervention. Even though the
results reported are excellent, these computational models have a few limitations [82]:

• They require a large training dataset;
• They require a large computational period compared to classical machine

learning models;
• The implementation and interpretation of the deep learning models is more difficult

than in for classical machine learning models.

Even though the reported results based on deep learning models (DLMs) are ex-
cellent [29], in various publications, classical machine learning is preferred, especially
when the datasets are small. According to the papers related to the topic of head motion
recognition, the most common deep learning models are long short-term memory net-
works (LSTMs), convolutional neural networks–long short-term memory networks (CNNs–
LSTMs), convolutional neural networks (CNNs), bidirectional LSTM networks (BLSTMs) or
convolutional neural networks–bidirectional LSTM networks (CNNs–BLSTMs) [29,57], or
hidden Markov models [55]. One interesting class of architecture which has contemporary
uses in time series processing is CNNs. This model has become a prevalent tool, especially
in the field of image processing, from where it has been imported into other research areas.
One advantage provided by this model relates to the fact that it imposes local connectivity
on the raw data, extracting more important features automatically just by using the training
process. The inertial time series in this case is seen as a collection of local signal segments.
Each segment is a line of the input image of the CNN. Figure 6 presents an example of such
architecture, inputting data information from inertial sensors (accelerometers, gyroscopes,
and magnetometers). The core building layer of CNNs is the convolutional layer. Each
convolutional layer represents multiple levels of information representations, combined in
abstract concepts required to discriminate specific information reflected through inertial
signals. Furthermore, a particular function of activation, such as ReLu, can be applied
to these convolutional layers. Other layer types, such as activation, pooling, or dropout,
are used to reduce the input volume, overfitting, or local invariance. The fully connected
layers, presented in traditional feedforward neural networks, are the last CNN layer(s).
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In this study, we observed that only 3 papers out of 51 considered determining head
motion gestures with deep learning models. Figure 7 shows the distribution of deep
learning models and classical machine learning models among the 51 articles reviewed
and selected.
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In Figure 7, the rest of the papers (indicated by Other) used other computational
models or provided improvements to the DLM or CML architecture. According to this
observation, we concluded that in cases of head motion recognition, computational models
need special adaptation to account for inertial time series. In addition, CML models are
usually preferred because of the small datasets. The classification performance reported
in the papers reviewed regarding the deep learning models ranged from 80% [29] to
99% [55]. The best deep learning architectures were hidden Markov models (99%) [55],
CNNs–BLSTMs (93.62%) [29], CNNs–LSTMs (92.40%) [29], and BLSTMs (91.12%) [29]. On
the other hand, the worst results were obtained when using LSTMs (88.18%) [29] and CNNs
(80.12%) [29]. The main disadvantage we have noticed in the field of head motion is related
to the availability of inertial datasets, which, until now, have not been available to other
researchers. This fact represents an impediment in the reproducibility and to improvements
of the existing solution. Another point is related to the size of the trainable datasets. In this
study, we observed that the number of participants involved in data acquisition varied
between 1 person [28,65] and 63 people [36]. Regarding the range of age, there was a wide
variation in the age of volunteers who took part in each experiment proposed in the papers
reviewed. We observed that the ages ranged from 18 [41] to 68 [34] years old. Another
aspect of the papers reviewed is related to how computational models were evaluated
(offline vs. online). At present, head motion classifiers can be trained online or offline.
An offline training/evaluation (not real-time) is usually seen in the case of applications
which are not required to provide rapid feedback to the user or deliver high-performance
model classification.
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Online evaluations must assist users in a real-time mode to provide fast feedback.
Thus, online analyses mean that the classifiers can be trained before being used; however,
in the case of offline analyses, the models are built and trained from scratch. Based on
the papers selected and reviewed, we discovered that slightly more studies used offline
analyses (29/51), with online analyses represented by 24/51 papers. The paper distribution
according to the type of analysis is presented in Figure 8.
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Based on the distribution presented in Figure 8, we conclude that, in the literature,
head motion recognition systems observe the following steps: design, implementation,
acquisition, and offline analyses and online evaluations in an equal manner.

6. Discussion

In this study, we have presented an overview of head motion recognition methods
based on inertial sensors over the last decade. Head motion recognition is a beneficial
research area in various fields such as medicine, daily life, or general human–computer in-
terface methods. In addition, the interest shown by researchers for head motion recognition
technologies has become popular because new sensor type technologies have been raised
and market needs have grown continuously. The main purpose of this field is to improve
the quality of life with the utilization of wearable devices incorporating inertial sensors.
From the papers reviewed, we observed that the workflow used in specially designed
head motion recognition technologies involves four steps. The first step is to determine the
topologies of inertial sensors and acquisition methods. The second step is dataset manip-
ulation, including any necessary preprocessing (data collection). The third step includes
the identification of computational models and their training. Most studies analyzed used
supervised machine learning models based on annotated inertial data (model selection
and training). The final step is characterized by computational model evaluation in terms
of accuracy, precision, recall, and other metrics. Figure 9 highlights the workflow steps
followed in the process of proposing a new system for head motion recognition.
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Although in the last decade the number of studies related to head motion recognition
has increased significantly, this research field still has multiple aspects which need to be
explored. One important impediment we observed during the literature review is related to
the reproducibility of results. Most existing studies do not publish their datasets; therefore,
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this aspect is a hinderance for the wider research community during the identification of the
best computational methods or benchmarking the results. Another consequence of the lack
of public head motion datasets is the low capability of head motion generalization because
of the data collected in a controlled environment. This aspect is due to a small number of
test activities or small amount of data acquired from the volunteers involved. Among the
51 papers reviewed, all datasets were created from scratch, acquiring inertial data from
a minimum of 1 person [37,55], up to 63 people [36]. Most papers analyzed used healthy
volunteers to perform the desired analyses. Although the number of studies testing the
solution proposed in real conditions is pretty low, in the solutions focused on the medical
field, we observed that several real patients had been involved in experiments. These
applications monitored medical problems such as head tremor [34], cerebral palsy [54],
and fall detection [40]. The wearable head motion devices proposed acquired inertial
signals with frequency rates ranging from 4 Hz [53] to 48 kHz [70]. For detecting head
motion during various daily activities, wearable devices usually work with an acquisition
frequency between 48 Hz [20,36,54,71] and 100 Hz [6,36,41,50,55]. This aspect suggests that
head motion patterns can be detected by each wearable device based on inertial sensors
available on the market.

Another important aspect is related to sensor placement. Consequently, the most
common approach was when the inertial sensor was placed on the left or right of the
forehead (20.73%), on the forehead (18.86%), and on top of the head (16.98%). Other areas
commonly used are the back of the head (11.32%), ear (11.32%), eye or neck (7.52%), and
other head areas (5.64%). The most common types of sensors used are 9DOF inertial sensors
(accelerometer, gyroscope, and magnetometer), 6DOF inertial sensors (accelerometer and
gyroscope), and 3DOF accelerometer inertial sensors. During the technical analysis, we
observed that the topologies of inertial sensors and their placement on different areas of
the head can affect the classification performance of the computational models. Regarding
head motion recognition models, the results demonstrated that classical machine learning
models (CMLs) are used more widely than deep learning models (DLMs). This distribution
is presented in Figure 7. CMLs are the most common approach among head motion analy-
ses, because they require a small amount of training data, as well as lower computational
requirements. Another advantage of this category is related to the complexity of head
motion activity, which is low in comparison with the requirements for DLMs. In DLMs,
this architecture enables the recognition of more complex activities, and it does not require
an additional preprocessing step. In CML models, the architectures used most in the field
of head motion detection are regression models (RMs) [34], random forest (RF) [36], feed-
forward artificial neural networks (FANNs) [58,63,75], dynamic time warping (DTW) [76],
decision tree (DTs) [28,36], support vector machines (SVMs) [42,64], k-nearest neighbor
(k-NN) [46], fuzzy logic (FL) [79], naïve Bayes classifier (NBC) [50,51,62], Euclidian distance
classifiers (EDCs) [54], Mahalanobis distance classifiers (MDCs) [54], Gaussian mixture
models (GMs) [25], Gauss–Newton models (GNMs) [49], adaptive boosting classifiers (AD-
ABs) [80], and multilayer perceptron (MLP) classifiers [81]. As for DLM models, the most
common deep learning models are long short-term memory networks (LSTMs), convolu-
tional neural networks–long short-term memory networks (CNNs–LSTMs), convolutional
neural networks (CNNs), bidirectional LSTM networks (BLSTMs), convolutional neural
networks–bidirectional LSTM networks (CNNs–BLSTMs) [29,57], and hidden Markov
models [55]. In terms of classification performance, we observed that in the case of CML
models, the best models incorporated KNN (95.62%) [28] and SVMs (94.80%) [28] for small
datasets (i.e., data acquired from fewer than 10 volunteers). In the case of a large dataset
(i.e., data acquired from more than 10 volunteers), we obtained the best classification
performances using RF (98.61%) [36] and DT (97.57%) techniques [36]. Based on the papers
selected for this study, we observed that the process of computational model selection
(DLM or CML) is generally based on the computational requirements and on the size of the
available training (labeled) dataset. In terms of head motion activity, we observed that the
minimum number of recognized head activities was 3 [28]; the maximum number of head
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activities studied in one specific study was 20 [62]. Consequently, the solutions studying
or proposing wearable devices are characterized by a lack of standardization related to a
heterogeneous set of head activities performed by users with different head characteristics.

7. Conclusions and Research Direction
7.1. Conclusions

This paper has presented a literature overview for the last decade of state-of-the-art
head motion monitoring systems based on inertial sensors. This study focused on deter-
mining the acquisitional methods used, structure of the prototypes, preprocessing steps,
computational methods, and the techniques used to validate these systems. Regarding our
main scope analyzed in this review (head motion recognition systems), we can conclude
that the actual HMR solutions have multiple disadvantages compared to other techniques
(e.g., vision-based). The main disadvantage of the current studies is related to the limited
availability of datasets, which leads to a low reproducibility of existing solutions or results.
Another disadvantage is related to the limited generalization of solutions, because most
of the proposed solutions were performed in controlled experimental conditions (i.e., in a
laboratory and involving healthy volunteers). The third point which we observed based
on the papers reviewed is represented by the wearability of the devices proposed, which,
in several cases, are difficult to use in real conditions. Head motion recognition can be a
beneficial research area in various fields, such as medicine, daily life, or human–computer
interface methods. In the medical field, the detection of head motion patterns is important
in the diagnosis of various diseases or to support ill or elderly persons. Such examples
which could be considered are the detection of head tremors, detecting involuntary falls,
vestibular rehabilitation, physical and mental analyses, or human balance and orientation.
In addition, the head motion patterns could be essential for assistance systems. Such
systems could help people interact independently with a mechanical system, such as
paralyzed persons operating a wheelchair. For applications in daily life, the detection of
head motion is important in fields such as sports training, sleep quality, or monitoring
drivers’ attention.

During our study, we observed that head motion systems based on inertial sensors
could be beneficial in the field of augmented reality. We expect considerable developments
in this field in the near future, facilitated by the COVID-19 pandemic and the interest of
private companies to develop a social media metaverse world. Thus, head motion detection
based on inertial sensors could be considered a niche opportunity for multidisciplinary
research. Based on the papers analyzed, we identified four trends in head motion analysis,
summarized below.

The first trend in the literature is characterized by studies focused on determining the
topologies and acquisition methods of inertial sensors. The second trend is characterized by
studies focused on data engineering, including any necessary preprocessing method (data
collection). The third trend includes studies focused on the identification and proposal of
new computational models for analyzing head motion. The fourth trend is characterized
by studies focused on evaluating existing computational models in terms of head motion
activity or, more generally, in the recognition of human activity. Regarding the topology of
inertial sensors, we observed that the most common approaches are based on six degrees
of freedom (6DOF) and nine degrees of freedom (9DOF). In most of the papers reviewed, a
single inertial sensor was included in the final prototype. Among the 51 papers reviewed,
all datasets were created from scratch, acquiring inertial data from a minimum of 1 person
up to 63 people. Most experiments used healthy volunteers to perform the desired analyses
under controlled conditions (i.e., in a laboratory). Even though the studies proposed
are promising, no datasets have been made public for the wider research community.
Therefore, we consider that major future efforts must focus on improving collaboration
and cooperation among researchers to make their work public to the global community.
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7.2. Research Direction

Based on the papers reviewed, we have determined a few potential research direc-
tions in the field of head motion pattern analyses using inertial sensors. One possible
future research direction is to propose and analyze various generalization methods for
computational models. Thus, it will be possible to generalize a heterogeneous set of head
motion activities performed by a diverse set of users, avoiding the specificity of each user
in the development of new head motion systems. A possible solution for this research
direction could be in reusing the knowledge acquired in a specific field (e.g., medical field,
general HCI, daily activity, etc.) to solve a similar problem. One example could be that the
information acquired from the head can be reused for understanding other body motions
with the help of inertial sensors, or even based on other sensor topologies. Another research
direction could be the field of sensor fusion methods. In this direction, the information
from inertial sensors could be a fusion with information from other wearable sensors (e.g.,
GPS sensors, EMG sensors, etc.). Based on this approach, the reliability and accuracy
performance issues of the solutions proposed could be analyzed in the field of head motion
recognition, or others. This method can be beneficial for the detection of suitable sensor
topology in determining specific head motion patterns.
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