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Abstract

To represent the complex individual interactions in the dynamics of disease spread informed

by data, the coupling of an epidemiological agent-based model with the ensemble Kalman

filter is proposed. The statistical inference of the propagation of a disease by means of

ensemble-based data assimilation systems has been studied in previous works. The models

used are mostly compartmental models representing the mean field evolution through ordi-

nary differential equations. These techniques allow to monitor the propagation of the infec-

tions from data and to estimate several parameters of epidemiological interest. However,

there are many important features which are based on the individual interactions that cannot

be represented in the mean field equations, such as social network and bubbles, contact

tracing, isolating individuals in risk, and social network-based distancing strategies. Agent-

based models can describe contact networks at an individual level, including demographic

attributes such as age, neighborhood, household, workplaces, schools, entertainment

places, among others. Nevertheless, these models have several unknown parameters

which are thus difficult to prescribe. In this work, we propose the use of ensemble-based

data assimilation techniques to calibrate an agent-based model using daily epidemiological

data. This raises the challenge of having to adapt the agent populations to incorporate the

information provided by the coarse-grained data. To do this, two stochastic strategies to cor-

rect the model predictions are developed. The ensemble Kalman filter with perturbed obser-

vations is used for the joint estimation of the state and some key epidemiological

parameters. We conduct experiments with an agent based-model designed for COVID-19

and assess the proposed methodology on synthetic data and on COVID-19 daily reports

from Ciudad Autónoma de Buenos Aires, Argentina.
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Introduction

Prediction models usually represent a system through a set of differential equations that gov-

ern the evolution of the system through continuous variables. Agent-based models (ABMs)

rely on a different paradigm. They explicitly represent the characteristics and behavior of inter-

acting autonomous individuals –usually referred to as agents– and use them to simulate sce-

narios which serve as a modelization of complex systems [1]. Even simple interactions rules

may lead to self-organization and emerging collective behavior [2]. Therefore, ABMs follow a

bottom-up approach in describing the dynamics of the system. They are useful to model the

dynamics of epidemiological, ecological, economical, and social systems [3–6].

From a computational point of view, each agent consists of a collection of data attributes

that describes its state. The behavior and interaction of agents are governed via autonomous

decisions and/or probabilistic rules which eventually modify the agent’s status. ABMs can be

interpreted from the perspective of object oriented programming (indeed, many implementa-

tions follow this paradigm) where each agent is an instance of a class with certain attributes.

These attributes can be real numbers (e.g., space coordinates) or categorical variables (e.g., epi-

demiological state, social class), among other possible data types. The possibility of describing

complex behavior through a potentially simple set of rules has fostered the popularity of ABMs

in recent years. The computational cost is not negligible for systems with a large number of

agents, however nowadays this is not a strong limitation due to the increase of computational

power.

By describing the epidemiological state of individuals and their network of social contacts,

epidemiological ABMs are suitable to represent quite realistically the evolution and spread of

infections [7]. The use of ABMs to represent infectious disease dynamics is promising because

infections are indeed produced by contacts between people, and ABMs allow to model at this

(micro)scale. In fact, it is quite straightforward to represent what is known about human inter-

actions, through the interaction of agents. To model COVID-19 dynamics a number of ABMs

have been developed which, among other features, include age structure and represent a social

network that includes schools, houses, workplaces, etc. to provide realistic mixing (see, for

example, [8–10]). Considering this social structure, the assessment of the effects of non-phar-

maceutical interventions, such as confinement measures, closing of schools, social gathering

limitations, can be captured and simulated with ABMs. A strong signature of the last decade

has been the increase of devices (GPS, cameras, digitalized reports, commercial records) that

can collect information at the human level. The potential of ABMs to model the complex inter-

actions between individuals and to foster the use of anonymized individual-based information

is huge. In this line, [11] use mobility and demographic data to construct the contact network

and household distribution for a COVID-19 ABM which is used to assess the effect of non-

pharmaceutical interventions.

One of the main limitations of ABMs is the need for setting multiple simulation parameters.

Recently, there were efforts to develop inference techniques to constrain ABM parameters

through available observations. These are mainly focused on obtaining a proxy for the likeli-

hood. In [12], a variety of methods are proposed to calibrate ABMs, for instance, using

Approximate Bayesian Computation alongside Markov chain Monte Carlo or approximating

the likelihood using an emulator for the ABM.

The ensemble Kalman filter (EnKF) is a data assimilation (DA) technique suitable to con-

duct sequential Bayesian inference in noisy partially observed systems. Both, model predic-

tions and observations, are assumed to have Gaussian uncertainties. The Gaussian assumption

represents its main weakness and, at the same time, its main strength. Non-Gaussian uncer-

tainties may result in a sub-optimal performance of the filter. On the other hand, a relatively
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small number of sample points –called ensemble members or particles– may suffice for high

dimensional state spaces. In particular, the correlation between variables can be well captured

because of the Gaussian assumption. Observations of the system’s state variables are often

incomplete (not all state variables are observed) and indirect (observed variables are a function

of the state variables). By considering the correlations between state variables, the EnKF can

use the observations to improve the estimates of every state variable, even those which are not

observed [13]. Furthermore, unknown parameters of the model can be treated as unobserved

variables and included in the state. Therefore, if there is enough correlation between the

parameters and the observed variables, the EnKF is able to produce estimates of the unknown

model parameters. This procedure, called state augmentation, is quite straightforward to

implement [14, 15].

Although the EnKF has been originally developed for numerical weather prediction [16,

17], its field of application has broadened over time. In particular, some works have applied

the EnKF in epidemiological systems. In [18, 19] the ensemble adjustment Kalman filter

(EAKF) is used to forecast the times at which the peaks for influenza outbreaks were reached.

More recently, there are applications of the EnKF to infer COVID-19 transmission dynamics.

In [20] iterated filtering using the EAKF is applied to estimate undocumented cases in China.

Iterated filtering was earlier introduced by Ionides et al [21] based on particle filters with state

augmentation, to provide maximum likelihood estimates of model parameters and used it to

study cholera dynamics. In [22] the use of an ensemble Kalman smoother with multiple data

assimilation (ESMDA) is proposed to estimate the parameters, mainly focused on the effective

reproduction number, of a COVID-19 compartmental model. In [23] an EnKF is used to

study the impact of vaccination for COVID-19 using data from Saudi Arabia. All of these con-

tributions use compartmental epidemiological models represented through differential

equations.

The application of ensemble-based DA concepts to combine ABMs with data raises several

challenges. A pioneer work in this direction combining the ensemble Kalman filter with an

ABM was conducted by Ward et al [24]. In that work, an ABM, combined with an ensemble

Kalman filter to assimilate data from footfall cameras, was used to study pedestrian behavior.

They obtained satisfactory results, but the authors also note the challenges presented by

parameter sensitivity and the need for parallelization when using large models. In ABMs, the

model state is defined at a micro-scale as the set of current values of the attributes for each

agent. The model provides the evolution of the attributes of each agent which are modified in

time as a result of the interactions between them. For decision making, the individual state of

each agent is not necessarily of interest and what is relevant are aggregated quantities and/or

an anonymized group of individuals representing a certain class of attributes. These variables

summarize information on the population as a whole. Even when the hidden state is at the

micro-scale, and the inference’s goal is to represent this microscopic state as closely as possible,

observations are usually of the macroscopic scale so that the microscopic state is not well con-

strained by observations. We propose to conduct DA in the space of these aggregated variables.

The mapping of the micro into the macro state is straightforward by aggregating the variables

of interest for assimilation. But this is not the case for the inverse mapping. The aggregated

variables are not necessarily matched with a single microscopic state. In fact, it is likely that

many microscopic states of the agent population yield the same aggregated variables. This

issue needs to be addressed in order to produce realistic forecasts. Two methodologies are pro-

posed and evaluated in this work to produce the mapping between the macroscopic state to

the microscopic state.

In this work, we provide and evaluate a general framework to use ensemble-based DA on

epidemiological ABMs. In the Methods section we introduce an ABM with spatial and social
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structure designed for COVID-19 spread. We also give a general framework of DA and, in par-

ticular, ensemble-based DA. Then we discuss a general methodology to apply ensemble-based

DA to ABMs. Two implementations of the DA-ABM coupling are presented for the specific

case of our epidemiological ABM. These coupling methodologies are used to assimilate obser-

vations within the ensemble Kalman filter. In the Experiment and results section, the system is

assessed in experiments using synthetic observations, and then we use it on real COVID-19

data from Ciudad Autónoma de Buenos Aires (CABA), Argentina.

Methods

Epidemiological modeling

To model disease dynamics, the seminal work of Kermack et al [25] represents a population

divided in compartments. The basic SIR model considers three compartments related to the

disease status of the individuals: Susceptible, Infected and Recovered. This has become com-

mon practice in epidemiological modeling. Dividing the population in subpopulations, under

the assumption of homogeneity in each of them, allows for a small number of variables to sum-

marize the state of the system. These indicate how many individuals are in each compartment.

The standard SIR model can be modified and many different compartment configurations can

be set up in order to better represent the main characteristics of different diseases. Analyzing

the flow between compartments provides a general understanding of the disease dynamics.

These models only keep track of the macro-state variables –the number of individuals in each

compartment– but they do not model the individuals themselves. Compartmental models are

commonly represented by a system of differential equations which can be integrated to get the

time evolution of the disease dynamics.

A variety of compartmental models have been used to model COVID-19 which include dif-

ferent traits and complexities [26]. They have proven useful to estimate epidemiological

parameters, predict trends, and evaluate control measures [27]. Metapopulation compartmen-

tal models may represent populations with age structure (e.g., [22]), geolocalization (e.g., [28]),

and may include stochastic transmission. Furthermore, the representation through differential

equations of the system allows to formally analyze the dynamical system’s behavior [29]. On

the other hand, the complex interactions between individuals are averaged out in this type of

models because of the assumptions of mean field interactions and well-mixed populations.

ABMs aim to model people’s behavior, represented by agents, explicitly. Each individual of

the population is labeled with an epidemiological status (here referred to as epidemiological

class or category). Infections are caused by the interactions between agents, and labels can be

changed accordingly. Usually, what is of interest is not the particular outcome of the simula-

tion of an individual but rather the resulting state of the system as a whole. Simple interaction

rules can yield complex global behavior. In this case, the total number of agents at each cate-

gory at a given time gives the aggregated representation of the agent-based system. The result-

ing aggregated variables are not modeled with differential equations: the state of each

subpopulation emerges from the individual-based level. ABMs also allow the straightforward

introduction of relevant features and complexities to the model. For example, waning immu-

nity or health measures such as lockdowns, contact tracing, or vaccination effects can be

implemented in a very explicit fashion [30]. In ABMs instead of assuming that the population

is well-mixed, interactions are modeled in an individual basis so that complex networks can be

used to give richer agent interactions. These features may be very difficult to represent mathe-

matically with differential equations. The bottom-up approach of ABMs gives them great

expressiveness and flexibility with little modeling efforts.
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Agent-based model details. The ABM we developed was designed to model disease

dynamics, in particular for COVID-19 spread. Individuals are characterized mainly by three

properties: disease status, house, and neighborhood. However, the model framework easily

allows to include additional properties such as age structure, occupation, or social stratum. We

name our model epiABM and in this section we describe how it operates.

The disease status of each individual is described by one of seven categories. Namely, we

have the susceptible individuals (S) for agents which can get infected, the exposed class (E) for

those that have been infected but are not yet infectious. The infectious individuals are divided

in two groups. The mildly infected class (IM) is intended for individuals that develop non-hos-

pitalizable form of the disease, including asymptomatic ones, and are expected to recover. The

severely infected (IS) are individuals that will require hospitalization. The hospitalized ones

(H) can recover or die. Finally, we have the recovered (R) and the deceased individuals (D).

We assume that recovered individuals develop immunity for the duration of the simulation,

but note that this would be unrealistic for longer-term simulations. Hereinafter, we use these

symbols (S, E, IM, IS, H, R, D) to alternatively denote the label of the health status of the individ-

ual or the population size of the class. A diagram of the flow between the epidemiological clas-

ses is shown in Fig 1. Note that we are referring to (S, E, IM, IS, H, R, D) to the epidemiological
classes of the individuals. In compartmental models, these symbols represent variables which

are modeled via a set of differential equations with mean-field interactions terms.

At every time step, which is considered a day by default, each agent has a number of con-

tacts sampled from a Poisson distribution with parameter λ. Susceptible agents may become

exposed as a result of a contact with an infectious agent: in a contact between agents, if one of

them is infectious and the other susceptible, there is a chance that the latter becomes infected

too. The time spent in each infected class (E, IM, IS, H) is considered as a Gamma distribution

following [31].

The time τc spent by an agent in class c 2 {E, IM, IS, H} is sampled from a Gamma distribu-

tion, i.e. τc * Γ(kc, θc) where kc and θc are the shape and scale parameters for Gamma distribu-

tions. The mean and variance are given by μc = kcθc and s2
c ¼ kcy

2

c respectively. When this time

τc is spent, the agent will move on to the next epidemiological status. When an agent exits the

exposed category, it has a chance of qS of developing a severe sickness and a probability qM = 1

− qS of having mild symptoms. In a similar fashion, hospitalized agents have a qD chance to die

and a qR = 1 − qD chance to recover.

In addition to the structure given by the health status of the agents, we introduce geographic

and demographic information. We consider a city divided into Nloc neighborhoods. Each

agent lives in a house in a certain neighborhood. The house can hold a single agent or it can be

Fig 1. Diagram for the epidemiological classes in epiABM. Susceptible (S), Exposed (E), Mild infected (IM), Severe

Infected (IS), Hospitalized (H), Recovered (R) and Deceased (D).

https://doi.org/10.1371/journal.pone.0264892.g001
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shared with others. Contacts are categorized into two cases: domestic and casual contacts.

Each of the daily contacts of an agent has a chance qC of being casual and 1 − qC of being

domestic. Domestic contacts are between members of the same household and casual contacts

are potentially with any other agent. The probability of infection for a domestic contact is βd

and it is βc for casual contacts. The expected global probability of infection is then β = βcqC +

βd(1 − qC). The probability of a casual contact of an individual of neighborhood j with an indi-

vidual of the neighborhood i is Cij. This results in a Nloc × Nloc matrix which we call contact

matrix. The diagonal elements correspond to the probability of a casual contact to be between

agents within the same neighborhood. The off-diagonal terms are related to contacts of indi-

viduals that visit other neighborhoods. This contact matrix encodes agent mobility between

neighborhoods which in turn is related to work and social activities. This matrix may be

designed to model different characteristics of the social and geographic structure. For example

it would be expectable that agents move more frequently around their own neighborhoods

and this would mean that the diagonal values are larger. Off-diagonal terms representing

inter-neighborhoods contacts would then be smaller. A more visited neighborhood, such as

the city center is represented with larger off-diagonal terms. This contact matrix is assumed

fixed in this work, but in order to model this matrix in a more realistic manner, mobility data

from smartphones could be used to fit a time-varying contact matrix which can track changes

in mobility.

Further structure and classes in the population may be incorporated. For example, age,

social profile, occupation or school attendance which can be helpful to represent phenomena

such as superspreader events. This model could also be adapted to better represent the latest

developments regarding the disease, such as vaccinations or the new virus variants. New fields

can be added to the agent’s inner structure to state if it is vaccinated or not (or even how many

doses it received). Also, another attribute for the infected agents may indicate which virus vari-

ant it is hosting. Further detail may be added to contacts by modeling through the contact

matrix, the effect on mobility changes, as lockdowns begin to be lifted and schools, workplaces

and social gathering venues begin to reopen. We have restricted the contact structure to its

minimal expression but keeping house granularity since the main aim of this article is to evalu-

ate the inference technique with widely available data. Because of the effect of higher infection

rates and non-viability of distance measures within houses, we considered house granularity

was one of the essential individually-based structures to evaluate in the data assimilation

system.

In the ABM we developed, and in general, each agent is labeled with a single epidemiologi-

cal class. However, ABMs cannot be described with a system of ordinary differential equations

(ODEs) as in compartmental models. For cases with a large amount of agents, the resulting

aggregated variables of the ABM can smooth out the effect of stochastic components (for

example, the Gamma-distributed time of residence of an agent in an epidemiological class)

and yield results which may be reproducible with a compartmental ODE model. However,

ABMs do not have an obvious ODE counterpart. It is not clear how some features of the ABM,

such as the behavior which emerges from having agents residing in houses with different prob-

abilities for domestic or casual contacts, should be represented through ODEs. Using ABMs

allows to include such features and complexities at a microscopic-level which have conse-

quences at a larger scale that are hard to model and thus hard to reproduce with differential

equations. It is worth noting that ABMs are usually computationally demanding to simulate

from. Because of this, in the case that a surrogate ODE emulator of an ABM is available, it

could be used to infer some model parameters at a low computational cost (as proposed in

Hooten et al [12]).
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Default parameterization. Table 1 summarizes the default parameters used in the experi-

ments. We choose parameters that are representative of the early stage of the COVID-19 pan-

demic. We do not aim for medical accuracy since the goal of the experiments is to evaluate the

methodology in different scenarios. A mean incubation period of 4 days is reported in [32],

which is consistent with our Gamma parameterization, μE = kEθE = 4 days. The mean infec-

tious period for mild infections is chosen to be mIM
¼ kIM

yIM
¼ 8 days and values around this

are used in other models [33, 34] and reported in [35]. We use mIS
¼ kIS

yIS
¼ 8 days as the

mean time between severe illness and hospitalization which is in the range reported in [36].

The mean time agents spend hospitalized is chosen to be μH = kHθH = 8.1 days which is com-

patible with the results in [37]. We set the probability of severe symptoms qS of 10% and of

death of the severely infected qD of 40% which yields a case fatality rate of 4%. These values are

in line with the early stages of the pandemic: in mainland China, up to February 2020, a 3.67%

case fatality ratio was reported [38]. Similar values were found in Argentina in early-stage

experiments [22]. After vaccination and with the mutations of the virus the fatality ratio has

diminished substantially from these values. Since we have different configurations of λ in

every experiment, we do not provide a default value. The expected number of infections that

an infected agent produces in a totally susceptible population is λβ. With our choices of λ
alongside the defaults for βc, βd and qC we get that this quantity is similar to that yielded by the

defaults used in [8]. The default distribution of houses according to the number of inhabitants

is given by a vector of probabilities pH for which the probability of a house to have i members

is given by the i-th entry of this vector. Houses with more than 5 individuals are not included

in the model, i.e., we assume pH is of dimension 5. As a default we use pH = (0.36, 0.27, 0.16,

0.13, 0.08) in both synthetic and realistic experiments, except in the model error experiment

(for which pH specified in its description). These are reference values taken from a demo-

graphic survey in CABA, Argentina (specifically Encuesta Anual de Hogares called EAH

2019).

Data assimilation framework

In the standard DA framework, we have noisy partial observations y
1
; . . . ; yT 2 R

Ny of a time

evolving process of latent (or hidden) state variables x0; x1; . . . ; xT 2 R
Nx where the subindices

Table 1. Default parameters for epiABM.

Parameter Description Value

βd Infection probability in domestic contact 0.8

βc Infection probability in casual contact 0.16

qD Death probability for hospitalized individuals 0.4

qS Probability of severe symptoms development 0.1

qC Probability of a contact to be casual 0.5

kE Shape parameter of Gamma distribution for time at E 1.78

θE Scale parameter of Gamma distribution for time at E 2.25

kIM
Shape parameter of Gamma distribution for time at IM 7.11

yIM
Scale parameter of Gamma distribution for time at IM 1.13

kIS
Shape parameter of Gamma distribution for time at IS 4.0

yIS
Scale parameter of Gamma distribution for time at IS 1.0

kH Shape parameter of Gamma distribution for time at H 9.0

θH Scale parameter of Gamma distribution for time at H 0.9

https://doi.org/10.1371/journal.pone.0264892.t001
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represent discrete times. The initial condition, x0, is considered to follow a given distribution p
(x0), and is conventionally considered unobserved. The evolution of the state and observations

is governed by the state-space model equations for t = 1, . . ., T:

xt ¼Mtðxt� 1;ηtÞ; ð1Þ

yt ¼ Htðxt; νtÞ: ð2Þ

With this nomenclature, the state variables at time t evolve to the following discrete time

through a forward model Mt which has stochastic components (represented by the random

variable ηt). The relation between data and state is modeled through the observational

map Ht and νt is a random variable which accounts for the observational error. Eqs 1 and 2

represent a hidden Markov model or state-space model. They determine the transition proba-

bility p(xt|xt−1) and the observational likelihood p(yt|xt), respectively [39].

One of the goals of DA is to incorporate the information of observations into the model

predictions of the latent state variables. This means that we are interested in the probability of

x given y1:t (where y1:t¼
:

{y1, � � �, yt}). In particular, we are interested in the filtering posterior

distribution p(xt|y1:t). This distribution is usually obtained by a two-step iterative procedure:

• Forecasting step: p(xt|y1, . . ., yt−1) =
R

p(xt|xt−1)p(xt−1|y1:t−1)d xt−1

• Filtering/analysis step: p(xt|y1:t)/ p(yt|xt)p(xt|y1:t−1)

This is a recursive framework: the resulting filtered distribution at time t − 1 is used to fore-

cast the distribution at time t. The forecast is obtained using the forward model Mt (forecast-

ing step). In the filtering step, Bayes’ rule is used to combine the forecast distribution, which is

the prior distribution, with the observation likelihood to update the forecast distribution into

the posterior distribution [40].

Ensemble-based DA. The inference approach of DA is probabilistic, so we are interested

in the distribution of the state given the observations. If the resulting filtering distribution is

Gaussian, then it would be enough to estimate a mean and covariance matrix to represent this

distribution. The Kalman filter gives an exact solution when the prior distribution and the

observational likelihood function are Gaussian (which in turn results in a Gaussian filtering

distribution). This is guaranteed when the operators Mt and Ht are linear and the stochastic

components ηt and νt are additive Gaussian white noise. In this case, the classical Kalman filter

produces a sequence of means fxa
t g

T
t¼1

and covariances fPa
t g

T
t¼1

, such that pðxtjy1:tÞ �

N ðxa
t ;P

a
t Þ [41].

For a non-parametric representation of the distributions, Monte Carlo approaches repre-

sent the distributions by a sample. Particle based methods use an ensemble of particles (or

ensemble members) to keep track of the forecasting and filtering distribution. These distribu-

tions are then represented by an ensemble of states. The general procedure for these methods

is to evolve each particle forward using the model to get the ensemble representation of the

forecasting distribution and then to transform the states of this ensemble into a sample of the

filtering distribution using the information of the observation at that time. This general meth-

odology is specified in Algorithm 1. The procedure used to transform the forecasting ensemble

into a filtering ensemble yields different sequential ensemble-based methods. One feature of

this framework which will be key for the application to ABMs is that the transition model is

basically treated as a black box. This is not the case for the standard Kalman filter for which

the linear model is needed explicitly in matrix form for the forecasting to filtering distribution

transformation. Two important sample-based families of methods which follow Algorithm 1

stand out: EnKFs and particle filters. If the prediction and observational processes in Eqs 1 and
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2 are weakly nonlinear, it is possible to assume that Gaussianity is preserved through the mod-

el’s time evolution. Thus, the particles in the filtering step may still assumed to follow Gaussian

constraints. This derives in what is known as the EnKF. On the other hand, particle filters do

not make any assumptions on the likelihood and prior distributions. They produce a filtered

sample by applying Bayes’ rule in a fully non-parametric manner [42].

Algorithm 1: General forecasting-filtering scheme for ensemble DA

Sample initial particles: fxaðjÞ
0 g

Np
j¼1 � pðx0Þ

for t = 1, . . ., T do
for j = 1, . . ., Ne do

xf ðjÞ
t ¼Mtðx

aðjÞ
t� 1; Zt� 1Þ using Mt from Eq (1)

end

Transform fxf ðjÞ
t g

Np
j¼1 into fxaðjÞ

t g
Np
j¼1 using yt

end
Parameter estimation through state augmentation. When the state of the system is par-

tially observed, DA uses the correlation between observed and unobserved variables to propa-

gate the observational information and improve the estimate of variables that are not

observed. With this idea in mind, unknown model parameters can also be interpreted as unob-

served variables, and if these are correlated with observed variables, the DA system will cali-

brate the parameters to values consistent with the observations. To do this, the state is

augmented with the parameters, so instead of the state vector xt we use the augmented vector

~x t¼
:
ðxt; θtÞ where θt are the parameters at time t. The model operator Mt needs to be extended

to also operate in the parameter space and account for the evolution of θt. A common assump-

tion is to consider that their evolution follows a random walk

θtþ1 ¼ θt þ �t

where �t is Gaussian white noise. Also, θ0 is considered to be distributed with an a priori distri-

bution based on the range of possible values for θ. A useful feature of this method is that the

estimates of θ can track a parameter that is not constant in time, assuming that the changes are

slow [15].

Data assimilation in ABMs

The state of an ABM at a given time t is completely described by the collection of the current

values of the attributes for every agent in the ABM. The DA framework previously described

cannot be readily applied to this sort of representation because the data attributes which com-

pose agents are not necessarily in a space where DA techniques can be applied. These attributes

are computational variables which can be, for example, Boolean or categorical data types. A

particle filter may be applicable with categorical variables, but we aim at using the EnKF,

which only operates in continuous spaces. Even when agent information may be relevant for

shaping the spread of the disease, it is likely that the interest is not on the state of each particu-

lar individual but rather on an aggregated global information on the population. We perform

the DA process in the space of this aggregated information. Actually, these variables are integer

values but can be considered continuous when they are large enough. Observations on the sys-

tem are more likely to be informative on these aggregated variables and not on specific agents.

Considering the population of agents is a discrete set, we refer to a specific agent with the

index k. The attributes of the k-th agent at time t are denoted as Ak,t. These attributes for each

agent define the micro-state space At ¼ fAk;tg
Nagents
k¼1 where Nagents is the total number of agents.

Given an apriori density of the attributes as a function of the agent classes and the set of model

parameters to be calibrated, an ensemble of Np state members fAðjÞt g
Np
j¼1 is drawn representing
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realizations of the apriori density. Naturally, the micro-state forecast density is constructed

evolving the agent-based model starting from the drawn initial micro-states.

The process of DA is conducted in a macro-state space xt 2 R
Nx composed of aggregated

variables and the chosen model parameters. The aggregated (or macroscopic) variables are

determined via a map that counts the number of agents in the corresponding class xt =

ϕm!M(At). In other words, this is a mapping from a micro-structured state (m) to a mean field

macro-state (M). This mapping is not injective and therefore it is not invertible. This means

that we have a model to evolve the micro-state At into At+1 and get the resulting xt+1 by per-

forming the aggregating operations. However, once we correct these macro-state variables

with DA, we do not have a unique and explicit model to transform them back into the micro-

state variables. We denote this macro to micro map as At+1 = ϕM!m(xt+1). Below, we discuss

two different approaches to define the macro to micro map. It is important to note that the

EnKF and the particle filter allow the model to be treated as a black box so that the filter is

unaware of the mapping.

At the cycle at time t, let us suppose we have an ensemble of micro-states fAf ðjÞ
t g

Np
j¼1 repre-

senting Np forecasts at time t. Each ensemble member Af ðjÞ
t represents an agent population,

where f stands for forecast. We can get a state forecast by applying ϕ and get state variables

fxf ðjÞ
t g

Np
j¼1. Using this forecast and the observations yt, we can obtain a sample of the posterior

distribution, fxaðjÞ
t g

Np
j¼1, so-called analysis states, through DA (the a supraindex stands for analy-

sis). The next usual step in DA would be to predict the state at time t + 1 by evolving fxaðjÞ
t g

Np
j¼1

into fxf ðjÞ
tþ1g

Np
j¼1. The ABM cannot directly evolve the state variables xt into xt+1 but rather it can

evolve At into At+1. Because of this, we need an agent representation AaðjÞ
t of the analysis

macro-state variables xaðjÞ
t . This agent set is then used to evolve forward in time and get a fore-

casted population of agents for time t + 1, Af ðjÞ
tþ1. In this work, we propose two methods to adjust

the forecasted agent population Af ðjÞ
t to be consistent with the analysis state variables xaðjÞ

t . With

this adjustment, we get the analysis representation of the agent population AaðjÞ
t which we can

now evolve forward with the agent-based model and get the desired forecasted agent popula-

tion Af ðjÞ
tþ1 completing the forecast-analysis sequence. This methodology is summarized in Fig 2.

Agents adjustment

The main issue with the DA cycle is the macro-to-micro map ϕM!m. For each j = 1, . . ., Np we

have a mismatch between xf ðjÞ
t ¼ �m!MðA

f ðjÞ
t Þ and xaðjÞ

t . Our approach to get the filtered ensem-

ble of agent populations fAaðjÞ
t g

Ne
j¼1

is to use the forecasted state of agents fAf ðjÞg
Ne
j¼1

and change

the least possible number of labels to match the analysis macro-state variables xaðjÞ
t . This is

inspired by the idea that the agents representing the analysis are a correction of the agents rep-

resenting the forecast. The better the forecast is, the fewer agents have to be changed. However,

the inner structure of agents can be very complex, with many other different attributes aside

from the epidemiological status requiring an adjustment. Whether or not it is possible to

adjust these attributes realistically will depend on the ABM and on how much of the agent’s

inner structure is represented by the macro-state variables.

In order to match the agent state to the filtered state, in the first proposed correction

method, the epidemiological category which lack agents will take the necessary number of

agents from the categories which show an excess. The agents are selected randomly and

because of this the method is called randomized redistribution. This is achieved through a

change of labels and the procedure is repeated independently for every location. Furthermore,
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not only the labels have to be changed, but other attributes may need to be changed as well.

For instance, every agent in either E, IM, IS or H has a time counter which counts the remaining

time in the current category and, when it expires, it indicates that the agent has to leave its cur-

rent class and enter the next one. These time counters are originally sampled from Gamma dis-

tributions, as explained before. Then, when an agent is changed in the adjustment to one of

these categories its counter has to be reset. Our choice for this is to sample this counter from

the current distribution of the counters of agents already in this category. We make this choice

in order to be as least intrusive as possible with the agent populations. Although this imple-

mentation is particular to this problem (the proposed epiABM model), a similar approach can

be taken in general as long as we have some prior knowledge on the distribution of values of

particular attributes. An advantage of this method is that the amount of agents that change cat-

egory is the minimum possible.

We implement a second method to adjust the agents which does not necessarily minimize

the amount of changes needed but it aims at preserving the history of each individual agent.

The choice of the agents which change epidemiological category attempts to select the most

likely agents to suffer a change. Changes are made only between adjacent health classes in the

epiABM progression chain, starting from the latest categories (R and D) and ending in the first

class (S). Also, the selection of the agents to be changed is not random. Considering the time

counter of each agent in its category, if a correction needs to be done in the direction of the

flow of the diagram, the agents that spent more days in their current category will be

Fig 2. Ensemble based DA for ABMs.

https://doi.org/10.1371/journal.pone.0264892.g002
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transferred to the next. Conversely, if a change is required in the opposite direction, the agents

with fewer days in their category are selected to return to the previous one. The idea for this

criterion is to preserve individual trajectories on the flow of the infection dynamics. For the

transitions between susceptible and exposed agents, the time criterion in the susceptible class

does not apply. In this case, the criterion to move agents from the susceptible to exposed cate-

gories is the number of risky contacts it had (i.e. the number of contacts it had with infectious

agents, which do not always result in an infection). In the opposite direction, to move agents

from the exposed category to the susceptible we keep the criterion based on the days it spent in

the category. Whenever an agent changes its category, the counter is reset with new values

sampled from the corresponding attributes of the population where it has been reassigned.

The procedure is applied to each location separately. The method is named backward cascade
redistribution. The downside for this method is that when we select agents with too few or too

many days in their categories to change their status we are cutting off the tails of the distribu-

tion of the time spent in each epidemiological class.

Experiments and results

We conducted a set of experiments using the epiABM coupled with the proposed methodology

based on the EnKF. First, we use synthetic observations to evaluate the overall performance of

the system, in which the true state is generated with the ABM with a set of prescribed parame-

ters. Then, we use data from the reported cases in CABA, Argentina.

For each neighborhood, we have 7 macro-state variables which correspond to the variables

(S, E, IM, IS, H, R, D). So if we consider Nloc neighborhoods, the dimension of the state will be

Nx × Nloc without counting the possible parameters which augment the state for parameter

estimation. Default parameter values are listed in Table 1. If there is no explicit mention of

these, it means the value is from the table.

The EnKF is rather robust to noisy observations, indirect information (e.g., nonlinear

observational operator), and partial observations (incomplete state). In the experiments, we

assumed the cumulative confirmed cases for each location is observed, which is defined as the

sum of IM, IS, H, R, D for each neighborhood. The cumulative number of deaths per location is

also observed. The error in the observations is considered to be zero-mean Gaussian noise

with variance proportional to the observed quantities themselves. The coefficients of propor-

tionality used are named κC and κD, respectively. The possibility of asymptomatic undocu-

mented cases in the cumulative confirmed cases is considered in one of the synthetic

experiments.

There are several versions of the EnKF. In this work, because the state space has relatively

small dimensions, we use a classic implementation called EnKF with perturbed observations

[43]. Because of sampling errors and unrepresented model errors in the prediction state

ensemble, the prediction sample covariance is underestimated, so that the EnKF ensemble

usually has a tendency to collapse, i.e. underestimation feedback between prediction uncer-

tainty and posterior uncertainty. To mitigate this effect, the common methodologies are multi-

plicative covariance inflation [44, 45] or additive Gaussian noise in the state variables of the

ensemble member updates, i.e. additive inflation. After some preliminary experiments, we

found that the intrinsic stochasticity of the epiABM results in forecasts with enough spread so

that covariance inflation is not required. In other words, the stochasticity in the ABM gives a

reasonable representation of the model error. The initial variability of agents populations is

given by random sampling at the initialization of agents attributes.

A sensitivity analysis to determine a suitable ensemble size was conducted for a synthetic

experiment and it showed that 50 members are enough to obtain an optimal root mean square
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error (RMSE). On the other hand the variance is slightly underdetermined in the 50-member

experiment with respect to larger ensemble sizes. We chose a 100-member ensemble for the

synthetic observations experiments as a robust choice giving optimal RMSE and accurate vari-

ance representation. For the case of the real data experiment, the RMSE is not possible to be

calculated (because the true state is unknown) so that the sensitivity analysis is not possible.

We use a 400 ensemble size in the real data experiment because the state space is about four

times larger than in the synthetic experiment (due to the number of neighborhoods). In both

cases, the ensemble sizes we chose are big enough that using larger ensembles would not yield

detectable changes in the results.

Synthetic observations

In these experiments, we produce synthetic observations using the epiABM and then estimate

state variables using the EnKF. Observations are produced using Eqs 1 and 2. Since the true

state which produced the observations is available, we can examine the technique’s perfor-

mance. In most experiments the model used to simulate the observations is the same as the

one used by the EnKF. However, in some experiments, we consider unknown parameters and

even some model misspecification.

For these experiments, we use four neighborhoods, Nloc = 4. The contact matrix is set to:

C ¼

0:43 0:14 0:14 0:29

0:14 0:43 0:14 0:29

0:14 0:14 0:43 0:29

0:14 0:14 0:14 0:57

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

: ð3Þ

We consider that agents have more contacts within their own neighborhoods which explains

the larger values in the diagonal elements. Also, one of the neighborhoods (the one with largest

index) is more concurred by all the agents, representing a city center: this explains the larger

values in the last column.

Time varying number of contacts. In this experiment, the number of contacts an agent

has in a day, which is encoded in λ, is considered to decrease linearly in time in the true simu-

lation. This parameter is assumed unknown for the method and is estimated through state aug-

mentation. The simulation uses 3 � 104 agents and the observational error coefficients are set to

κC = 1 � 10−5 Nagents/Nloc and κD = 1 � 10−6 Nagents/Nloc.

Fig 3 shows the true trajectories of the state variables and the estimates produced by the

EnKF. The filtered ensemble variables are able to correctly estimate the true state variables.

The cumulative deaths given by the ensemble members representing the posterior density has

very little variance. This is because this variable is directly observed and with a relatively small

observational error. In contrast, the other state variables are not observed: they are estimated

through the correlations with the observed variables. Fig 4 shows the true value of λ over time

and the estimates produced by the EnKF with randomized agent redistribution. The results

are shown for the randomized adjustment method but similar results were obtained for the

backward cascade method. The estimated values can capture the change of the parameter in

time after some initial assimilation spin-up time. The estimated parameter values are closer to

the true value at the epidemic peak. At around 300 days, the variance of the λ estimations starts

to grow. This is because observations are more informative on λ when the number of new

infections is higher. After 300 days, the number of active cases is small; correspondingly, the

parameter uncertainty increases at those times.
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The initial prior mean parameters and state variables are chosen different from the true val-

ues because they are assumed to be unknown. Besides, the variance of the initial ensemble is

chosen to be large as is standard in DA in order to better explore the parameter space. Initial

parameter correlations are set to 0. As the observations are assimilated the ensemble starts to

improve the prior state and it slowly synchronizes with the true value. Correlations between

variables and variable-parameter correlations are expected to be captured after a number of

cycles. As the parameter-observed variable covariances become higher, the ensemble parame-

ter estimates gain more accuracy, and so the ensemble parameter spread begins to shrink. This

initial spin-up is a typical behavior of DA. In general, a longer assimilation spin-up is expected

when estimating parameters with data augmentation, because parameters are not (directly)

observed.

The structure given by the distribution of agents in houses is not directly informed on by

the observations. However, the model keeps track of how the infections were distributed in dif-

ferent types of houses. The house sizes we considered range from a minimum of a single agent

per house to a maximum of five. At each simulation day, we calculated what proportion of the

total infected corresponds to each household size. Fig 5 shows the evolution of the proportion

of infections which occurs at each house type. When there are fewer infections, the estimates

have higher variance and become more accurate and with less dispersion at the time of the

Fig 3. Total number of agents in different epidemiological categories summed over every neighborhood. Grey lines indicate ensemble

members and colored solid lines their mean. True values are indicated with dashed lines.

https://doi.org/10.1371/journal.pone.0264892.g003
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epidemic peak. The proportion of infections in larger houses is greater at the beginning of the

epidemic and lower by the end. We can compare the proportion of infected in each house type

with the number of agents residing in them regardless of their disease status. In smaller houses,

the estimated proportion of infections is less than the proportion of agents residing in that par-

ticular house types. The opposite effect occurs with larger houses. This is due to the fact that,

because of domestic contacts, the infections spread faster in houses with more members.

Assessment of microscale tracking. We conducted an experiment to evaluate the propor-

tion of agents with matching epidemiological states (between true and estimated agent popula-

tions) at different levels of aggregation. The aim of this experiment is to compare the evolution

of the agent micro-states between the true agent population that produced the (synthetic)

observations and the agent micro-states obtained in the ensemble members of the filter. For

this comparison, we count the number of agents with the same epidemiological status, but this

count is carried out by considering different groupings for the agents. The first metric (agen-

t_id) considers agents id per id. The second metric (house_id) groups agents according to

their house id so we count the number of matches house per house. The third metric (house-

hold_type) groups by house size and the fourth (loc_household_type) by house size and loca-

tion. To count the number of matches in the metrics which do not distinguish agents by id we

simply count the number of agents in each population that are in the same category.

As in previous experiments, we use Nloc = 4 locations but for each different location i, we

consider a different λi. Specifically, we set (λ1, λ2, λ3, λ4) = (1.0, 0.8, 0.9, 0.7). We use

Fig 4. Estimations of λ. The estimated values as a function of time are shown in solid blue line. Grey lines indicate ensemble

members. The true evolution is drawn with a dashed line.

https://doi.org/10.1371/journal.pone.0264892.g004
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populations of 5 � 103 agents and the observational error coefficients are set to κC = 1 � 10−4

Nagents/Nloc and κD = 1 � 10−5 Nagents/Nloc.

The starting configuration for the agents in the true run and the ensemble members is the

same, so the matching proportion at the initial timestep is 100% for every metric. This

amounts to have a Delta distribution for every agent population. To evaluate the impact of the

assimilation with respect to control simulations, we produce 100 trajectories with the model

without any DA. These will yield different results to the true trajectory because of the model’s

stochasticity, so it is useful reference to compare the metrics.

Fig 6 shows the metrics obtained with the assimilation system for both agent adjustment

methods and for the control simulations. Each panel shows one of the different metrics. The

randomized and cascade methods are very similar in all the cases. The metrics for control sim-

ulations are highly spread out, while for the ensemble members of the EnKF they are con-

strained. For the agent_id and house_id metrics (these are the metrics which inform on a

more microscopic scale) the matching percentage drops, moderately recovers and then stabi-

lizes both for the EnKF and the control simulations. The control simulations are slightly more

consistent with the true run that the EnKF runs at the first stage when all metrics decrease.

This is likely so because the agent adjustment method by the EnKF has to modify the agent

Fig 5. Relative amount of infected agents per house size as a function of time. Ensemble members plotted with gray and their mean with

red. The true values are represented with green dashed lines. Dotted black lines indicate the distribution of agents in different house sizes

regardless of their disease status.

https://doi.org/10.1371/journal.pone.0264892.g005
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populations in order to match the macro scale while the control simulations maintain the

structure of the initial true agent configuration less disrupted.

At the house type scale, the EnKF maintains a high matching proportion (above 90% for

both agent adjustment methods). The control simulations exhibit a large variability. The

loc_household_type metric yields similar results. Some control simulations mismatch the epi-

demic peak of the true run. Thus, a decrease of the metrics is expectable for these simulations.

The matching proportion recovers at the end of the simulation because the size of the epidemic

is similar for the control simulations and the true run, and most agents will be either recovered

or susceptible. For the EnKF estimations, a good level of matching is obtained, which is

explained because the EnKF is able to track the true state. It is worth noting that observations

of the state are classified by location but are not explicitly informative on different house sizes.

However, the matching percentage of epidemiological cases at different types of houses is

quite high. The proportion of matches when considering agents or houses ids is similar to not

using any DA. This is likely because the specific ids of houses and agents have no particular

role in the infection dynamics. On the other hand, the house type does have a role in the prop-

agation dynamics and so it is better captured by the EnKF.

Fig 6. Evolution of matching metrics over time. The evolution of the id_matches, housetype_matches, house_matches and

housetype_loc_matches to the true state are shown from left to right and top to bottom panels. For every panel, the gray lines

represent the metrics for the control simulations and their mean is drawn with a black line. Red (blue) transparent lines

correspond to EnKF estimation with the randomized (cascade) agent adjustment method. Semitransparent lines represent the

ensemble members while their mean is drawn with a solid line of the corresponding color.

https://doi.org/10.1371/journal.pone.0264892.g006
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Estimation of undetected infections. Data on COVID-19 infections is expected to be

underreported because of mild or asymptomatic cases. In order to evaluate such scenario, we

consider that mild infections have a chance qA of being asymptomatic, and they are not

reported in the data. We use the same setup as in the previous experiment but considering a

fixed value λ = 0.8 and introducing qA into the augmented state. We change the agent-based

model incorporating new epidemiological categories in order to account for this. We incorpo-

rate the asymptomatic and asymptomatic recovered epidemiological states. The diagram for

the disease development through the epidemiological classes is represented in Fig 7 where IA

and RA stand for infected and recovered asymptomatic, respectively. We note that this scenario

could be also represented by assuming unknown coefficients of the observational operator Ht

and estimating them through state augmentation.

The observed variables are the cumulative confirmed cases (sum of IM, IS, H, R, D) and

deaths (D) per neighborhood. We introduce a new observational variable to the state called

global positivity which consists of the proportion of the population which is infected. Asymp-

tomatic cases will be ignored by every observed variable except for the global positivity. To

produce observations from this variable in the synthetic experiment, we simulate data gathered

from a randomized COVID-19 testing strategy. At each simulation day, we select a random set

of agents and test them. Tests will be positive when the agent is in either IM, IS, IA, or H. The

tests are not disaggregated by location, so they give an idea of the global circulation of the

virus. The error for the observations of the global positivity will be sampling error. We assume

1% of the population is tested every day. In practice, indirect proxies such as test results of

plausible cases (which are not from random samples) could be used to infer global positivity.

For this experiment, we use 3 � 104 agents and observational error coefficients κC = 1 � 10−5

Nagents/Nloc and κD = 1 � 10−6 Nagents/Nloc. We also consider a fixed value λ = 0.8. The asymp-

tomatic rate qA (which here also accounts for undocumented cases) is estimated by augment-

ing the state with this parameter. The rest of the configuration is similar to the first synthetic

experiment presented. The asymptomatic rate is expected to be estimated with the EnKF via

correlations with the global positivity.

Fig 8 shows the evolution of the number of mild infected agents, the asymptomatic, and the

global positivity alongside tests’ results. The overall behavior of the asymptomatic agents is

rather well captured by the EnKF but, as expected, the estimations are more accurate for the

mildly infected than for the asymptomatic cases. This is because the asymptomatic are only

informed on by test results while the symptomatic cases are also informed on by the cumula-

tive confirmed cases. The mismatch between the asymptomatic with their true value is

Fig 7. Diagram for epiABM with categories to account for unreported cases.

https://doi.org/10.1371/journal.pone.0264892.g007
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correlated with the mismatch between the true and estimated global positivity. This suggests

that the more we know about the general circulation of the virus, the better we can infer the

underreported cases. Fig 9 shows the estimation of the asymptomatic probability which gives

noisy estimates around the true value of qA which is 0.5. In the first cycles, we can see an assim-

ilation spin-up with a strong reduction of the variance (similar to Fig 4). Furthermore, when

the positivity is low at the start and end of the epidemic, the estimations of qA do not synchro-

nize well with the true value (because observations are less informative) and the uncertainty

grows, i.e. the ensemble shows more spread. Because the global positivity is correlated with the

asymptomatic infected category, IA, the system can use these correlations to give an estimate of

qA.

Model error experiment. In order to evaluate whether the inference system is robust

enough to account for a misspecification in the agent model setup, we conducted an experi-

ment in which the observations and the EnKF predictions are obtained through different

agent-based model configurations. To generate the synthetic observations, the number of daily

contacts is sampled from a geometric distribution with parameter p = 0.5. On the other hand,

the model in the assimilation uses a Poisson distribution as in previous experiments. Addition-

ally, we use different household type distributions: the true simulation is conducted with pH =

(0.33, 0.27, 0.2, 0.13, 0.07) for which we have more households with few agents and less house-

holds with more agents, which is an expectable situation in real life (close to those used in the

Fig 8. Estimations of active reported mild cases, unreported cases and positivity. Top panel: evolution of reported active mild

cases. Orange solid line is the ensemble mean. Middle panel: Unreported active cases. Teal solid line is the ensemble mean.

Bottom panel: Positivity (percentage of agents that would test positive). Red solid line is the ensemble mean. Dots correspond to

the testing data generated with the true run. For every panel, gray lines indicate ensemble members and dashed lines the true

value of the corresponding variable.

https://doi.org/10.1371/journal.pone.0264892.g008

PLOS ONE Inference in epidemiological agent-based models using ensemble-based data assimilation

PLOS ONE | https://doi.org/10.1371/journal.pone.0264892 March 4, 2022 19 / 28

https://doi.org/10.1371/journal.pone.0264892.g008
https://doi.org/10.1371/journal.pone.0264892


rest of the experiments which represents the CABA house distribution). For the EnKF runs we

use this distribution but we also repeat the experiment with pH = (0.2, 0.2, 0.2, 0.2, 0.2) (we call

this uniform housing) and pH = (0.07, 0.13, 0.2, 0.27, 0.33) for which we have more larger

households and less households with few people (we call this distribution unbalanced hous-

ing). Different configurations for household distributions will yield different propagation

dynamics due to variations in contact structures [46].

The parameter λ is assumed unknown and we estimate it through state augmentation. We

use 3 � 104 agents and observational error coefficients κC = 1 � 10−5 Nagents/Nloc and κD = 1 �

10−6 Nagents/Nloc.

Fig 10 exhibits the λ estimates as a function of time for each of the three different housing

scenarios. In order to compare how the estimated distribution performs, we compute the Kull-

back-Leibler divergence between a Poisson with and the true geometric distribution as a func-

tion of the Poisson parameter λ. This encodes how much information is lost when we use the

estimated Poisson distribution instead of the geometric. Fig 10 also shows the Kullback-Leibler

divergence alongside the λ estimates. These are in a region of low KL divergence with respect

to the true distribution. This means that the system self-calibrates using a Poisson distribution

which causes a model behavior which resembles model’s characteristics when a geometric dis-

tribution is used. The best estimate in terms of KL divergence is for the experiment which uses

the true housing distribution, which is expectable. The uniform housing distribution has more

agents living in larger households and the unbalanced even more. This will produce an effect

of faster spread of the disease in the model. The fact that the λ estimates are smaller in these

Fig 9. Estimations of the asymptomatic rate. The mean of estimation of qA as a function of time is shown with a solid blue

line, ensemble members with gray lines, and the true parameter value with a black dashed line.

https://doi.org/10.1371/journal.pone.0264892.g009
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cases is because the system is self-calibrating by estimating λ. A smaller value for λ compen-

sates for the misspecification of the housing distribution. Comparatively, the disease dynamics

propagate more by intra-house contacts than by external contacts in the latter.

Ciudad Autónoma de Buenos Aires data

To evaluate the system with realistic observations, we use the data on COVID-19 cases for

CABA, Argentina. The data is provided by the Ministry of Health and published in https://

data.buenosaires.gob.ar with daily updates. The distribution of houses and population is taken

from census data also publicly available through the same website. CABA is divided into 15

neighborhoods (or communes) and epidemiological data is disaggregated according to these.

We use the number of cumulative confirmed cases and deaths. The observational error vari-

ance is considered to be proportional to the observed variables. We estimate the parameter λ
(which is assumed to be the same for every neighborhood) through state augmentation. To

construct the contact matrix we considered that half of the casual contacts are within each

commune and that the other half of the casual contacts is distributed among other communes

proportionally to their population density. The number of agents used is 3 � 105, and CABA

Fig 10. Estimations of λ for different housing scenarios. The mean λ estimates for the different housing distributions are

shown with solid colored lines. Ensemble member estimates represented with gray lines. The solid red line indicates the KL

divergence between a Poisson distribution and the true geometric distribution used. The dotted red line indicates the

minimum of the KL curve.

https://doi.org/10.1371/journal.pone.0264892.g010
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has a population of around 3 � 106, so we scale down the data by 10. The observational error

coefficients are κC = 5 � 10−6 Nagents/Nloc and κD = 5 � 10−7 Nagents/Nloc.

Fig 11 shows the estimated λ. This parameter measures how many contacts, on average, an

agent will have on a given day. We can expect this to be correlated to the number of confirmed

daily cases, so we plot the data of the daily reported cases alongside the λ estimations, and

indeed we can see that they follow a similar trend. This happens because βd and βc values

remain constant throughout the simulation, so changes in the number of new cases are deter-

mined by changes in the value of λ with the corresponding time lag due to the incubation

period. In the figure we show a 7-day rolling average of the daily cases but the experiment was

performed on the original data without this processing.

The evolution of the estimated contact rate in Fig 11 is coherent the three epidemic waves

registered in Argentina during the experimental period. There was a first period of a strong

lockdown between April and May, which was then relaxed during austral winter giving place

to the first wave. The second wave occurred not surprisingly in January-February which is

summer holidays time in Argentina. The strongest wave is the third one, but it started fading

because of, among other factors, massive vaccinations starting in May 2021.

It is important to note that of the many time-dependent processes that may affect the devel-

opment of the disease spread, we only estimate λ while keeping other parameters fixed. This

means that the calibration of the model to fit the data acts through λ, even though what drove

Fig 11. Estimations of λ. The estimated values are shown with a solid blue line and ensemble members with gray lines. The red line

corresponds to the 7-day rolling average of daily confirmed cases.

https://doi.org/10.1371/journal.pone.0264892.g011
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the effect on the data may have another cause. For example, a decrease in cases because of the

use of face-masks should be accounted for by a change in the casual contagion probability βc,

but since we are keeping this parameter fixed, this change will be captured by λ. Although this

may be inaccurate, we found that trying to estimate parameters with similar effects on data

leads to overparameterization and lack of identifiability.

Fig 12 shows some of the aggregated state variables of the system summed over every neigh-

borhood. The cumulative deaths have comparatively less variance than the other variables.

Like in the experiments with synthetic observations, this is because deaths are directly

observed, and the other variables are only observed through the cumulative cases, which is a

sum of several epidemiological states.

Fig 13 shows the estimated number of daily new cases as a function of data of confirmed

new cases. The data are affected by underreporting on weekends, but the estimations tend to

smooth out that effect. Fig 14 shows the same metrics but disaggregated by neighborhood and

we can see that although all the neighborhoods show similar trends, some have particularities

in the shape of the epidemic peaks. These are rather closely captured by the EnKF estimations.

Discussion

With the increase of expressiveness and complexity in epidemiological ABMs, there is a cur-

rent need for calibration techniques that allow to constrain parameter values and force

Fig 12. Total number of agents for different epidemiological categories. Grey lines indicate ensemble members and colored solid lines

their mean.

https://doi.org/10.1371/journal.pone.0264892.g012

PLOS ONE Inference in epidemiological agent-based models using ensemble-based data assimilation

PLOS ONE | https://doi.org/10.1371/journal.pone.0264892 March 4, 2022 23 / 28

https://doi.org/10.1371/journal.pone.0264892.g012
https://doi.org/10.1371/journal.pone.0264892


improvements of the epidemiological state estimates. In this work we introduce and evaluate

the use of DA techniques to calibrate COVID-19 ABMs using observations. DA provides a

probabilistic framework to enhance model predictions and calibrate parameters by incorporat-

ing data in real time. From the data assimilation side, ABMs present some challenges since the

dynamical state in ABMs is not represented by macroscopic differential equations. In ABMs

the macroscopic state emerges from the microscopic dynamics of the agent population. The

proposed method is designed for cases in which the only type of observed variables may be

aggregated information of the agent population state. The applicability of the methodology

depends on the possibility to adapt the forecasted agent populations towards the observed

macroscopic state variables. We developed two different methodologies to do this, referred to

as randomized redistribution and backward cascade redistribution. They both yielded similar

results. We found that it is possible to track the macroscopic state variables even when the sys-

tem is driven by microscopic dynamics. Also, we show that the state augmentation technique

can be used to calibrate the model in a sequential manner, tracking the dynamics of a parame-

ter which changes slowly over time. The methodology responded well to data produced by the

daily monitoring of the COVID-19 pandemic in CABA. In particular, the model calibration

adapts the parameterization to fit the changing behavior of the spreading of the disease.

The experiments in this work show that the EnKF is a robust Gaussian technique for epide-

miological ABM data assimilation. However, many of the challenges posed by DA are

Fig 13. Total daily new cases. Estimated daily new cases for the whole city are shown with orange lines and the corresponding ensemble

with gray. Blue dots correspond to the daily confirmed cases.

https://doi.org/10.1371/journal.pone.0264892.g013
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inherited by the framework we present: for example, specification of model and observational

errors and dealing with non Gaussianities. Alternatively to the EnKF, there is a vast variety of

DA methods which could possibly be helpful to do inference alongside ABMs. Methods which

do not make sequential updates but jointly assimilate data over a time window (for example,

ESMDA or pMCMC) could prove useful to circumvent the need of adapting the agent popula-

tions to the macroscopic state. Among sequential methods, particle filters which rely on resam-

pling in order to transform the forecast into the filtered ensemble, such as the bootstrap

particle filter, could also be interesting to apply. The fact that the filtered ensemble is just a

resample of the forecast particles means that there would be no need to readjust the agent

populations.

The assimilation system shows sensitivity to the distribution of the number of households

in the experiments. This is a bottom-up effect produced by the agent-based model which can-

not be readily modeled with compartmental models. The coupling of the EnKF with the agent-

based model may be useful, in future work, for the modeling of disease propagation in cities

with vulnerable neighborhoods of developing countries, in which the proportion of house-

holds with a large number of members is much higher.

The computational cost of the methodology can quickly escalate since each ensemble mem-

ber consists of a whole agent population. However, there is much room for improvement

Fig 14. Daily new cases per commune. Each plot represents one of the 15 CABA communes. Estimated daily new cases are plotted with

orange lines and the corresponding ensemble with gray lines. Blue dots correspond to the daily confirmed cases.

https://doi.org/10.1371/journal.pone.0264892.g014
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because several tasks may be parallelized (at the agent population level and also at the ensemble

level). The computational cost of DA techniques themselves is usually associated with matrix

inversions in high dimensions. However, that was not the case because we applied DA to the

aggregated state variables, which constitute a relatively small sized state space.

In this work, all the observations are aggregated state variables, but the technique can

potentially be applied for inference on the agents using data which is gathered at that micro

scale. The fact that more individual-based data is collected through mobile devices is making

this sort of data more accessible every day, for example, from digital contact tracing apps [47,

48]. It is expectable that the technique proposed in this work, based on the EnKF, may be able

to assimilate these micro-state observed variables.

Author Contributions

Conceptualization: Tadeo Javier Cocucci, Manuel Pulido, Juan Pablo Aparicio, Juan Ruı́z,

Mario Ignacio Simoy, Santiago Rosa.

Data curation: Tadeo Javier Cocucci, Santiago Rosa.

Funding acquisition: Manuel Pulido.

Investigation: Tadeo Javier Cocucci, Manuel Pulido, Juan Pablo Aparicio, Juan Ruı́z, Mario

Ignacio Simoy, Santiago Rosa.

Methodology: Tadeo Javier Cocucci, Manuel Pulido, Juan Pablo Aparicio, Juan Ruı́z, Mario

Ignacio Simoy, Santiago Rosa.

Project administration: Manuel Pulido.

Resources: Manuel Pulido, Juan Pablo Aparicio.

Software: Tadeo Javier Cocucci, Juan Pablo Aparicio, Mario Ignacio Simoy.

Supervision: Manuel Pulido.

Validation: Manuel Pulido, Juan Pablo Aparicio, Juan Ruı́z, Mario Ignacio Simoy, Santiago

Rosa.

Visualization: Tadeo Javier Cocucci.

Writing – original draft: Tadeo Javier Cocucci, Manuel Pulido.

Writing – review & editing: Tadeo Javier Cocucci, Manuel Pulido, Juan Pablo Aparicio, Juan

Ruı́z, Mario Ignacio Simoy, Santiago Rosa.

References
1. Bonabeau E. Agent-based modeling: Methods and techniques for simulating human systems. Proceed-

ings of the national academy of sciences. 2002; 99(suppl 3):7280–7287. https://doi.org/10.1073/pnas.

082080899 PMID: 12011407

2. Helbing D. Social self-organization: Agent-based simulations and experiments to study emergent social

behavior. Springer; 2012.

3. Vynnycky E, White R. An introduction to infectious disease modelling. OUP oxford; 2010.

4. Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM, Railsback SF, et al. Pattern-oriented modeling of

agent-based complex systems: lessons from ecology. science. 2005; 310(5750):987–991. https://doi.

org/10.1126/science.1116681 PMID: 16284171

5. Tesfatsion L, Judd KL. Handbook of computational economics: Agent-based computational economics.

Elsevier; 2006.

6. Epstein JM, Axtell R. Growing artificial societies: social science from the bottom up. Brookings Institu-

tion Press; 1996.

PLOS ONE Inference in epidemiological agent-based models using ensemble-based data assimilation

PLOS ONE | https://doi.org/10.1371/journal.pone.0264892 March 4, 2022 26 / 28

https://doi.org/10.1073/pnas.082080899
https://doi.org/10.1073/pnas.082080899
http://www.ncbi.nlm.nih.gov/pubmed/12011407
https://doi.org/10.1126/science.1116681
https://doi.org/10.1126/science.1116681
http://www.ncbi.nlm.nih.gov/pubmed/16284171
https://doi.org/10.1371/journal.pone.0264892


7. Roche B, Drake JM, Rohani P. An Agent-Based Model to study the epidemiological and evolutionary

dynamics of Influenza viruses. BMC bioinformatics. 2011; 12(1):1–10. https://doi.org/10.1186/1471-

2105-12-87

8. Kerr CC, Stuart RM, Mistry D, Abeysuriya RG, Hart G, Rosenfeld K, et al. Covasim: an agent-based

model of COVID-19 dynamics and interventions. medRxiv. 2020.

9. Flaxman S, Mishra S, Gandy A, Unwin HJT, Mellan TA, Coupland H, et al. Estimating the effects of

non-pharmaceutical interventions on COVID-19 in Europe. Nature. 2020; 584(7820):257–261. https://

doi.org/10.1038/s41586-020-2405-7 PMID: 32512579

10. Simoy MI, Aparicio JP. Socially structured model for COVID-19 pandemic: design and evaluation of

control measures. Computational and Applied Mathematics. 2021; 41(1):1–22.

11. Aleta A, Martı́n-Corral D, Piontti AP, Ajelli M, Litvinova M, Chinazzi M, et al. Modeling the impact of

social distancing, testing, contact tracing and household quarantine on second-wave scenarios of the

COVID-19 epidemic. medRxiv. 2020;. https://doi.org/10.1101/2020.05.06.20092841 PMID: 32511536

12. Hooten M, Wikle C, Schwob M. Statistical Implementations of Agent-Based Demographic Models. Inter-

national Statistical Review. 2020; 88(2):441–461. https://doi.org/10.1111/insr.12399 PMID: 32834401

13. Carrassi A, Bocquet M, Bertino L, Evensen G. Data assimilation in the geosciences: An overview of

methods, issues, and perspectives. WIREs Climate Change. 2018; 9(5):e535. https://doi.org/10.1002/

wcc.535

14. Annan JD, Hargreaves JC. Efficient parameter estimation for a highly chaotic system. Tellus A: Dynamic

Meteorology and Oceanography. 2004; 56(5):520–526. https://doi.org/10.3402/tellusa.v56i5.14438

15. Ruı́z JJ, Pulido M, Miyoshi T. Estimating Model Parameters with Ensemble-Based Data Assimilation: A

Review. Journal of the Meteorological Society of Japan Ser II. 2013; 91(2):79–99. https://doi.org/10.

2151/jmsj.2013-201

16. Evensen G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo

methods to forecast error statistics. Journal of Geophysical Research: Oceans. 1994; 99(C5):10143–

10162. https://doi.org/10.1029/94JC00572

17. Houtekamer PL, Mitchell HL. Data assimilation using an ensemble Kalman filter technique. Monthly

Weather Review. 1998; 126(3):796–811. https://doi.org/10.1175/1520-0493(1998)126%3C0796:

DAUAEK%3E2.0.CO;2

18. Shaman J, Karspeck A. Forecasting seasonal outbreaks of influenza. Proceedings of the National

Academy of Sciences. 2012; 109(50):20425–20430. https://doi.org/10.1073/pnas.1208772109 PMID:

23184969

19. Shaman J, Karspeck A, Yang W, Tamerius J, Lipsitch M. Real-time influenza forecasts during the

2012–2013 season. Nature Communications. 2013; 4(1):2837. https://doi.org/10.1038/ncomms3837

PMID: 24302074

20. Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, et al. Substantial undocumented infection facilitates the

rapid dissemination of novel coronavirus (SARS-CoV-2). Science. 2020; 368(6490):489–493. https://

doi.org/10.1126/science.abb3221 PMID: 32179701
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28. Arenas A, Cota W, Gómez-Gardeñes J, Gómez S, Granell C, Matamalas JT, et al. Modeling the Spatio-

temporal Epidemic Spreading of COVID-19 and the Impact of Mobility and Social Distancing Interven-

tions. Phys Rev X. 2020; 10:041055.

PLOS ONE Inference in epidemiological agent-based models using ensemble-based data assimilation

PLOS ONE | https://doi.org/10.1371/journal.pone.0264892 March 4, 2022 27 / 28

https://doi.org/10.1186/1471-2105-12-87
https://doi.org/10.1186/1471-2105-12-87
https://doi.org/10.1038/s41586-020-2405-7
https://doi.org/10.1038/s41586-020-2405-7
http://www.ncbi.nlm.nih.gov/pubmed/32512579
https://doi.org/10.1101/2020.05.06.20092841
http://www.ncbi.nlm.nih.gov/pubmed/32511536
https://doi.org/10.1111/insr.12399
http://www.ncbi.nlm.nih.gov/pubmed/32834401
https://doi.org/10.1002/wcc.535
https://doi.org/10.1002/wcc.535
https://doi.org/10.3402/tellusa.v56i5.14438
https://doi.org/10.2151/jmsj.2013-201
https://doi.org/10.2151/jmsj.2013-201
https://doi.org/10.1029/94JC00572
https://doi.org/10.1175/1520-0493(1998)126%3C0796:DAUAEK%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1998)126%3C0796:DAUAEK%3E2.0.CO;2
https://doi.org/10.1073/pnas.1208772109
http://www.ncbi.nlm.nih.gov/pubmed/23184969
https://doi.org/10.1038/ncomms3837
http://www.ncbi.nlm.nih.gov/pubmed/24302074
https://doi.org/10.1126/science.abb3221
https://doi.org/10.1126/science.abb3221
http://www.ncbi.nlm.nih.gov/pubmed/32179701
https://doi.org/10.1073/pnas.0603181103
http://www.ncbi.nlm.nih.gov/pubmed/17121996
https://doi.org/10.3390/math9060636
https://doi.org/10.1098/rsos.150703
http://www.ncbi.nlm.nih.gov/pubmed/27152214
https://doi.org/10.7555/JBR.34.20200119
https://doi.org/10.7555/JBR.34.20200119
http://www.ncbi.nlm.nih.gov/pubmed/33243940
https://doi.org/10.1371/journal.pone.0264892


29. ud Din R, Seadawy AR, Shah K, Ullah A, Baleanu D. Study of global dynamics of COVID-19 via a new

mathematical model. Results in Physics. 2020; 19:103468. https://doi.org/10.1016/j.rinp.2020.103468

30. Silva PCL, Batista PVC, Lima HS, Alves MA, Guimarães FG, Silva RCP. COVID-ABS: An agent-based

model of COVID-19 epidemic to simulate health and economic effects of social distancing interventions.

Chaos, Solitons & Fractals. 2020; 139:110088. https://doi.org/10.1016/j.chaos.2020.110088 PMID:

32834624

31. Qin J, You C, Lin Q, Hu T, Yu S, Zhou X. Estimation of incubation period distribution of COVID-19 using

disease onset forward time: a novel cross-sectional and forward follow-up study. Science advances.

2020; 6(33):eabc1202. https://doi.org/10.1126/sciadv.abc1202 PMID: 32851189

32. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in

China. New England journal of medicine. 2020; 382(18):1708–1720. https://doi.org/10.1056/

NEJMoa2002032

33. Zhao H, Feng Z. Staggered release policies for COVID-19 control: Costs and benefits of relaxing restric-

tions by age and risk. Mathematical biosciences. 2020; 326:108405. https://doi.org/10.1016/j.mbs.

2020.108405 PMID: 32565231
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