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Abstract: X-linked Emery–Dreifuss muscular dystrophy (EDMD1) affects approximately 1:100,000
male births. Female carriers are usually asymptomatic but, in some cases, they may present clinical
symptoms after age 50 at cardiac level, especially in the form of conduction tissue anomalies. The
aim of this study was to evaluate the relation between heart involvement in symptomatic EDMD1
carriers and the X-chromosome inactivation (XCI) pattern. The XCI pattern was determined on
the lymphocytes of 30 symptomatic and asymptomatic EDMD1 female carriers—25 familial and 5
sporadic cases—seeking genetic advice using the androgen receptor (AR) methylation-based assay.
Carriers were subdivided according to whether they were above or below 50 years of age. A variance
analysis was performed to compare the XCI pattern between symptomatic and asymptomatic carriers.
The results show that 20% of EDMD1 carriers had cardiac symptoms, and that 50% of these were
≥50 years of age. The XCI pattern was similar in both symptomatic and asymptomatic carriers.
Conclusions: Arrhythmias in EDMD1 carriers poorly correlate on lymphocytes to a skewed XCI,
probably due to (a) the different embryological origin of cardiac conduction tissue compared to
lymphocytes or (b) the preferential loss of atrial cells replaced by fibrous tissue.

Keywords: Emery–Dreifuss muscular dystrophy (EDMD1); X-chromosome inactivation (XCI); cardiac
symptoms; skewed X-chromosome inactivation

1. Introduction

X-linked Emery–Dreifuss muscular dystrophy (OMIM 310300; EDMD1) affects about 1:100,000
males. It is caused by mutations in the EDMD1 gene [1,2], which encodes the emerin protein—a
component of the inner nuclear membrane in the muscles (skeletal, smooth, and cardiac muscle) and
other tissues including skin and blood (leukocytes) [3–5]. The phenotype is characterized by triad
joint contractures (elbows, Achilles tendons, and posterior cervical muscles), humeroperoneal muscle
weakness, and cardiac involvement as conduction disturbances [6–12]. Although female carriers of
EDMD1 are usually asymptomatic, they can sometimes present clinical symptoms such as cardiac
arrhythmias, including atrial fibrillation or atrioventricular (AV) block [3,13–18]. These can lead to
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sudden cardiac death [19,20]. There are no data available on the prevalence of symptoms in female
EDMD1 carriers, although cardiac symptoms seem to correlate with age [13]. On the contrary, no
peripheral myopathy and contractures have been reported [19]. It has been suggested that cardiac
symptoms in EDMD1 carriers depend on the deficiency of the emerin protein in the nuclei of cells [3].
Previous studies have demonstrated decreased levels of emerin in muscles, skin, leukocytes, and
lymphoblastoid cell lines [3,4]. However, a reduction of around 50% in protein was not associated with
symptoms [4], while reductions of >95% were observed in symptomatic carriers [3]. It has also been
suggested that the amount of protein reduction may depend on skewed X-chromosome inactivation
(XCI) [3,14]. However, only one study has reported the analysis of XCI in EDMD1 carriers, and only
one was symptomatic among them [3].

We reported the results of XCI analysis in EDMD1 carriers to study the potential role of skewed
XCI in the pathogenesis of cardiac symptoms. In particular, we tested 30 EDMD1 carriers and analyzed
the results observed in symptomatic compared to asymptomatic subjects.

2. Subjects and Methods

2.1. Subjects

Thirty EDMD1 carriers, 25 from 9 families and 5 females related to sporadic cases, were included
in the study. The diagnosis of the EDMD1 carrier was based on the family history and confirmed by
molecular analysis in familial and sporadic cases. Mutations in the EMD gene are shown in Table 1.

Table 1. Clinical and genetic data, and X-chromosome inactivation (XCI) ratios in Emery–Dreifuss
muscular dystrophy (EDMD1) carriers, are analyzed. XCw: X-chromosome wild-type;
AV: atrioventricular.

Family
Number ID Subject Age at Last

Control (Years) XCw Inactivation (%) Signs/Symptoms EMD Mutation

N. 1

I-1 5327 58 54.0 1st degree AV block c. 130 C>T
I-2 5328 51 49 no
I-4 5325 49 30 no
I-3 5326 47 70 no
II-2 5322 28 28 no

N. 2

I-1 4811 32 35.4 no c. 564–565 del CT*
I-2 4810 24 40.7 no
I-3 4809 21 49.7 no

N. 3

I-1 9265 50 64.8 no c. 1A>G
I-3 9266 46 41.9 no
II-1 9264 31 65.5 no
II-2 9267 25 50.9 no

N. 4

I-1 9577 52 91.8 1st degree AV block c. IVS4+2G>Cc.
399+2G>C

II-2 9261 35 44.8 no
I-5 9262 22 34.3 no
I-6 9263 20 0 no

N. 5

IV-1 9259 29 n.i. no c. 153delC
III-3 9258 53 89.2 no
III-4 9257 49 50. no
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Table 1. Cont.

Family
Number ID Subject Age at Last

Control (Years) XCw Inactivation (%) Signs/Symptoms EMD Mutation

N. 6

II-1 9269 37 40.7 no c. 451dup
II-2 9270 25 68.9 no

N. 7

I-1 6418 42 90.8 no c. 106 A>T **
I-2 5008 40 70 no

N. 8

I-1 2907 50 35.3 1st degree AV block c. 740 C<T***

N. 9

I-1 202 62 20 Atrial fibrillation c. 740 C<T***

Isolated Cases ID Subject Age at Last
Control (Years) XCw Inactivation (%) Cardiac Findings EMDMutation

1 8581 50 n.i. no c. 106 A>T*
2 9268 40 48.9 no c.192_192delinsTC
3 9256 44 78.8 no c.IVS3 −27del18
4 9637 51 74.6 2nd degree AV block c.IVS2+1G>A
5 9578 51 18.7 no c.256 C>T

The carriers were divided into two groups: symptomatic (n = 5) and asymptomatic (n = 25).
Furthermore, the last group was subdivided by <50 or ≥50 years of age, as arrhythmic events
usually occur in EDMD1 carriers after the age of 50. The carriers were classified as symptomatic
or asymptomatic according to the presence or absence of clinical symptoms, respectively. Muscle
strength was assessed by manual muscle testing using the Medical Research Council (MRC) scale [21].
Heart involvement was investigated through a complete cardiological examination including standard
electrocardiogram (ECG), 24 h Holter monitoring, and echocardiography. A prolonged PQ interval (the
time from the onset of the P wave to the start of the QRS complex), a decreased amplitude of P wave,
an increased dispersion of P wave, and the presence of atrial fibrillation/flutter, atrial or ventricular
ectopic beats, or AV blocks of variable degrees, observed at the electrocardiogram; a sinus pause of
>2.5 s, the presence of atrial fibrillation/flutter, atrial or ventricular ectopic beats, or AV blocks of
variable degrees observed at the ECG Holter monitoring; increased atrial or ventricular dimensions, a
reduced ejection fraction (EF; and wall motion abnormalities observed at the echocardiography were
considered pathological.

On the contrary, we defined EDMD1 carriers who did not show any sign of muscle impairment,
contractures, and/or cardiomyopathy as asymptomatic.

2.2. Methods

2.2.1. DNA Analysis

The peripheral blood was collected into tubes containing ethylenediaminetetraacetic acid (EDTA).
Genomic DNA was extracted from leukocytes using the standard operating procedures (SOPs)
established by the EuroBioBank Network and quantified spectrophotometrically. An amount of 1 µL
was electrophoresed in 1% agarose gel to evaluate DNA integrity.

DNA samples were provided by the Naples Human Mutation Gene Biobank (NHMGB) genetic
biobank of Cardiomyology and Medical Genetics, which is a member of EuroBioBank and the Telethon
Network of Genetic Biobanks (TNGB).

At least one EDMD1-carrying male in each family was analyzed in order to differentiate between
the mutant (XCm) and wild-type (XCw) alleles. All subjects, and/or a legal representative in the case
of a minor, provided written informed consent to the study for blood collection, in accordance with
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the Declaration of Helsinki. The study was approved by the Ethical Committee of the University of
Campania “Luigi Vanvitelli” (00923-16).

2.2.2. X-Inactivation Assay

The pattern of X-chromosome inactivation was determined as previously reported [22,23]. In
particular, 500 ng of genomic DNA samples was digested with 10 units HpaII and 10 units HhaII
methylation-sensitive enzymes in 50 µL of sterile distilled water at 37 ◦C overnight. Then, 500 ng
from each of the 88 DNA samples were incubated overnight with the same volumes of buffer and
distilled water as above but excluding enzymes as the control. Digested and undigested DNA samples
were used as templates for the amplification of the androgen receptor (AR) in exon 1. The PCR was
performed in a 25 µL reaction volume composed of 2 µL digested or undigested DNA, PCR buffer (10
mM Tris-HCl; 50 mM KCl; pH 8.3), 5 pmol forward primer marked with the WellRED dye-labeled
D4-PA at 5’ (Sigma Aldrich, Milan, Italy), 5 pmol reverse primer, 1.5 mM MgCl2, 0.5 mM dNTP, and 0.3
U GoTaq DNA polymerase (Promega, Milan, Italy). The PCR conditions were as follows: 95 ◦C for 5
min, 28 × (95 ◦C for 30 s, 62 ◦C for 30 s, 72 ◦C for 30 min), and 72 ◦C for 7 min.

The sequences of the oligonucleotides used were as follows:

• Forward 5’-[D4-PA]TCCAGAATCTGTTCCAGAGCGTGC-3’;
• Reverse 5’-ATGAGGAACAGCAACCTTCACAGC-3’.

To separate the two alleles, 1 µL of PCR product was mixed with 38.5 µL of Sample Loading
Solution (Beckman, Fullerton, CA, USA) and 0.5 µL of DNA Size Standard Kit 400. This standard
included DNA fragments labeled with WellRED fluorescent dye of the following sizes: 60, 70, 80, 90,
100, 120, 140, 160, 180, 190, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400, and 420 nucleotides
(Beckman, Fullerton, CA, USA). The mix was loaded on a 96-well plate and 1 drop of mineral oil
was added to each well. The fragment analysis was performed by means of a Beckman CEQ 8000
Genetic Analysis System, using the Frag-3 run method. PCR products derived from the undigested
DNA samples that gave 1 peak, similar to the CAG repeats, were considered uninformative for the
analysis. The ratio between the two alleles (peak areas of allele 1 digested/undigested)/[(allele 1 peak
digested/undigested) + (allele 2 digested/undigested)] × 100 was used to analyze the distribution of
XCI degree in our cohort of carriers. The higher peaks corresponding to the expected size of alleles
were considered for the analysis, while the shorter peaks were considered polymerase artifacts (such
as stutter and plus A peaks). The degree of XCw inactivation in the digested DNA in carriers with
positive family history was calculated as follows: peak area of (XCw digested/undigested)/[(XCw
digested/undigested) + (XCm digested/undigested)] × 100. The allele 2 inactivation was calculated
as follows: peak area of the (allele 2 digested/undigested)/[(allele 2 digested/undigested) + (allele 1
digested/undigested)] × 100, considering the shorter as allele as allele 1 and the longer allele as allele 2.
The degree of XCI was defined as random when it showed values ≤60%, skewed when the value was
between 60% and 85%, and extremely skewed when it was >85% [24,25] (Figure 1).

2.3. Statistical Analysis

Fisher’s exact test was used to compare the frequency of skewed XCI between carriers <50 or ≥50
years of age. Between symptomatic and asymptomatic carriers, the values were expressed as mean ±
SEM. Significance was recognized when p < 0.05.
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Figure 1. Gene scanner traces for HpaII digested (+) and undigested (−) DNA. The peak represents
the amplified androgen receptor (AR) allele. The size of the allele is determined by the number of
repeats within the AR gene. The area under the peak indicates the degree of amplification of the
alleles. The higher peaks correspond to the expected size of alleles, while the shorter peaks should
be considered as artifacts. One carrier (A) presented a skewed XCI (20:80), while the other showed a
random X-chromosome invitation (XCI) (B). The digested DNA sample of the Emery–Dreifuss muscular
dystrophy (EDMD1) male (C) did not show a peak (negative control), while the undigested sample
presented one peak.

3. Results

3.1. Subjects

Twenty five out of 30 EDMD1 carriers analyzed were from nine families (Figure 2) with a positive
history for EDMD1, and at least one male affected available. Five carriers were sporadic subjects
further included in the analysis, for which it was impossible to differentiate XCw. Five families were
from Italy (Sardinia and South Italy) and four were from Poland. Out of the 30 carriers, 10 were ≥50
years of age. The clinical data of the subjects, mutations in the EMD gene, and the results of the XCI for
familial and sporadic cases are shown in Table 1.

The average age of familial carriers was 39.1 ± 2.5 years. The average age of sporadic cases, all
mothers of affected males, was 47.2± 2.2 years. The average age of symptomatic carriers of both familial
and isolated cases was 54.6 ± 2.3 years, compared to 37.6 ± 2.2 years of those without symptoms. No
carrier <50 years of age was symptomatic. Out of 10 carriers ≥50 years of age, 50% presented cardiac
involvement in the form of an AV block of first or second degree ( n = 4), or atrial fibrillation ( n = 1).
The carrier with ID 9637 in the isolated case’s group was implanted with a pacemaker due to a second
degree of AV block.

Twelve mutations in the EMD gene were found in our cohort. Of these, nine are already reported
in the UMD-EMD database (http://www.umd.be/EMD/). Two novel mutations were reported by our
research team in previous papers [26,27], while one new mutation, c. 564–565 del CT, has not previously
been published.

3.2. Analysis of XCI

Two carriers were not included in the analysis because they were uninformative. The X-inactivation
pattern calculated as the ratio between allele 1 and allele 2 followed a normal distribution with a peak
at 40–49 (Figure 3) in EDMD1 carriers. The frequency of skewed or extremely skewed XCI in our
cohort of carriers was 35.7%, or 10 out of 28. In particular, 31.5% of carriers were <50 years of age,
while 44.4% were ≥50 years of age.

http://www.umd.be/EMD/
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3.3. Statistical Differences

No significant differences in the frequency of skewed XCI between EDMD1 carriers <50 or ≥50
years of age were found (p = 0.06), nor between asymptomatic versus symptomatic carriers (p = 0.2).

4. Discussion

EDMD1 carriers usually do not present symptoms. Very few studies can be found in related
literature reporting anecdotal cases of symptomatic carriers, in particular, at the cardiac level [19].
Heart involvement in both affected males and carriers is characterized by the occurrence of conduction
defects, such as tachyarrhythmias (ectopic beats, atrial flutter, and fibrillation) or bradyarrhythmias,
such as sinoatrial or atrioventricular blocks, often requiring a pacemaker or defibrillator implantation.
A higher prevalence of cardiac alterations can be observed in EDMD1 carriers ≥50 years of age.

In this study, the reported data confirm that EDMD1 carriers do not present muscle symptoms
but often develop cardiac conduction anomalies. In our group, cardiac abnormalities were observed in
approximately 20% of cases when considered as a whole. However, focusing on the ages of the carriers,
a higher prevalence (50%) of cardiac disturbances—atrial fibrillation in one carrier, and an AV block of
various degrees in four carriers—was observed in carriers ≥50 years. This percentage is well above
the figures of arrhythmias in the general population, in which a prevalence of about 2–3% for atrial
fibrillation and 6–7% for atrioventricular blocks has been reported in the white population ≥60 years of
age [28–31].

Unaffected females in the general population show a normal distribution of the XCI pattern and
skewed XCI increasing with age [32], with a prevalence of about 20–40% in females ≥50 years of
age [32,33]. Moreover, a skewed XCI, with the preferential inactivation of the XCw, seems to correlate
with the development of clinical symptoms in female carriers of X-linked diseases, such as hemophilia
B [34], dyskeratosis congenita [35], and Duchenne and Becker muscular dystrophies [36,37]. Some
authors suggest that a skewed XCI could play a role in the EDMD1 carrier’s clinical presentation [3,15].
Manilal et al. [3,4] demonstrated reduced levels of emerin from a Western bloting in lymphocytes,
lymphoblastoid cell lines (LCL), muscles, and, by immunofluorescence, a mosaic pattern of emerin
expression in skin biopsy [3,5]. However, in that study, the XCI analysis was performed on only
one subject [3]. This study showed that cardiac symptoms in EDMD1 carriers are unrelated to a
skewed XCI on lymphocytes. We found 10 out of 28 (35.7%) cases of skewed or extremely skewed XCI
with a growing trend with increasing age, in agreement with previous studies [32,33]. However, no
significant correlation was found between age and skewed XCI pattern nor between symptomatic and
asymptomatic EDMD1 carriers in our cohort.

To explain this apparent discordance between heart involvement and degree of the XCI in
EDMD1 carriers, besides the already mentioned “age effect”, the different embryological origin
of cardiac conduction tissue compared with myocardium should be taken into account. In fact,
cardiomyocytes originate as blood cells from the mesoderm germinal layer [38] and share a similar XCI
pattern [39,40]. The conduction system consists of highly specialized cardiomyocytes, is innervated
by cardiac ganglia, and presents a high number of fibroblasts. The latter derive from two different
germinal layers (ectodermal and mesodermal) [38,41–43] exhibiting a different XCI pattern [39,40]. As
cardiac symptoms in EDMD1 are prevalently supraventricular arrhythmias or atrioventricular blocks
that involve the conduction tissue, we cannot exclude that the XCI pattern analyzed in leukocytes
does not reflect that of the conduction tissue, unlike what we observed and reported in Duchenne and
Becker carriers who present myocardial failure [23]. Furthermore, at least two more factors may play a
role in the pathogenesis of cardiac disturbances in EDMD1 and explain our results: (1) the marked
loss of atrial cells replaced by fibrous tissue [43–46], and (2) the intrinsic alterations of the conduction
system where emerin is localized, in particular at the intercalated disks [47]. However, future studies
on animal models are necessary to confirm our hypothesis.

A limitation of our study may be the small number of subjects analyzed to confirm these data
and establish definite results. Another could be the failure to analyze the XCI pattern in cardiac
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conduction tissue obtained by endomyocardial biopsy, which was not performed due to ethical reasons.
However, this paper represents the first analysis of XCI in a group of genetically confirmed EDMD1
female carriers.
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