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1  | INTRODUC TION

Executive function (EF) broadly refers to a set of higher order cog-
nitive control processes that are involved in goal-directed behaviors 
and serve cognitive functions, such as working memory, inhibitory 
control, attention shifting, and planning (Diamond,  2013; Garon, 
Bryson, & Smith, 2008). EF is related to various aspects of child func-
tioning, such as school readiness and success (Blair & Razza, 2007), 
theory of mind (Hughes & Ensor,  2005), and social–emotional 

competence (Moriguchi, Okanda, & Itakura,  2008; Riggs, Jahromi, 
Razza, Dillworth-Bart, & Mueller,  2006). The preschool period 
(3–6  years of age) is the stage of important development in EF 
task performance (Diamond, 2013). Previous neuroimaging studies 
have highlighted the key role of the prefrontal cortex (PFC), more 
specifically the lateral prefrontal regions, during EF tasks, such as 
working memory, inhibitory control, and cognitive flexibility in pre-
school children (e.g., Moriguchi & Hiraki,  2009, 2013; Tsujimoto, 
Yamamoto, Kawaguchi, Koizumi, & Sawaguchi, 2004). Moreover, the 

 

Received: 10 January 2020  |  Revised: 4 June 2020  |  Accepted: 4 July 2020
DOI: 10.1002/brb3.1763  

O R I G I N A L  R E S E A R C H

Effects of social and nonsocial reward on executive function in 
preschoolers

Kanda Lertladaluck1  |   Nuanchan Chutabhakdikul1 |   Nicolas Chevalier2 |   
Yusuke Moriguchi3

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2020 The Authors. Brain and Behavior published by Wiley Periodicals LLC.

1Research Center for Neuroscience, 
Institute of Molecular Biosciences, Mahidol 
University, Nakhon Pathom, Thailand
2Department of Psychology, The University 
of Edinburgh, Edinburgh, UK
3Graduate School of Education, Kyoto 
University, Kyoto, Japan

Correspondence
Yusuke Moriguchi, Graduate School of 
Education, Kyoto University, Yoshidahoncho, 
Kyoto 606-8501, Japan.
Email: moriguchi.yusuke.8s@kyoto-u.ac.jp

Funding information
JSPS KAKENHI, Grant/Award Number: 
18H01083; The Royal Golden Jubilee 
project of the Thailand Research Fund, 
Grant/Award Number: PHD/0046/2557

Abstract
Introduction: Executive function, a set of higher order cognitive skills underlying 
goal-directed behaviors, develops rapidly during preschool years. Reward increases 
executive function engagement in adolescents and adults. However, there is still a 
scarcity of data on how reward affects executive function in young children. The 
present study examines whether different incentive types contribute differently to 
executive function performance and neural activity in children.
Methods: Twenty-five preschoolers of 5–6 years old were provided an incentive Go/
No-go task, comparing social, nonsocial, and nonreward conditions. Activations in 
the prefrontal regions during the tasks were measured using functional near-infrared 
spectroscopy.
Results: The results revealed that social reward enhanced right prefrontal activations 
in young children. In contrast to adult literature, younger children did not show any 
significant differences in executive function performance across conditions.
Conclusion: This study expands our understanding of motivation and EF engagement 
in preschoolers. Specifically, social reward enhanced prefrontal activations in young 
children. The implications and recommendations for future research are discussed.
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connections of the PFC within itself and with other cortical and sub-
cortical brain structures form a system that subserves EF (Heyder, 
Suchan, & Daum, 2004).

Previously, Zelazo and colleagues proposed a framework of 
cool and hot distinction in EF (Zelazo & Carlson,  2012; Zelazo & 
Müller,  2002), in which cool EF is engaged in neutral, and nonaf-
fective situations. On the other hand, hot EF processes are elicited 
under affective conditions, such as a delay of gratification (Moriguchi, 
Shinohara, & Yanaoka, 2018). Thus, the key differences between hot 
and cool aspects are whether EF is invoked with or without a moti-
vationally or emotionally salient context. For example, in the delay 
of gratification task, children have to forgo a small immediate reward 
to obtain a larger delayed reward. In this task, children engage inhib-
itory control in the face of reward (motivationally salient context). 
However, there is still a scarcity of data on how EF performance and 
its neural correlates differ with and without motivational context in 
young children. The present study examined the issue.

In general, motivation can be defined as the reason that drives 
individuals to conduct certain tasks. This is also claimed as a pro-
cess that initiates, guides, and maintains goal-directed behaviors. 
In terms of developmental psychology, fostering intrinsic moti-
vation in the early years may have long-lasting and self-sustaining 
effects. Nevertheless, the appropriate use of external rewards, 
which is the external stimuli driving an appetite to alter behavior, is 
also necessary for children with little intrinsic motivation (Carlton 
& Winsler,  1998; Howard-Jones & Jay,  2016). These external re-
wards include both tangible rewards (e.g., toys, stickers, money) 
and intangible rewards (e.g., verbal praise, smiles). Recently, there 
has been much interest in the beneficial effect of motivation on 
EF performance. Several studies in preadolescence through adult-
hood have shown that high reward signals and motivational state 
could improve EF performance. For example, stimulus salience and 
reward expectations can enhance visual working memory capacity, 
especially during information encoding (Klink, Jeurissen, Theeuwes, 
Denys, & Roelfsema, 2017). Rewards may similarly affect response 
inhibition, as suggested by improved response inhibition accuracy 
in preadolescents aged 8–12 years when completing the Go/No-go 
task with reward contingencies (Kohls, Peltzer, Herpertz-Dahlmann, 
& Konrad, 2009).

Neuroimaging evidence shows that motivation and reward-re-
lated cognition are supported by a reward system that includes the 
ventral tegmental area, substantia nigra, amygdala, orbitofrontal 
cortex, medial PFC, insular cortex, anterior cingulate cortex, and 
ventral striatum (Haber & Knutson,  2010). These brain areas play 
different roles in the reward processing. For example, neural activa-
tion in the ventral striatum supports reward anticipation, while neu-
ral activation in the ventromedial PFC supports processing of reward 
outcomes (Knutson, Fong, Adams, Varner, & Hommer, 2001). There 
are multiple ways in which reward processing may influence PFC ac-
tivity and thus EF engagement, including (a) tonic dopamine release 
in the mesolimbic and mesocortical pathway (Beierholm et al., 2013), 
(b) strengthening direct connectivity between the ventromedial and 
the dorsolateral PFC (Barbas & Pandya, 1989; Kouneiher, Charron, 

& Koechlin, 2009), (c) ventromedial to dorsolateral direction of in-
formation flow through the frontostriatal–nigral circuitry (Haber & 
Knutson, 2010), and (d) the engagement of certain brain areas such 
as anterior cingulate cortex (Shenhav, Botvinick, & Cohen, 2013).

Recent studies on monetary and social rewards revealed that dif-
ferent incentive types have diverse motivational effects (Demurie, 
Roeyers, Baeyens, & Sonuga-Barke, 2012; Kohls, et  al.,  2009; Lin, 
Adolphs, & Rangel, 2012; Rademacher et al., 2010; Spreckelmeyer 
et al., 2009). Most of these studies have focused on adult partici-
pants. At the behavioral level, the results indicated greater perfor-
mance with monetary reward than social reward (e.g., happy face). 
One possible explanation for less effectiveness of social incentives 
is that social reward may act as immediate rewards with short-term 
effects (i.e., they cannot be accumulated over time and subsequently 
exchanged for a prize). By contrast, financial rewards may have long-
term effects, as the rewards can be stocked up and subsequently 
exchanged for other items. Hence, financial rewards may be more 
desirable than social ones (Estle, Green, Myerson, & Holt,  2007). 
On the other hand, developmental studies have revealed that the 
incentive value of social reward, more specifically the tangible 
and quantitative social reward, is not less effective than monetary 
reward in children (Demurie et  al.,  2012; Wang, Liu, & Shi,  2017). 
Using face and nonface stimuli, children aged 6–8 years have been 
found to be more sensitive to social reward using face stimuli than 
the latter (Stavropoulos & Carver,  2014). Furthermore, the social 
stimuli have a heightened reward value at adolescence (Foulkes & 
Blakemore, 2016). Thus, it is possible that there are differences in 
reward processing among children, adolescents, and adults (Casey, 
Jones, & Hare, 2008).

Previous neuroimaging studies suggested that both social and 
nonsocial reward may share common neural substrates, such as 
ventromedial PFC and striatum (Izuma, Saito, & Sadato,  2008; Lin 
et  al.,  2012). Nevertheless, partially distinct neural activation pat-
terns were observed for monetary and social reward (Flores, Munte, 
& Donamayor, 2015; Spreckelmeyer et al., 2009). More specifically, 
during reward consumption, the thalamus was more strongly acti-
vated by the presentation of monetary rewards while the amygdala 
was more strongly activated by the presentation of social feedback 
(Rademacher et al., 2010).

There has been a lot of interest in the beneficial effects of reward 
and, more broadly, motivation on EF performance in children, adoles-
cents, and adults, but in young children this topic has mostly been ex-
amined at the behavioral level. It has been reported that preschoolers 
were responsive to motivational and emotional stimuli (Zelazo, Qu, 
& Kesek, 2010). For example, children aged 4–5 years who were in-
formed about the reward they would receive performed better on the 
Day/Night Stroop task than children who were not informed about 
the reward (Qu, Finestone, Qin, & Reena, 2013). Moreover, the 3.5- to 
4.5-year-old children were more accurate but had slower reaction time 
on the postswitch during dimensional change card sort (DCCS) when 
trial-by-trial, reward-related feedback was provided (Tarullo, Nayak, St 
John, & Doan, 2018). Besides, using facial expressions as stimuli in the 
DCCS task instead of neutral objects can improve children cognitive 
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flexibility (Qu & Zelazo, 2007). By contrast, in one behavioral study 
using a conflict EF task with either a cool (neutral) or hot (external re-
ward) focus in children aged 2.5–4.5 years, no motivational valence 
differences were found on response accuracy (Beck, Schaefer, Pang, 
& Carlson, 2011). Thus, the effects of reward on EF performance in 
young children remain unclear. Although the abovementioned re-
search has compared hot and cool EF by using the same tasks, most 
studies have typically assessed both hot and cool EF using different 
tasks (Hongwanishkul, Happaney, Lee, & Zelazo, 2005). Besides, it is 
unknown whether different incentive types underlying the hot aspects 
contribute differently to EF performance in preschool children, as is 
the case in adults. Given the paucity of behavioral findings, it is not 
surprising that no studies have examined the neural mechanisms un-
derlying reward effects in preschool children.

The present study directly addressed the effect of social and 
nonsocial reward on EF in young children from age 5 to 6  years. 
To this end, we employed an incentive Go/No-go task comparing 
social, nonsocial, and nonreward conditions in typically develop-
ing preschoolers. The task was conducted during near-infrared 
spectroscopy (NIRS) measurement. Although NIRS may not be ap-
propriate to measure deep brain regions associated with reward 
processing, previous studies using NIRS have shown that infants 
and adults also activate the medial frontal cortex (MFC) following 
exposure to rewarding stimuli, which likely reflects the reward sys-
tem (Kida & Shinohara, 2013; Kringelbach, 2005; Minagawa-Kawai 
et al., 2009). In a typical Go/No-go task, activation in the right in-
ferior frontal gyrus (IFG) supports EF engagement (Aron, Robbins, 
& Poldrack,  2014; Monden et  al.,  2015). Therefore, we measured 
activations in the lateral PFC and MFC to probe EF engagement and 
reward processing, respectively.

In the social reward condition, parental faces were used as feed-
back. Most facial expressions used in previous studies belonged to 
a stranger's face, obtained from a database (e.g., the NimStim set), 
which showed only little reward effects. However, brain responses to 
the mother's face differ from those to a stranger's face in infants and 
young children (Carver et al., 2003; Minagawa-Kawai et al., 2009). An 
event-related potentials (ERP) study in 4–6-year-old children indicated 
that the mid-latency frontocentral negativity was larger for angry 
mothers’ faces than strangers’ emotional expressions (Todd, Lewis, 
Meusel, & Zelazo, 2008). Furthermore, the NIRS study shows that the 
MFC, which is part of the reward network, could be activated when in-
fants viewed their own mother's smile (Minagawa-Kawai et al., 2009). 
It is possible that for young children, parental faces can be more effec-
tive positive reinforcers than a stranger's face. In the nonsocial reward 
condition, although money is used as a reinforcer in many adult stud-
ies, the concept of money might not be fully established by preschool 
age (Berti & Bombi, 1981; Grunberg & Anthony, 1980). In this study, 
we used stickers, one of the most widely used positive tangible rein-
forcers, as feedback, which is similar to other previous hot and cool EF 
studies in young children (Tarullo et al., 2018).

In summary, based on aforementioned studies of reward and EF 
in children, we hypothesized that rewards would increase motiva-
tion in preschool children. This should be evidenced by greater MFC 

activation in the two reward conditions than in the control condition. 
In turn, this greater motivation may promote greater EF engagement, 
as reflected by both greater behavioral performance and greater lat-
eral PFC activity. Moreover, we expected both social reward (smile 
from parents) and nonsocial reward (sticker) would enhance both EF 
performance and brain activity in preschoolers, relative to no reward. 
Also, reward sensitivity measured by the parent-reported Behavioral 
Inhibition System/Behavioral Activation System (BIS/BAS) scale has 
been found to affect cognitive control performance in the monetary 
reward condition (Kohls et al., 2009). Thus, we measured children's 
reactivity to positive and negative motivational stimuli in the present 
study and expected children with greater reward sensitivity to show 
stronger effects of reward on behavioral performance.

2  | METHODS

2.1 | Participants

The participants were 25 healthy, typically developing, right-handed 
Japanese preschoolers, who did not have any known developmental 
abnormalities (M age = 66.7 months, SD = 3.2, range = 60–72 months; 
13 girls). All the participants were recruited from the Kyoto University 
database of parents who agreed to participate in child development 
studies. The database included the families who lived in Japan's 
Kansai area. Parents were invited to participate in the experiment 
by telephone. At this step, as reported by their parents, participants, 
who were left-handed, had history of developmental disabilities or 
psychiatric conditions or were taking any medications for psychiat-
ric of neurological conditions were excluded. We obtained written 
informed consent from them after explaining the content and the 
methods of the study at the examination room on the day of experi-
ment. The study was conducted in accordance with the principles of 
the Declaration of Helsinki, approved by the Research Ethics Review 
Board at Kyoto University. Regarding all mothers’ education, 4% re-
ported not completing high school, 12% completing high school, 24% 
completing some college, 44% completing a bachelor's degree, and 
the remaining 16% completing a graduate school degree. For all fa-
thers’ education, 4% reported not completing high school, 8% com-
pleting high school, 4% completing some college, 64% completing a 
bachelor's degree, 16% completing a graduate school degree, and the 
remaining 4% missing data. These data were collected from the par-
ents who did presented with their children.

2.2 | Measures

2.2.1 | Motivation check scale

Although the rewards used in this study may increase children's ex-
trinsic motivation, they could possibly undermine children intrinsic 
motivation (Deci, Koestner, & Ryan,  1999). The inconsistency of 
intrinsic motivation may affect children's performance (Carlton & 
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Winsler, 1998). Therefore, children's intrinsic motivation was meas-
ured throughout the experiment for four times (i.e., before the start 
of the experiment and each condition) by using the motivation check 
scale. The experimenter showed children a set of five laminated 
cartoon character cards, representing how much he/she wants to 
perform the task (Qu et al., 2013). The gestures of the cartoon char-
acter show the distance between the two arms change from wide 
open (I really, really want to play the game) to gradually closing to-
gether until, ultimately, they are shown crossed (I do not want to play 
the game at all). Children were asked to point to the character that 
most closely corresponded to how much they desired to perform the 
task at the moment. Their response was scored using 5-point scales 
(1 =  really, really want; 2 =  really want; 3 = want only a little bit; 
4 = want it only a tiny bit; 5 = do not want at all).

2.2.2 | BIS/BAS

The personality trait measures of BIS and BAS functioning were used 
in this study (Blair, Peters, & Granger, 2004; Carver & White, 1994). 
We modified Takahashi et al. (2007) Japanese version of BIS/BAS 
scales by changing the pronouns (e.g., “I” to “My child”) for parent 
report. The BIS/BAS scales consist of 20 items. All items were evalu-
ated by a Japanese expert in child development for accuracy and 
reliability and were checked whether the parents could understand 
all questions during the pilot study. The BIS is utilized as an indicator 
of withdrawal tendencies and is sensitive to signals of nonreward 
and punishment. Conversely, the BAS is utilized as an indicator of 
approach tendencies and it is sensitive to signals of reward and non-
punishment. The items, albeit presented in random order, fell into 
four categories corresponding to the BIS and three aspects of BAS 
(i.e., reward responsiveness, drive, and fun seeking). To maximize in-
ternal consistency, we removed one item from the BIS (i.e., “My child 
has very few fears as compared to his/her friends”), and the remain-
ing six items were used for final analyses. The Cronbach's alphas 
were 0.74 for BIS (6 items), 0.68 for reward responsiveness (5 items), 
0.80 for drive (4 items), 0.77 for fun seeking (4 items), and 0.87 for a 
combination of all BAS scale items (13 items). Each item was scored 
on a grading scale of 1 (extremely untrue of the child) to 7 (extremely 
true of the child). The average scores for BIS and BAS scales were 
calculated from the means of the scale items. The previous litera-
ture reported that the difference scores exhibited higher test–retest 
stability than did the scale scores (Sutton & Davidson, 1997). Hence, 
a BIS/BAS difference score was calculated by subtracting the z-
transformed BIS score from the z-transformed BAS score for further 
analyses (Kohls et  al.,  2009). A positive difference score indicates 
relatively greater approach tendencies to incentives.

2.2.3 | Incentive Go/No-go task

In this experiment, the incentive Go/No-go task was created using 
PsychoPy v1.90.3 (https://www.psych​opy.org). All children performed 

three conditions—control, social, and nonsocial reward. The order of 
conditions was counterbalanced across children. The procedure for 
our incentive Go/No-go task, as shown in Figure 1a, was adapted from 
Monden et al. (2015). Each condition consisted of six blocks containing 
alternating Go and Go/No-go blocks. In the Go block, the giraffe and 
lion cartoon pictures served as the go stimuli. Each Go block included 
10 s for the blank screen, 3 s for the short instruction (e.g., This is the 
Go game), and 15 consecutive trials (9 giraffes and 6 lions with a pseu-
dorandom order), respectively. In the Go/No-go block, the elephant 
cartoon picture served as the go stimulus while the tiger cartoon 
picture served as the no-go stimulus. Each Go/No-go block included 
3 s for the short instruction (e.g., This is the No-go game) and 15 con-
secutive trials (9 elephants and 6 tigers with a pseudorandom order). 
Among the conditions and the practice session, the stimuli were the 
same animal cartoon characters but with different postures in order to 
avoid the habituation effect. The stimuli were presented in the center 
of the computer screen for 800 ms with a fixation of 500 ms. Children 
were asked to press a button for go stimuli as quickly as they could 
and to provide no response for no-go stimuli. Only no-go trials were 
followed by feedback pictures for 1,000 ms. The feedback types were 
adapted from Kohls et al. (2009). In the control condition, we used 
meaningless images in which green mosaic pictures served as positive 
reinforcers and red mosaic pictures were shown after false alarms. In 
the social reward condition, we used children's own parents’ images 
as feedback by taking the photographs of happy and neutral facial ex-
pressions on the day of the experiment. The happy facial expressions 
were shown after correct responses, while the neutral expressions 
were shown after false alarms. Some might argue that neutral expres-
sions could be weaker social nonrewards in its emotional intensity 
and valence of the expression, relative to negative expressions (e.g., 
sad or angry faces). Although the neural sensitivity to positive versus 
negative feedbacks could have yielded stronger differences (Brunia, 
Hackley, van Boxtel, Kotani, & Ohgami, 2011), it would have been dif-
ficult to know whether those differences were mostly driven by the 
positive or negative feedback. In contrast, the comparison of positive 
and neutral feedbacks has a more straightforward interpretation. Our 
study was mostly interested in the influence of positive feedback or 
reward (not negative feedback or punishment). Hence, we decided to 
use neutral facial expression as social nonrewards instead of negative 
expressions. In the nonsocial reward condition, we used pictures of a 
box containing a sticker as the positive incentive and an empty box as 
the feedback for false alarms. The real stickers with the same amount 
of correct rejection were provided to children after the experiment. All 
stimuli and feedback pictures were on a white background and were 
equal in size. The accuracy in go trials and false alarm rates were cal-
culated in percentage. Only response time for correct responses and 
higher than 200 ms were analyzed.

2.2.4 | NIRS recording system

We used multichannel NIRS equipment, operating at wavelengths of 
770 and 840 nm (OEG-16; Spectratech Inc.), to measure the relative 

https://www.psychopy.org
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changes in oxygenated hemoglobin (oxy-Hb) and deoxygenated 
hemoglobin (deoxy-Hb) during the incentive Go/No-go task (see 
Figure 1b). The head module consisted of six light emitters and six 
light detectors arranged alternatively at an inter-optode distance 
of 3 cm. The center of the headband was placed at Fpz in accord-
ance with the International 10–20 system. The temporal resolution 
at each channel was approximately 82 ms. In our study, the region 
of interest (ROI) included channels 3, 4, 6, 7, 9, and 10, which corre-
spond to the right IFG and the MFC (Moriguchi et al., 2018; Oboshi 
et al., 2014).

We analyzed NIRS data using OEG-16 software V3.0 
(Spectratech Inc.) and Python 2.7.13 (https://www.python.org/). 
First, we checked motion artifacts using video recordings of the 
sessions, which only revealed minor motions warranting no data 
rejection at that stage. Next, we removed 1% of data that were 
higher or lower than three standard deviations away from their 
mean. Then, we preprocessed individual data for the NIRS signal of 
each channel with a linear fitting and band-pass filter (0.01–0.1 Hz) 
to minimize high- and low-frequency noise (Yasumura et al., 2012). 
The NIRS signal was separated into functional signals (i.e., brain 

activation) and systematic signals (i.e., physiological artifacts). Our 
approach was based on a negative or positive linear relationship 
between oxy-Hb and deoxy-Hb changes (Yamada, Umeyama, & 
Matsuda,  2012). This method utilizes the known characteristics 
of NIRS signals in that oxy-Hb and deoxy-Hb negatively correlate 
in the case of cerebral function, whereas oxy-Hb and deoxy-Hb 
are positively correlated in the case of systemic function. Only 
the functional signals were used for our analyses (Moriguchi & 
Shinohara,  2018; Yamada et  al.,  2012). Generally, block designs 
tend to be efficient for assessing the signal magnitude differences 
between conditions and providing an adequate signal-to-noise 
ratio and a high statistical power (Herold, Wiegel, Scholkmann, & 
Müller,  2018). Hence, we used a block design for the Go/No-go 
task in which the Go/No-go block (target) was designed to induce 
inhibition while the Go block (baseline) was designed to control for 
the activation elicited by the motor responses. The time courses 
of oxy-Hb and deoxy-Hb signals were averaged over the three Go 
blocks and three Go/No-go blocks. The data of hemodynamic re-
sponses for the short instruction (3 s preceding the task) were ex-
cluded (Monden et al., 2015). Then, the value of the new starting 

F I G U R E  1   Experimental settings. (a) 
The procedure for the incentive Go/No-
go task. (b) The multichannel NIRS probe 
was attached to child's forehead in order 
to assess the frontal activity. The triangle 
represents child's nose. The region of 
interest included channels 3, 4, 6, 7, 9, and 
10, which correspond to the right inferior 
frontal gyrus and the medial frontal gyrus

https://www.python.org/
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point was subtracted from each time point during the Go and the 
Go/No-go block for baseline correction. For statistical analyses, 
we then averaged the oxy-Hb and deoxy-Hb responses for all time 
points (between 4 s after block onset and end of the block) of the 
Go and the Go/No-go block for each condition, each channel, and 
each subject. This procedure yielded one value for the Go block 
and one for the Go/No-go block of each condition, each channel, 
and each subject. We used these values for the main data analysis. 
Furthermore, for correlation analysis, we computed the difference 
in oxy-Hb changes between the Go/No-go block and the Go block 
by subtracting the mean oxy-Hb changes of Go block from Go/
No-go block. The values represented the brain responses that de-
ducted the effect of the motor responses.

2.3 | Procedure

After we obtained their written informed consent, the parents were 
asked to complete the BIS/BAS scales in the designated area be-
hind the curtain but in the same room with the child. The experiment 
was conducted by two experimenters. Experimenter 1 (E1) was ap-
pointed as a partner for the child. The child was assessed for intrinsic 
motivation using the motivation check scale before the start of the 
experiment. Then, E1 explained the instructions for the incentive 
Go/No-go task, using laminated pictures, to the child. Experimenter 
2 (E2) asked the child to wear the NIRS probe, and the practice ses-
sion was started. The child performed four practice trials to ensure 
his/her understanding of the instructions. The child was allowed 
to repeat the practice trials if needed. Each child performed three 
reward conditions (i.e., control, social, and nonsocial). Before each 
condition, E1 assessed the child's intrinsic motivation again and in-
formed the child about the feedback before starting the task. For 
nonsocial reward condition, children were informed in advance that 
they would receive one sticker for every correct rejection. All of the 
instructions were read in Japanese. The NIRS probe was removed 
by E2 when the child completed the task or declined to continue the 
experiment. The child received the stickers with the same amount 
of correct rejection in the nonsocial reward condition as a gift. The 
whole experimental procedure lasted about 45 min.

3  | RESULTS

3.1 | Motivation check scale

Since data deviated from normality, we used a nonparametric 
Friedman test of differences among repeated measures to deter-
mine whether the intrinsic motivation differed between time points. 
All children's intrinsic motivation was assessed four times, before 
starting the experiment and before each condition (1st: M = 1.64, 
SD  =  0.95; 2nd: M  =  1.68, SD  =  0.99; 3rd: M  =  2.20, SD  =  1.19; 
4th: M = 1.96, SD = 1.17), respectively. There were no significant 

differences in intrinsic motivation across assessments, χ2(3) = 5.36, 
p = .15.

3.2 | BIS/BAS

In Blair et al. (2004) study, their study examined a parent-report ver-
sion of the BIS/BAS scales in 170 preschoolers between the ages of 
3 and 5 years. The average score of BIS was 30.78 (SD = 6.67), and 
the average score of BAS was 58.56 (SD  =  7.42). However, these 
scores were equivalently converted to 3.60 (SD = 0.95) for BIS and 
3.50 (SD = 0.57) for BAS in our scale.

In our study, the average score of BIS was 4.17 (SD = 1.03). The 
average scores of the three aspects of BAS (reward responsiveness, 
drive, and fun seeking) were 5.93 (SD = 0.80), 5.07 (SD = 1.00), and 
5.21 (SD = 1.06), respectively. It resulted in a total score of BAS of 
5.44 (SD = 0.80).

3.3 | Incentive Go/No-go task

3.3.1 | Behavioral data

All children completed the task. However, one child made errors by 
responding with the wrong button during the social reward condi-
tion. Thus, we excluded the data of that child, and the performance 
results were based on the data of the remaining 24 children. Notably, 
in the social condition, twenty-three children saw their mother's im-
ages and two children saw their father's images. The descriptive data 
of incentive Go/No-go performance were shown in Table 1.

We used a one-way repeated-measures ANOVA to determine 
the effects of the reward condition on task performance (i.e., hits 
and response time) in both the Go and Go/No-go block. The alpha 
level was set at 0.05. However, there were no significant differences 
in hits (F(2, 46) = 0.13, p =  .88, ƞ2 = 0.01) and response time (F(2, 
46) = 1.25, p = .30, ƞ2 = 0.05) in the Go block and hits (F(2, 46) = 0.28, 
p = .76, ƞ2 = 0.01) and response time (F(1.60, 36.90) = 0.004, p = .99, 
ƞ2  <  0.001) in the Go/No-go block across conditions (Table  1). 
Meanwhile, as the false alarms data had marked deviations from 
normality, a nonparametric Friedman test of differences among 
repeated measures was also conducted. Likewise, there was no 
statistically significant difference in false alarms across conditions 
(χ2(2) = 0.03, p = .99). Since the parent's gender may differentially im-
pact on children's performance, we focused on the children who saw 
the mother's face. A one-way repeated-measures ANOVA revealed 
no significant differences in hits (F(2, 42) = 0.88, p = .43, ƞ2 = 0.04) 
and response time (F(2, 42) = 1.07, p = .35, ƞ2 = 0.05) in the Go block 
and hits (F(2, 42) = 0.21, p = .82, ƞ2 = 0.01) and response time (F(2, 
42) = 0.01, p = .99, ƞ2 < 0.001) in the Go/No-go block across con-
ditions. Also, a nonparametric Friedman test of differences among 
repeated measures showed no statistically significant difference in 
false alarms across conditions (χ2(2) = 0.68, p = .71; Table S1).
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In addition, we used mixed ANOVA to determine whether any 
change in task performance (i.e., hits, false alarms, and response 
times) is the result of the interaction between the reward condition 
and gender. However, no statistically significant interaction was 
found in hits (F(2, 44) = 0.43, p = .66, ƞ2 = 0.02) and response time 
(F(2, 44) = 0.38, p =  .68, ƞ2 = 0.02) in the Go block and hits (F(2, 
44) = 0.31, p = .73, ƞ2 = 0.01), false alarms (F(2, 44) = 0.01, p = .99, 
ƞ2 = 0.001), and response time (F(2, 44) = 0.69, p = .51, ƞ2 = 0.03) in 
the Go/No-go block (Table S2).

3.3.2 | NIRS data

In terms of the NIRS analyses, we examined prefrontal activation re-
lated to response inhibition during the Go/No-go block compared to 
the Go block and investigated it varied across incentive types. A two-
way repeated-measures ANOVA was applied to test the main effect 
of reward condition and block, and the interaction effect of reward 
condition and block on the oxy-Hb changes in ROI. The reward condi-
tion included three levels (control, social, and nonsocial) and the block 
consisted of two levels (Go, Go/No-go). We applied a 0.008 (0.05/6) 
alpha level of significance (six channels) for multiple comparisons.

We assessed whether oxy-Hb changes in each channel dif-
fered as a function of the reward condition and block (Table 2 and 
Figures  2 and 3). A significant difference was found in channel 3 
only. For channel 3, we did not find a main effect of reward con-
dition (F(2,48) = 0.31; p =  .74, corrected for multiple comparisons; 

ƞ2 = 0.10). However, we found a main effect of block (F(1,24) = 11.88; 
p = .002, corrected for multiple comparisons; ƞ2 = 0.33) and the in-
teraction effect between reward and block (F(2,48) = 6.82; p = .002, 
corrected for multiple comparisons; ƞ2 = 0.22). Post hoc tests using 
the Bonferroni correction revealed that oxy-Hb changes during Go/
No-go block (M = 0.0011, SD = 0.0024) were higher than during Go 
block (M  =  −0.0007, SD  =  0.0015, p  <  .001, d  =  0.90) in the so-
cial reward condition, and the oxy-Hb changes during Go/No-go 
block (M = 0.0003, SD = 0.0021) were higher than during Go block 
(M = −0.0005, SD = 0.0017, p = .03, d = 0.42) in the nonsocial reward 
condition, but no significant differences between Go/No-go block 
(M = −0.0001, SD = 0.0017) and Go block (M = 0.0001, SD = 0.0017, 
p = .69) were found in the control condition. Moreover, the oxy-Hb 
changes in the social reward condition were significantly greater 
than in the control condition (p  =  .04, d  =  0.58) in the Go/No-go 
block, but not in the Go block (p =  .16, d = 0.09). In this study, we 
also computed the difference in oxy-Hb changes between the Go/
No-go block and the Go block. We used a one-way repeated-mea-
sures ANOVA to determine the effects of the reward conditions on 
the difference in oxy-Hb changes between the Go/No-go block and 
the Go block. The results showed patterns similar to the main results 
(Tables S3 and S4).

In terms of deoxy-Hb changes in each channel, a significant 
difference was also found in channel 3 only (Table 3 and Figures 2 
and 3). For channel 3, we did not find a main effect of reward con-
dition (F(2,48) = 0.31; p =  .74, corrected for multiple comparisons; 
ƞ2 = 0.10). However, we found a main effect of block (F(1,24) = 11.88; 

Variable n Control Social Nonsocial Statistics

Hits (%; Go 
block)

24 min. 62.22 48.89 40.00 F(2, 46) = 0.13, 
p = .88, ƞ2 = 0.01max. 100.00 100.00 100.00

M 82.04 82.13 83.43

SD 12.12 12.68 17.23

Hits (%; Go/
No-go 
block)

24 min. 33.33 29.63 37.04 F(2, 46) = 0.28, 
p = .76, ƞ2 = 0.01max. 96.30 100.00 100.00

M 73.61 75.77 75.31

SD 18.77 18.66 18.65

FA (%; Go/
No-go 
block)

24 min. 0.00 0.00 0.00 χ2(2) = 0.03, p = .99

max. 33.33 22.22 22.22

M 6.71 6.25 5.56

SD 8.02 7.20 5.67

RT (ms; Go 
block)

24 min. 282.36 345.07 303.97 F(2, 46) = 1.25, 
p = .30, ƞ2 = 0.05max. 611.39 673.80 600.96

M 445.00 473.55 463.44

SD 86.53 92.27 78.18

RT (ms; Go/
No-go 
block)

24 min. 420.80 441.25 438.74 F(1.60, 36.90) = 0.004, 
p = .99, ƞ2 < 0.001max. 658.11 661.33 652.14

M 558.76 559.33 558.25

SD 68.08 62.12 50.16

Abbreviations: FA, false alarm; M, mean; RT, response time; SD, standard deviation.

TA B L E  1   Summary of analyses of 
incentive Go/No-go task performance by 
condition
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p = .002, corrected for multiple comparisons; ƞ2 = 0.33) and the in-
teraction effect between reward and block (F(2,48) = 6.82; p = .002, 
corrected for multiple comparisons; ƞ2 = 0.22). Post hoc tests using 
the Bonferroni correction revealed that deoxy-Hb changes during 
Go/No-go block (M = −0.0007, SD = 0.0015) were lower than during 
Go block (M = 0.0004, SD = 0.0009, p < .001, d = 0.89) in the so-
cial reward condition, and the deoxy-Hb changes during Go/No-go 
block (M = −0.0002, SD = 0.0013) were lower than during Go block 
(M = 0.0003, SD = 0.0010, p =  .03, d = 0.43) in the nonsocial re-
ward condition, but no significant differences between Go/No-go 
block (M  =  −0.0000, SD  =  0.0010) and Go block (M  =  −0.0001, 
SD = 0.0010, p = .1) were found in the control condition. Moreover, 
the deoxy-Hb changes in the social reward condition were signifi-
cantly lower than in the control condition (p = .04, d = 0.55) in the 
Go/No-go block, but not in the Go block (p = .16, d = 0.53).

Referring to these particular comparisons in both oxy-Hb and 
deoxy-Hb changes between social reward and control condition; 
however, it was not significant when fathers’ faces were excluded 
(Tables S5 and S6). No other significant differences between con-
ditions were found in the Go block (ps >  .05) in both oxy-Hb and 
deoxy-Hb changes.

In addition, we conducted a 3 (condition: control, social, nonso-
cial) × 2 (block: Go, Go/No-go) × 2 (gender: boy, girl) ANOVA on the 
brain results. Again, our focus was interaction effects with gender, 
because gender may possibly influence the brain activity even if 
EF performance was equivalent. We applied a 0.008 (0.05/6) alpha 
level of significance (six channels) for multiple comparisons. As in the 

behavioral results, we found no significant two-way interaction be-
tween condition and gender in all channels (channel 3, F(2, 46) = 0.95, 
p =  .39, ƞ2 = 0.04, channel 4, F(2, 46) = 0.03, p =  .97, ƞ2 = 0.001, 
channel 6, F(2, 46) = 1.19, p = .31, ƞ2 = 0.50, channel 7, F(2, 42) = 0.16, 
p = .86, ƞ2 = 0.01, channel 9, F(2, 44) = 0.98, p = .38, ƞ2 = 0.04, and 
channel 10, F(2, 44) = 0.34, p = .72, ƞ2 = 0.02, all ps were corrected 
for multiple comparisons). Further, we found no significant two-way 
interaction between block and gender in all channels (channel 3, F(1, 
23) = 0.66, p =  .43, ƞ2 = 0.03, channel 4, F(1, 23) = 0.92, p =  .35, 
ƞ2 = 0.04, channel 6, F(1, 23) = 0.55, p =  .57, ƞ2 = 0.03, channel 7, 
F(1, 21) = 1.59, p = .22, ƞ2 = 0.07, channel 9, F(1, 22) = 1.80, p = .19, 
ƞ2 = 0.08, and channel 10, F(1, 22) = 2.77, p =  .11, ƞ2 = 0.11, all ps 
were corrected for multiple comparisons). Importantly, the three-
way interaction between condition, block, and gender was not sig-
nificant in any of the channels (channel 3, F(2, 46) = 1.75, p =  .19, 
ƞ2 = 0.07, channel 4, F(2, 46) = 0.75, p =  .48, ƞ2 = 0.03, channel 6, 
F(2, 46) = 0.03, p = .97, ƞ2 = 0.001, channel 7, F(2, 42) = 1.76, p = .19, 
ƞ2 = 0.08, channel 9, F(2, 44) = 0.56, p = .57, ƞ2 = 0.03, and channel 
10, F(2, 44) = 0.74, p = .48, ƞ2 = 0.03, all ps were corrected for multi-
ple comparisons; Table S7). In terms of deoxy-Hb changes, the results 
were similar to the oxy-Hb signal (Table S8).

3.4 | Correlations across variables

In the current study, Pearson correlations were computed to exam-
ine the relationship (a) between task performance and the BIS/BAS 

F I G U R E  2   Temporal changes in the oxy-Hb and deoxy-Hb concentration in the right inferior frontal gyrus (right IFG; channels 3, 4, 
and 6) and the medial frontal gyrus (MFG; channels 7, 9, and 10) during the incentive Go/No-go task. The grand-average signals across the 
participants in each condition (color lines) and the standard error of the mean (color bands) were shown. The Go/No-go block (target) was 
designed to induce inhibition. the Go block (baseline) was designed to control for the activation elicited by the motor responses. The black 
vertical line represents the point of Go/No-go block onset
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and (b) between age, task performance (i.e., hits in Go/No-go block), 
and difference in mean oxy-Hb changes between the Go/No-go 
block and the Go block.

Regarding the relationship between task performance and the 
BIS/BAS, we applied a 0.001 (0.05/36) alpha level of significance 
(36 correlations) for multiple comparisons. No other significant 
correlations were found between task performance and the BIS/
BAS (ps > .001; Table 4). In terms of the relationship between age, 
task performance (i.e., hits in Go/No-go block), and the difference 
in oxy-Hb changes between the Go/No-go block and the Go block, 
we applied a 0.001 (0.05/40) alpha level of significance (40 cor-
relations) for multiple comparisons. For Bonferroni correction, we 
restricted the number of correlations run based on our hypotheses 
that social and nonsocial rewards would increase motivation in pre-
school children and promote greater EF behavioral performance. In 
total, we ran 40 correlations resulting in alpha  =  0.001 (0.05/40), 
corresponding to correlations between (a) age and EF performance 
(4 correlations), (b) age and NIRS signal (18 correlations), and (c) EF 
performance and NIRS signal within the same condition (18 correla-
tions). Consequently, we found that age was significantly and posi-
tively correlated with the hit rates in the Go/No-go block for control, 

r(24) = 0.73, p < .001, and nonsocial reward condition, r(24) = 0.71, 
p  <  .001 (Table  5 and Figure  4). No other significant correlations 
were found between age and NIRS signal and between task perfor-
mance and NIRS signal (ps > .001).

4  | DISCUSSION

In the current study, we examined how social and nonsocial reward 
affects EF performance in typically developing 5- to 6-year-old chil-
dren. Consistent with our hypothesis, the social reward condition 
enhanced right IFG activity (channel 3). In contrast to our hypoth-
esis, however, we did not find any significant differences in children's 
motivation and EF performance based on reward conditions.

In line with our hypothesis, social reward promoted activation 
in right IFG. Previous studies claimed that the right IFG is function-
ally associated with action inhibition and execution and can be trig-
gered by the EF tasks, such as Go/No-go and stop signal task (Aron 
et al., 2014; Monden et al., 2015). Thus, our study implied that social 
reward could enhance activation in EF-related brain area, which is 
rapidly developed in preschoolers. Social reward has been reported 

F I G U R E  3   Mean (a) oxy-Hb and (b) 
deoxy-Hb changes separated by condition 
and block in channel 3, 4, 6, 7, 9, and 10. 
Error bars indicate the standard errors
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to be effective reinforcers during childhood (Demurie et al., 2012; 
Wang et al., 2017). Previous ERP study in children aged 6–8 years 
revealed an increased brain response in reward anticipation of faces, 
relative to nonface stimuli (Stavropoulos & Carver, 2014). Compared 
to the control condition, social reward using parents’ smiles in our 
study could have been especially rewarding and motivating for 

children. It is plausible that parents’ face may have satisfied children's 
innate psychological needs: the need for competence, relatedness, 
and autonomy (Deci, Vallerand, Pelletier, & Ryan, 1991). These basic 
needs are important for building up children's motivation, which may 
later affect children's EF engagement. In terms of neuronal mech-
anism, previous literature suggested various ways in which reward 
processing possibly influence PFC activity and thus EF engagement, 
including the transmission of dopamine in the mesolimbic and meso-
cortical pathway (Beierholm et al., 2013) and the connections of the 
PFC within itself and with other brain areas such as anterior cingu-
late cortex (Barbas & Pandya, 1989; Haber, Fudge, McFarland, 2000; 
Kouneiher et al., 2009; Shenhav et al., 2013). However, there is lim-
ited study in these aspects for preschool children, and they should 
be further investigated in detail.

In contrast to recent neuroimaging studies (Minagawa-Kawai 
et  al.,  2009; O'Doherty et al., 2003), we did not find activation 
in the MFC (channel 7, 9, and 10), which is part of the reward-re-
lated network, nor was it enhanced in social reward conditions. 
There are at least three plausible interpretations. First, the reward 
conditions possibly influence activation in other brain regions un-
derlying the reward system, such as anterior cingulate cortex and 
striatum, which the NIRS device cannot detect. Therefore, other 
neuroimaging techniques (e.g., fMRI) should be implemented 
to gather more information about how social reward may influ-
ence activation in these other regions. Second, since our study 
focused on the preschool children who are a vulnerable popula-
tion, thus, the present study did not employ any negative stimuli, 
especially in social reward, for incorrect responses. Comparing 
positive to negative reward may have yielded a greater differ-
ence in the neural signals (Brunia et  al.,  2011). This is similar to 
Stavropoulos and Carver’s (2014) ERP study, in which they did not 
observe larger stimulus preceding negativity (SPN), which involves 
neural response in reward anticipation, in the right hemisphere. 
They claimed that the SPN amplitude did not differ between 
hemispheres due to the absence of negative feedback. Therefore, 
future studies should carefully consider the use of incentive in re-
ward and nonreward conditions in this age-group. Next, the other 
plausible explanation for our results relates to the dissociation 
between reward processing/motivation and EF engagement in 
young children, that is, the internal connections of the prefrontal 

Behavioral data in 
Go/No-go block BIS Drive Reward Fun BAS

BIS/BAS 
difference score

Hits

Control 0.06 0.10 0.08 −0.19 0.00 −0.05

Social 0.17 0.06 0.11 −0.18 −0.01 −0.12

Nonsocial 0.03 0.02 0.02 −0.18 −0.06 −0.06

Reaction time

Control 0.28 −0.15 −0.24 −0.32 −0.28 −0.39

Social −0.05 0.08 0.14 0.03 0.10 0.10

Nonsocial 0.16 −0.05 0.05 −0.10 −0.04 −0.14

TA B L E  4   Bivariate correlations 
between task performance and the BIS/
BAS

TA B L E  5   Bivariate correlations between age, task performance, 
and the difference in oxy-Hb changes between the Go/No-go block 
and the Go block

Variable Age

Behavioral data (Hits in Go/No-go 
block)

Control Social Nonsocial

Age 1 0.73** 0.55 0.71**

NIRS data

Control

Ch3 −0.14 −0.30

Ch4 −0.04 0.14

Ch6 0.11 −0.13

Ch7 −0.16 −0.18

Ch9 0.00 −0.32

Ch10 −0.02 0.03

Social

Ch3 0.25 0.22

Ch4 0.00 0.01

Ch6 0.15 0.01

Ch7 0.05 0.23

Ch9 −0.15 −0.13

Ch10 0.23 0.21

Nonsocial

Ch3 0.01 −0.26

Ch4 0.05 −0.16

Ch6 0.35 −0.05

Ch7 0.09 −0.07

Ch9 0.30 −0.02

Ch10 0.08 −0.22

** Correlation is significant at the 0.01 level (2-tailed), corrected for 
multiple comparison. 
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cortex (Barbas & Pandya,  1989; Kouneiher et  al.,  2009) and the 
corticostriatal reward network (Haber et al., 2000). Indeed, the 
PFC continues to develop until late adolescence (Kolb et al., 2012; 
Moriguchi & Hiraki,  2013). Similarly, the corticostriatal reward 
network is not fully developed until adulthood (Casey et al., 2008). 
Thus, the effect of motivation on EF, especially in the neuronal 
level, may not be observable yet in early childhood. As the inter-
connections among these networks increase during development, 
a dynamic interplay between PFC and the reward system may 
emerge later in childhood (Padmanabhan, Geier, Ordaz, Teslovich, 
& Luna, 2011; Van Leijenhorst et  al.,  2010). As a result, motiva-
tional interventions/activities may be more effective in engaging 
EF in older children than younger children. Hence, future investi-
gations should include a broad age range from early childhood to 
young adults in order to examine the neurodevelopmental aspects 
of the brain circuitry underlying the processing of social and non-
social reward across age-groups.

Additionally, in contrast to previous studies in adolescence 
and adulthood (Knutson et al., 2001; Lin et al., 2012), our results 
showed that the nonsocial reward condition did not increase ac-
tivation in the MFC. Unlike other studies, we used stickers as an 
incentive instead of financial items, since the concept of money is 
not completely understood by preschool age (Berti & Bombi, 1981; 
Grunberg & Anthony, 1980). Although stickers served as tangible 
reinforcers in many prior studies and are common in classroom 
contexts, they may not have been attractive enough to signifi-
cantly increase MFC activation. Thus, other tangible rewards, 
such as toys or snacks, may yield greater brain responses in future 
studies.

In terms of EF performance, we did not find the motivational 
valence differences on task accuracy. This is similar to Beck et al. 
(2011) findings in which Beck and colleagues found the effect of 
age-group but not the effect of affective-motivational valence on 
preschoolers’ performance in the conflict task. It is notable that the 
average percentages of hits during the Go/No-go blocks are rela-
tively high (i.e., 73.61%–75.77%) and the average percentages of 
false alarms in our study are very low (i.e., 5.56%–6.7%). It possibly 

implies the floor and ceiling effects in this age, which may cause no 
difference on task accuracy across condition. However, our findings 
differed from those of Qu et al. (2013). Qu and colleagues found 
that the impact of reward anticipation on 4- to 5-year-old children's 
EF performance resulted in better performance in the Day/Night 
Stroop task when compared with the reward-uninformed condition. 
By contrast, our study investigated the impact of reward provision 
on EF by presenting the reward as response feedback in No-go tri-
als, where we did not find differences in children's EF performance 
across reward conditions. Previous neuroimaging studies suggest 
that reward anticipation evokes different neuronal patterns relative 
to the receipt of reward outcomes (Knutson et  al.,  2001; Schultz, 
Tremblay, & Hollerman, 2000), which may account for the diverging 
findings across the two studies. Moreover, our results differed from 
Tarullo et al. (2018) study, where trial-by-trial reward feedback af-
fected the accuracy of DCCS task in children aged 3.5–4.5 years. In 
Tarullo and colleagues’ study, each feedback included a combination 
of rewards; sound, facial expression, and stickers. The simultaneous 
use of various kinds of feedback probably has stronger effects on 
appetitive approach than the use of one kind of feedback at a time.

Furthermore, in our study, children's reward sensitivity mea-
sured by the parent-reported BIS/BAS scale did not relate to cog-
nitive control performance in any condition. By contrast, Kohls 
et  al.  (2009) reported that children with higher reward sensitivity 
showed greater improvements in cognitive control performance in 
the monetary reward condition but not in the social reward condi-
tion. They suggested that distinct temperamental traits influenced 
how task performance varied across the different reward conditions. 
Unlike Kohls et al.’s study, we used stickers instead of money as non-
social reward. Stickers and money may convey different concepts in 
terms of their utilization. Children may not perceive stickers in the 
same way as adults perceive money, as unlike money, stickers are not 
exchangeable items. Hence, stickers may not provide the same ben-
efit as money. However, since both items have never been directly 
compared, further investigation is needed.

The present results contribute to our understanding of cool and 
hot distinction of EF. Zelazo and colleagues proposed a framework 

F I G U R E  4   Scatter plot shows 
associations between age in month and 
percent accuracy of the hit rates in the 
Go/No-go block for control, social, and 
nonsocial condition
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of cool and hot distinction in EF (Zelazo & Carlson, 2012; Zelazo & 
Müller, 2002), where hot EF includes processes elicited under moti-
vational contexts, whereas cool EF is utilized in neutral, nonaffec-
tive situations (Bunch & Andrews, 2012; Wilson, Andrews, Hogan, 
Wang, & Shum,  2018). Moreover, it has been proposed that the 
neural mechanisms may differ in cool and hot EF, where the lateral 
PFC and the anterior cingulate cortex play an important role in cool 
EF whereas orbitofrontal cortex may be related to hot EF (Zelazo & 
Müller, 2002). Previous studies classified research into cool or hot 
depending on the tasks being used. For example, a Go/No-go task 
is generally regarded as tapping inhibition and cool EF and the delay 
of gratification is used as hot EF task. However, the hot and cool dis-
tinction is relative and both aspects may be involved in any given task 
at the behavioral and the neural level (Moriguchi & Shinohara, 2019; 
Zelazo & Müller, 2002). In the present study, the Go/No-go task can 
be regarded as mainly tapping the cool EF task in the control condi-
tion whereas the reward conditions can be regarded as hot EF task. 
Moreover, in the social reward condition, the lateral PFC rather than 
MFC was significant activated. The neuroimaging data suggest that 
hot EF can recruit the lateral PFC, hence showing that hot and cool 
EF are supported by largely overlapping brain regions. This suggests 
that they form a single continuum rather than discrete forms of EF.

This study has some limitations that need to be considered. 
Regarding the data analyses, the sample size of this study was small 
which may cause a Type II error. In terms of NIRS analyses, it should 
be noted that the condition by block interaction in channel 6, 9, and 
10 has medium effect size although the interaction did not reach 
significance level. The general pattern is consistent across channels, 
where activations in the Go/No-go block were stronger than Go 
block in the social condition, but not in other conditions. Therefore, 
with greater statistical power, the interaction between block and 
condition may have turned significant in these channels too. Further, 
a differential path-length factor may vary depending on children's 
age and can affect the results. Thus, the increasing of sample size 
and age-specific differential path-length factor value should be 
considered in future study. Regarding the experimental paradigm, 
we employed a block design as it is simpler to implement, statisti-
cally powerful, and straightforward to analyze (Herold et al., 2018). 
However, the individual trials cannot be compared with this design. 
More specifically, the Go/No-go blocks in this study included both 
go and no-go conditions. Due to the limitation on the synchroniza-
tion between the computer for collecting behavioral data and the 
NIRS recording system, we could not analyze event-related data of 
oxy-Hb signal changes in this study. Thus, future works should con-
sider to apply the event-related design. Moreover, in this study, we 
judged the motion artifacts from video recordings which is subjec-
tive and could not remove all artifacts. Other methods or algorithms 
of measuring motion artifacts with objective threshold should be 
extended. Since this study examined the short-term effects of re-
ward motivation on EF, future developmental studies are required to 
investigate whether different incentive types could have differential 
long-term effects.

5  | CONCLUSION

In summary, this study expands our understanding of motivation and 
EF engagement in preschoolers. Specifically, social reward enhanced 
prefrontal activations in young children. Our results may have some 
noteworthy implications for parenting and classroom management, 
especially the use of age-appropriate reinforcement to encourage 
children's behaviors. However, the reward conditions did not com-
pletely affect neural activity of reward processing, potentially be-
cause of immature connectivity between the neural circuits of these 
two systems in young children. Since we have not examined activity 
in striatum and other regions of the reward network that are out of 
reach, using NIRS, further analysis is necessary to validate this be-
havior. Detailed experiments with delicate constraints can be exam-
ined in order to understand the developments of these two systems 
in young children.
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