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The canonical Wnt/β-catenin pathway is a master-regulator of cell fate during embryonic
and adult neurogenesis and is therefore a major pharmacological target in basic
and clinical research. Chemical manipulation of Wnt signaling during in vitro neuronal
differentiation of stem cells can alter both the quantity and the quality of the derived
neurons. Accordingly, the use of Wnt activators and blockers has become an integral
part of differentiation protocols applied to stem cells in recent years. Here, we
investigated the effects of the glycogen synthase kinase-3β inhibitor CHIR99021, which
upregulates β-catenin agonizing Wnt; and the tankyrase-1/2 inhibitor XAV939, which
downregulates β-catenin antagonizing Wnt. Both drugs and their potential neurogenic
and anti-neurogenic effects were studied using stable lines human neural precursor cells
(hNPCs), derived from embryonic stem cells, which can be induced to generate mature
neurons by chemically-defined conditions. We found that Wnt-agonism by CHIR99021
promotes induction of neural differentiation, while also reducing cell proliferation and
survival. This effect was not synergistic with those of pro-neural growth factors
during long-term neuronal differentiation. Conversely, antagonism of Wnt by XAV939
consistently prevented neuronal progression of hNPCs. We show here how these two
drugs can be used to manipulate cell fate and how self-renewing hNPCs can be used
as reliable human in vitro drug-screening platforms.

Keywords: human embryonic stem cells, neural differentiation, human neural precursor cells, Wnt signal, GSK-3β,
tankyrase

INTRODUCTION

The Wnt/β-catenin signaling pathway has been shown to play pivotal roles in embryonic neural
development (Le Dreau and Marti, 2012) and adult neurogenesis (Lie et al., 2005). The “canonical”
Wnt signaling pathway is activated when the Wnt ligand binds to its membrane receptor
generating an intracellular cascade of events, eventually resulting in the escape of β-catenin from
its “destruction complex.” Free β-catenin can then translocate from the cytosol to the nucleus,
where it acts as a major transcription factor regulating the expression of several important target
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genes (Cadigan and Peifer, 2009; MacDonald et al., 2009;
Zimmerman et al., 2012). Because of its critical role in
neurogenesis from early embryonic development to ongoing
hippocampal plasticity throughout life, dysregulation of Wnt
signaling has been shown to underlie some of the symptoms
observed in neurodevelopmental disorders (Luo et al., 2010;
Mohn et al., 2014; Zeidan-Chulia et al., 2014; Hormozdiari
et al., 2015; Telias et al., 2015b), as well as in psychiatric and
neurodegenerative disorders (Oliva et al., 2013; Seib et al., 2013;
Hussaini et al., 2014).

β-catenin’ destruction complex is composed of several
different proteins, including glycogen synthase kinase-3β (GSK-
3β) (Hur and Zhou, 2010; Seira and Del Rio, 2014) and
axin (MacDonald et al., 2009; Gammons and Bienz, 2018).
Axin is a substrate of tankyrase-1/2 (TANK), a poly-ADP-
ribosyltransferase that can target and tag axin for ubiquitination
through ribosylation (Huang et al., 2009; Bao et al., 2012).
GSK-3β and TANK play multiple Wnt-independent roles in
cell biology, including in proliferation, differentiation, and
metabolism (Ali et al., 2001; Cohen and Frame, 2001; Seimiya,
2006; Hsiao and Smith, 2008). They both regulate β-catenin
activity, but in opposite directions: while GSK-3β activity
increases β-catenin phosphorylation and degradation, reducing
Wnt signaling; TANK enzymatic activity on axin results in
increased levels of free β-catenin, increasing Wnt signaling.

Much effort has been invested in recent years in the
development of suitable small-molecule inhibitor drugs targeting
GSK-3β and TANK (Riffell et al., 2012; King et al., 2014). In
this study, we have assessed the activity of two specific drugs:
the amino-pyrimidine CHIR99021 (“CHIR”), a highly specific
inhibitor of GSK-3β, with potential applications to cognitive
impairment in neurodevelopmental disorders (Franklin et al.,
2014) and psychiatric illness (Garza et al., 2018); and the
pyrimidine XAV939 (“XAV”), a specific inhibitor of TANK,
successfully tested as a promising anti-neoplastic drug (Huang
et al., 2009; Bao et al., 2012; Busch et al., 2013). Most relevant
to the present report, is the use of CHIR and XAV as critical
components of chemically defined protocols aiming to guide
differentiation of human and murine stem cells into myriad
cellular fates. CHIR has been used to promote neural and
neuronal differentiation in embryonic stem cells and induced
pluripotent stem cells (De Kumar et al., 2017; Shafa et al., 2018;
Gomez et al., 2019; Qiu et al., 2019; Shin et al., 2019; Bejoy et al.,
2020) and in several different types of neural precursors (Yang Y.
et al., 2020; Ren et al., 2021; Wang et al., 2021), as well as to
induce trans-differentiation into neural lineages from non-neural
cell types, such as skin (Bataille et al., 2020; Yang J. et al., 2020)
and mesenchymal cells (Govarthanan et al., 2020). XAV has been
used to promote differentiation of pluripotent stem cells into lung
cells (Malleske et al., 2018; Kanagaki et al., 2020), to increase
osteogenic differentiation of mesenchymal stem cells (Almasoud
et al., 2020; Han et al., 2020), and to promote generation of
cardiomyocytes (Hamad et al., 2019; Leigh et al., 2020).

In this brief report, we show the effects of chemical
manipulation of Wnt using CHIR and XAV on human neural
precursor cells (hNPCs), differentiated from human embryonic
stem cells (hESCs) (Telias et al., 2015b). These cells can be

kept as self-propagating hNPCs for >10 passages, and can
be induced to undergo neuronal and glial differentiation by
changing medium composition and growth conditions (Telias
et al., 2013, 2014, 2015a). The pro- and anti-neural effects
of CHIR and XAV were assessed at the molecular level by
measuring gene and protein expression, and at the cellular level
by implementing a morphological bioassay indicative of neural
progression. We also examined the effect of CHIR and XAV
on hNPCs survival rate and proliferation. As expected, during
long-term neuronal maturation, CHIR had an overall neurogenic
effect, while XAV did not, in line with what is known for the
role of Wnt during neuronal differentiation. Our results show
that CHIR is neurogenic but also probably toxic to hNPCs,
while XAV had the opposite effect, reducing neuronal yield and
inducing a more primitive developmental phenotype reminiscent
of undifferentiated hESCs. This study exemplifies the value of
using in vitro drug screening platforms based on stem cells and
their derivatives, emphasizing their dynamism and malleability.

MATERIALS AND METHODS

Human Embryonic Stem Cells
Four non-affected hESC lines were obtained from Harvard
University Stem Cell Core, including HUES-6 (XX), HUES-
16, HUES-13, and HUES-64 (XY) (Cowan et al., 2004;
Osafune et al., 2008; Bock et al., 2011; Telias et al., 2015b).
Undifferentiated hESC colonies were cultured on Matrigel (BD)-
coated polystyrene wells, in the presence of inactivated mouse
embryonic fibroblasts (MEFs), in liquid medium composed
of DMEM:F12, supplemented with 20% knock-out serum
replacement, 1% Glutamax, 1% insulin transferrin selenium
(all purchased from LifeTech.), 1% non-essential amino-acids
(BioInd.), and 50 ng/ml Primocin (InvivoGen) (Telias et al.,
2013, 2014, 2015b). Cell medium was refreshed every 48 h
and supplemented with 8 ng/ml basic fibroblast growth factor
(bFGF, R&D) to maintain pluripotency and prevent spontaneous
differentiation in vitro.

Derivation of Human Neural Precursor
Cells and Neuronal Differentiation
In vitro neural differentiation (IVND) of hESCs was carried out
as previously described (Telias et al., 2013, 2015b). In brief, hESCs
were grown in Neural Induction Medium (NIM) consisting
of DMEM:F12, 0.5% B27 supplement, 1% N2 supplement,
1% Glutamax, 1% non-essential amino acids and 0.1 mg/ml
Primocin. IVND included three steps: (a) formation of neuro-
ectoderm in the presence of 250 ng/ml noggin (PeproTech)
and 20 ng/ml bFGF; (b) development of neural rosettes in the
presence of 200 ng/ml sonic hedgehog (Shh, PeproTech) and
(c) generation of neurospheres aggregates by manual trituration,
re-suspended in NIM containing 20 ng/ml bFGF.

To induce the formation of self-renewable hNPCs, floating
neurospheres were re-seeded on Matrigel-coated polystyrene in
NIM with 20 ng/ml bFGF. Self-renewing hNPCs were grown
for a minimum of 4 and a maximum of 12 passages before
initiating any experiment. Cultures were passaged once a week at
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a dilution ratio of 1:6. For passaging, cells were dissociated using
TryplE (LifeTech) at 37◦C for 2–3 min. Cells were gently pipetted,
collected and centrifuged in a conical 15-ml tube (5′, 1,200 RPM)
before re-seeding.

Neuronal differentiation of hNPCs was induced by cells
dissociation using TryplE and re-plating onto Poly-D-
Lysine/Laminin (Sigma)-coated glass coverslips. NIM was
replaced with Neuronal Differentiation Medium (NDM)
supplemented with brain-derived neurotrophic factor (BDNF),
glia-derived neurotrophic factor (GDNF) and neurotrophin-3
(NT-3, all 10 ng/ml, PeproTech). NDM composition was similar
to NIM, but using Neurobasal (LifeTech) instead of DMEM:F12.

Pharmacological Manipulation of Wnt
Signaling
The GSK-3β inhibitor CHIR99021 {6-[[2-[[4-(2,4-
Dichlorophenyl)-5-(5-methyl-1H-imidazol-2-yl)-2-pyrimidinyl]
amino]ethyl]amino]-3-pyridinecarbonitrile; a.k.a. “CHIR”}
was purchased from Tocris (Cat #4423). The TANK
inhibitor XAV939 {2-[4-(trifluoromethyl)phenyl]-1,5,7,8-
tetrahydrothiopyrano[4,3-d]pyrimidin-4-one; a.k.a. “XAV”} was
obtained from Selleckchem (Cat #A1877). Both compounds
were dissolved in dimethyl sulfoxide (DMSO) at 20 mM stock
solutions and stored at −80◦C, in the dark. Fresh CHIR or XAV
was added with every medium change, every 48–72 h. Working
concentrations of both pharmacological agents was 3 µM in all
experiments (De Kumar et al., 2017; Major et al., 2017; Shafa
et al., 2018; Srikanth et al., 2018), resulting in a DMSO content of
0.015%. Accordingly, all control experiments, without CHIR or
XAV, included 0.015% DMSO.

Gene Expression Analysis
Relative transcription levels were analyzed by quantitative
RT-PCR, as previously described (Telias et al., 2013, 2015b).
RNA was extracted (RNeasy, Qiagen), reversed transcribed
using Super Script-III kit (Invitrogen), and analyzed using
SYBRgreen (ABgene) in Rotor Gene 6000 Series (Corbett).
The house keeping gene GAPDH was used as a control for
11Ct analysis. All qRT-PCR assays included non-template
control and non-human cells control (MEFs). Primer sequences
(5′–3′) were as follows: GAPDH, R-atacgaccaaatccgttgactc,
F-agccacatcgctcagacacc; MAP2, R-cattggcgcttcggacaag, F-ctcag
caccgctaacagagg; GFAP, R-aggtccatgtggagcttgac, F-gccattgcc
tcatactgcgt; TUJ1, R-tttttgctcgcctcaaggtatgt, F-gggcgcattccaacctt;
TAU, R-tgccatgttgagcaggacta, and F-tcacttttacagcaacagtcagtg. All
qRT-PCR experiments included a non-human negative control
(RNA extracted from MEFs) and a no-template control (no DNA
template in the reaction).

Western Blot Analysis
Western blot analysis was carried out as previously described
(Telias et al., 2015b). Protein was extracted using reporter lysis
buffer (Promega), and 25–30 µg of protein were loaded on
a 7.5% separating gel using Mini Trans-Blot Cell (Bio-Rad).
Nitrocellulose membranes were stained with primary antibodies
against human β-catenin (Santa Cruz, #sc7199, 1:250 dilution)

and human β-Actin (Abcam, #ab8224, 1:500 dilution), and
detected with HRP-conjugated secondary antibodies (Jackson
ImmunoResearch, 1:10,000 dilution). Protein bends were
detected using EZ-ECL (BioInd.). Gel images were analyzed
using ImageJ (NIH). Identical regions of interest were drawn
around β-catenin and β-Actin gel bands across samples and cell
lines, and mean gray value was measured in all of them.

Live Cell Imaging and Morphological
Assay
Live cells were imaged in NIM or NDM (refracting
medium) while growing on glass coverslips coated in Poly-
D-Lysine/Laminin (Sigma) placed at the bottom of polystyrene
wells. Images were taken using 10× and 40× objectives on
an inverted light microscope (Olympus XI-50), in bright field.
During imaging, the plate cover was not removed, to prevent
contamination. Systematic imaging of live hNPCs and neurons
during neural induction and neuronal differentiation were
obtained in all four lines employed in the study, at regular time
intervals: every 2 days during the 7 days of neural induction,
and every 5 days during the 30 days of neuronal differentiation.
Morphological analysis was conducted post hoc using CellˆA
(Olympus) and ImageJ software. Three representative images
for each condition and developmental stage were sampled by
manually drawing cellular contours on bright field images.
The total surface area and perimeter included in each contour
was automatically provided by the software after setting the
image scale in µm. A minimum of 50 cells were chosen for
morphological analysis in every image.

Immunofluorescence and Proliferation
Assay
Immunostaining and immunofluorescent imaging was
performed as previously described (Telias et al., 2013,
2015b). Cells were seeded on glass coverslips coated with
Matrigel for hNPCs or with Poly-D-Lysine/Laminin for
neuronal differentiation. Cells were fixated using Cytofix
(BD). Proliferation rate in hNPCs: cells were labeled using
a primary antibody against human Ki67 (R&D, #MAB7617,
1:500 dilution) and counterstained with the nuclear dye DAPI
(Sigma) before mounting. MAP2-GFAP assay in neurons: cells
were double-labeled using primary antibodies against human
MAP2 (Santa Cruz, #sc-20172, 1:250 dilution) and human GFAP
(Millipore, #MAB360, 1:250 dilution). All immunofluorescence
was performed over-night at 4◦C and detected using Cy2/Cy3-
conjugated secondary antibodies (LifeTech., 1:1,000 dilution).
Coverslips were mounted on glass slides using Fluoromount
G (Southern Biotech). Cells were imaged using an inverted
fluorescent Olympus XI-50 microscope. All conditions were
similar for all lines in all experiments, every experiment was
repeated three times in each of the four cell lines. In each
coverslip, images were collected in three randomly selected fields,
each field measuring 200 × 200 µm. Images were used post hoc
to count the number of Ki67-positive cells and the total number
of cells (DAPI), or to measure mean gray value of Cy2/Cy3 in
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MAP2-GFAP assay. Image analysis was conducted using ImageJ
software (NIH).

Survival Assay
Human neural precursor cells were seeded at low density (30,000
cells p/well in a 24-well plate) and incubated for 7 days with
either CHIR99021 or XAV939 (3 µM). Medium was refreshed
every 48 h. At the end of 7 days, living cultures were detached
from their wells and dissociated to single cells using TryplE
(LifeTech). Dissociated cells were centrifuged at 1,200 RPM for
5 min in 15-ml conical tubes. Cells were mounted onto a standard
hemocytometer and manually counted.

Statistical Analysis
Statistical analysis (Student’s t-test and ANOVA) was performed
using SPSS, SigmaPlot and online GraphPad QuickCalcs.1

RESULTS

Experimental Setup
In this brief report we tested the effects of CHIR, a specific GSK-
3β inhibitor and XAV, a specific TANK inhibitor, on cultured
hNPCs used as a human in vitro drug screening platform. All four
hNPC lines used in this study were previously derived from four
different hESC lines (Telias et al., 2015b). The effects of CHIR
and XAV on hNPCs were analyzed following short-term (2 days),
mid-term (7 days), or long-term treatment (30 days; Figure 1A)
with either drug as compared to non-treated controls, using gene
and protein expression analysis and cell-based assays as readouts.
Short- and mid-term experiments were conducted utilizing self-
renewing hNPCs kept in chemically defined NIM medium (see
“Materials and Methods” section), formulated to promote self-
propagation and to halt developmental progression into mature
neurons, by supplementing it with basic fibroblast growth factor
(bFGF). Long-term treatment of 30 days was concomitant with
active neuronal differentiation of hNPCs, achieved by removing
bFGF and switching medium to NDM supplemented with three
neurotrophic growth factors. In all cases, either drug was used at
a final concentration of 3 µM, directly dissolved in cell media and
refreshed every 48 h.

Immediate Effects of Wnt Modulators on
Self-Renewing hNPCs
To investigate the potential neurogenic or anti-neurogenic
effect of CHIR and XAV on self-renewing hNPCs growing on
Matrigel in the presence of bFGF, we first confirmed that both
drugs are indeed able to affect the protein levels of β-catenin.
GSK-3β phosphorylates two different serine residues on the
N-terminus of β-catenin, directly tagging it for ubiquitination
and degradation. TANK indirectly increases β-catenin levels by
de-activating Axin, an important member of the destruction
complex behind β-catenin degradation. Approximately 1 million
cells per well were incubated with either drug at 3 µM

1http://www.graphpad.com/quickcalcs

for 48 h. They were then harvested for protein purification
and analyzed using Western blot. As expected, incubation of
hNPCs with CHIR led to a significant increase in β-catenin
protein levels and similar treatment with XAV to a significant
decrease (control = 100 ± 9.7%, CHIR = 129.5 ± 13.7%,
XAV = 60.25± 8.9, p< 0.01, n = 3/line, 4 hNPC lines, Figure 1B).
The expression of β-catenin was normalized to the expression of
the housekeeping gene β-Actin. No noticeable changes in culture
density or cellular morphology were observed during short-term
exposure to CHIR or XAV.

We also measured whether 48 h of hNPCs exposure to CHIR
or XAV was sufficient to induce changes in gene expression
reflecting a change in their neurodevelopmental status. We have
previously shown that MAP2, GFAP, TUJ1, and TAU, are all
expressed in self-renewable hNPCs under continuous presence of
bFGF (Telias et al., 2013, 2015b). The expression of these markers
increases quantitatively as hNPCs progress into more mature
neuronal cell types (Telias et al., 2015b), such as neuroblasts, and
finally segregate qualitatively in mature neurons (MAP2, TUJ1,
and TAU) and glial cells (GFAP).

Human neural precursor cells were harvested following 48 h
of incubation with 3 µM CHIR or XAV, and their RNA
purified. Using quantitative Real-Time PCR, we measured the
expression of MAP2, GFAP, TUJ1, and TAU relative to that of
the housekeeping gene GAPDH (Figure 1C). Our results show
that treatment of hNPCs with CHIR or XAV was able to affect
the overall transcription of MAP2 and GFAP but not that of
TUJ1 or TAU. Short-term exposure to CHIR reduced GFAP
in hNPCs (11.4 ± 3.0% of control, p < 0.01, n = 3/line, 4
hNPC lines) but did not significantly alter the expression of
MAP2. XAV had opposite effects in GFAP and MAP2 expression,
significantly increasing GFAP (142.0 ± 15% of control, p < 0.05,
n = 3/line, 4 hNPC lines) and significantly reducing MAP2
(12.3 ± 9.4% of control, p < 0.01, n = 3/line, 4 hNPC
lines). These results suggest that 48 h of GSK-3β inhibition
by CHIR is not sufficient to induce neuralization of hNPCs,
while inhibition of TANK by XAV under the same conditions is
effective in inducing an anti-neural response, decreasing MAP2
and increasing GFAP. These results further suggest that while
MAP2 and GFAP transcriptional activation in hNPCs might be
subjected to modulation by Wnt/β-catenin, TUJ1 and TAU seem
to be unaffected by it in these cells.

Sustained Wnt Agonism and Antagonism
in Self-Renewing hNPCs
Next, we tested the response of hNPCs to 7 days-long treatments
with CHIR or XAV. As hNPCs are kept in a state of self-
renewal by bFGF, these experiments uncover whether CHIR
or XAV can “push” these cells into a different developmental
state despite the presence of bFGF. We tracked their potential
neural differentiation by implementing a morphological assay in
live cultures (Figure 2A), based on the premise that, as neural
differentiation progresses, cells become bigger and produce
more numerous and longer projections, showing an increase
in total surface area and perimeter. Using specialized software,
individual cells in image samples were used to delineate their
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FIGURE 1 | Short-term effect of Wnt modulators on hNPCs. (A) Schematic outline of the experimental set-up. Human embryonic stem cells (hESCs) are
differentiated into neural precursor cells (hNPCs), used to test the effects of 3 µM CHIR99021 (CHIR) or XAV939 (XAV). hNPCs were either maintained in NIM
containing basic fibroblast growth factor (bFGF), or in Neural Differentiation Medium (NDM) containing brain-derived neurotrophic factor (BDNF), glia-derived
neurotrophic factor (GDNF) and neurotrophin-3 (NT-3). (B) Western blot analysis of β-catenin protein levels after treating hNPCs in NIM containing bFGF with 3 µM
CHIR or XAV for 2 days. β-actin was used as loading and normalizing control. Left representative images for Western blots, obtained in HUES13-hNPC line. Gel
images were used to establish mean gray value (MGV) in regions of interest of equal surface size (densitometry). Right Quantification of β-catenin/β-actin MGV ratio,
normalized to control (control: gray bars, CHIR: white bars, XAV: black bars). Values are mean ± SEM. Experiments repeated three times in 4 hNPC lines,
**p < 0.01, ANOVA. (C) Effect of treatment with 3 µM CHIR or XAV for 2 days on the transcriptional status of neural genes. qRT-PCR measurement of MAP2, GFAP,
TUJ1, and TAU relative transcript levels (“11Ct”), using the housekeeping gene GAPDH as an internal control (control: gray bars, CHIR: white bars, XAV: black bars).
Experiments repeated three times in 4 hNPC lines. Values are mean ± SEM, *p < 0.05; **p < 0.01, ANOVA.
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FIGURE 2 | Changes in neural morphology induced by Wnt modulators. (A) Top row: schematic presentation of the morphological changes in cells from
undifferentiated hESCs to mature neurons during in vitro neural differentiation, and how they affect the relative change in surface area and perimeter. Bottom row,
from left to right: bright field (BF) image of a single fixed undifferentiated HUES13-hESC colony (red arrow) surrounded by inactivated mouse embryonic fibroblasts
(yellow arrow); immunofluorescence image of fixed hNPCs stained with MAP2 (red) and similar staining in mature neurons derived from HUES-13. (B) Top row:
representative images of living cultures of HUES-64 hNPCs in control conditions (NIM + bFGF) and after 7 days of treatment with 3 µM CHIR or XAV. Bottom row:
magnified images exemplifying contour determination for the calculation of surface area and perimeter in morphological assays. (C) Quantification of soma area
(µm2) and cell perimeter (µm) of hNPCs (living cells, non-fixed) in control conditions (gray bars), and following treatment with 3 µM CHIR (white bars) or XAV (black
bars) for 7 days. Experiments were repeated three times in all 4 hNPC lines, 3 random fields were imaged in each experiment, >50 cells were analyzed in each field.
Values are mean ± SEM, *p < 0.05; **p < 0.01, ANOVA.

contour, creating regions of interest from which perimeter (in
µm) and area (in µm2) were then calculated (Figure 2B).
Our results show that exposing hNPCs to CHIR for 7 days

conferred them a more neuronal phenotype, increasing the
number of neurite projections and their length (Figure 2C).
In contrast, XAV elicited the opposite effect, conferring cells
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FIGURE 3 | Effect of Wnt modulators on proliferation and survival of hNPCs.
(A) Representative images of fixed HUES-6 hNPCs in control conditions
(NIM + bFGF) and after 7 days of treatment with 3 µM CHIR or XAV, stained
with the nuclear dye DAPI (top row, blue) and immunostained with the
proliferation marker Ki67 (middle row, red). Bottom row shows the merged
images of DAPI and Ki67 double staining (pink). (B) Proliferation rate
quantified as the percentage of Ki67-positive cells from the total number of
cells (DAPI-positive), in control conditions (gray bar) and following hNPCs
exposure to 3 µM of CHIR (white) or XAV (black) for a total of 7 days.
Experiments were repeated three times in all 4 hNPC lines, 3 random fields
were imaged and analyzed in each experiment. Quantification was conducted
post hoc using ImageJ ROI tool. Values are shown as mean ± SEM,
normalized to control. *p < 0.05; **p < 0.01, ANOVA. (C) Survival assay
conducted on hNPCs after 7 days of control conditions (gray bar) or treatment

(Continued)

FIGURE 3 | Continued
with 3 µM CHIR (white bar) or XAV (black bar). At time = 0 days, ∼30,000
cells were seeded on 24-well plates. At time = 7 days, the number of cells in
culture was manually counted using a hemocytometer. Experiments were
repeated three times in all 4 hNPC lines. Values are shown as mean ± SEM,
normalized to control. *p < 0.05; **p < 0.01, ANOVA.

an almost undifferentiated, hESC-like morphology, with small
round somata and with no membrane projections. Specifically,
CHIR increased the mean cell area from 509.1 ± 13.9 to
564.1 ± 15.1 µm2 (p < 0.05, >50 cells/experiment, n = 3/line, 4
hNPC lines), while XAV reduced it to 282.2± 9.4 µm2 (p< 0.01,
n same as above). Their effect on mean cell perimeter was
similar: CHIR increased cellular perimeter from 106.2 ± 2.0 to
120.6± 1.7 µm (p< 0.05) and XAV reduced it to 71.8± 1.5 µm
(p< 0.01).

Effect of Wnt Modulators on hNPCs
Proliferation and Survival
Most studies using CHIR or XAV to guide differentiation of
stem cells and other cell types used a final concentration of 2.5–
10 µM (De Kumar et al., 2017; Lancaster et al., 2017; Major et al.,
2017; Shafa et al., 2018; Sharma et al., 2018; Srikanth et al., 2018;
Yoon et al., 2019; Bataille et al., 2020). Yet, the same studies
have not addressed whether these drugs have any cytotoxic effects
on human or murine cell cultures. We measured proliferation
and survival of hNPCs when grown in the presence of bFGF
and treated with 3 µM CHIR or XAV for 7 days, refreshing
cell medium every 48 h. To measure proliferation, we fixed and
stained sample cultures belonging to all four hNPC lines after
7 days of treatment and carried out immuno-fluorescence assays
to detect and quantify the presence of the proliferation marker
Ki67 (Figure 3A). Quantification of Ki67 expression, normalized
to the total number of cells revealed with the nuclear dye DAPI,
showed that treatment with CHIR resulted in a significantly
reduced proliferation rate, whereas treatment with XAV did not
(Figure 3B). The expression of Ki67 in CHIR-treated hNPCs was
37.3± 3.1% of that found in control counterparts (p< 0.01,>50
cells/experiment, n = 3/line, 4 hNPC lines). Following the same
experimental setup of a 7 days-long treatment with CHIR or XAV,
we carried out a complementary survival assay, in which hNPCs
were first seeded at low densities in Matrigel-coated polystyrene
wells, then submitted to the treatment, and finally harvested.
The total cell count at day 0 before seeding was compared to
the total cell count per well at the end of treatment at day
7 (Figure 3C). The results show that CHIR induces a robust
reduction in cell survival (p < 0.01), and XAV a more modest
but still significant reduction too (p < 0.05). Taken together,
the data shown in Figures 2, 3 suggest that CHIR may act as
a pro-neural agent in hNPCs, increasing neural differentiation
and reducing proliferation, but at the same time it might be
toxic to cells. In contrast, XAV acts as an anti-neurogenic agent,
without significantly altering the cell proliferation rate and is
less toxic at the same concentration in vitro. Given these results,
we suggest that differentiation protocols including CHIR or
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FIGURE 4 | Neuronal differentiation of hNPCs treated with Wnt modulators. (A) Representative images of fixed hNPCs-derived neurons after 30 days of neuronal
differentiation, immunostained for MAP2 (green) and GFAP (red). Top row: full field of view. Bottom row: enhanced detail of a seeded neurosphere with MAP2 and
GFAP positive cells protruding outward. Neuronal differentiation was induced by detaching hNPCs and re-seeding neurosphere onto poly-D-lysine/laminin coated
glass coverslips. Cells were grown in neural differentiation medium (NDM) including BDNF, GDNF, and NT-3 (see “Materials and Methods” section). (B) Quantification
of MAP2 and GFAP immunostaining as shown in panel (A), following 30 days on neuronal differentiation in control conditions (gray bars), or under treatment with
3 µM CHIR (white bars) or XAV (black bars). Experiments were repeated three times in all 4 hNPC lines. Values are shown as mean ± SEM, relative to control.
*p < 0.05, ANOVA. (C) Morphological assessment of neuronal differentiation (see also Figures 2B,C). The soma area (left) and the perimeter (right) of living cells was
quantified in control conditions (gray bars), or after treatment with 3 µM CHIR (white bars) or XAV (black bars). Experiments were repeated three times in all 4 hNPC
lines, 3 random fields were imaged in each experiment, >50 cells were analyzed in each field. Values are shown as mean ± SEM, relative to control. *p < 0.05;
**p < 0.01, ANOVA.
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XAV should include tests addressing possible cytotoxicity by
these compounds.

Effect of Wnt Modulators on Neuronal
Differentiation of hNPCs
The possible pro- and anti-neural effects of 2–7 days of
treatment with CHIR and XAV on self-renewing hNPCs might
be interpreted as the net effect when weighing their tendency
to remain in their developmental state on one hand, against
the ability of these drugs to effectively induce a developmental
change on the other. Therefore, we induced neuronal maturation
of hNPCs for 30 days, by removing bFGF and adding neuronal
growth factors (Figure 1A), previously shown to guide hESC
and hNPC differentiation into mature glutamatergic neurons
(Telias et al., 2013, 2015a). Neuronal differentiation medium,
pro-neural growth factors, and Wnt manipulators were refreshed
every 3 days. At the end of the 30 days process, sample cultures
were fixed and immune-stained with anti-MAP2 and anti-GFAP
antibodies (Figure 4A). We then quantified the relative amount
of MAP2 and GFAP fluorescence in all conditions (Telias et al.,
2013, 2015b), for all four cell lines employed in the study.
Our results show that 30 days of neuronal differentiation in
the presence of CHIR did not significantly increase the levels
of MAP2 or GFAP above control counterparts (Figure 4B),
but XAV treatment significantly reduced the expression of both
markers (MAP2 64.5 ± 5.6% of control, GFAP 75.2 ± 4.6,
p < 0.05, >50 cells/experiment, n = 3/line, 4 hNPC lines).
Employing the same live-cell imaging-based morphological
assessment of neural differentiation as shown in Figure 2, we
found that treatment with CHIR did not significantly affect
the area of somata (135.6 ± 13.7% of control, p > 0.05, >50
cells/experiment, n = 3/line, 4 hNPC lines, Figure 4C), but
significantly increased their perimeter, reflecting the increase
in projection number and length (131.5 ± 9.8% of control,
p < 0.05). Conversely, XAV robustly reduced both the soma
area and the total perimeter of cells (area: 31.7 ± 11.4% of
control; perimeter: 38.8 ± 6.2% of control, p < 0.01). These
results confirm the neurogenic effect of CHIR and the anti-
neurogenic effect of XAV during the time-course of neuronal
differentiation, as expected.

DISCUSSION AND CONCLUSION

In this report we investigated the effects of Wnt modulation
on the neural status and neuronal differentiation of hNPCs
derived from hESCs. The Wnt activator CHIR and the Wnt
inhibitor XAV were tested on self-renewable hNPCs, without
inducing neuronal differentiation, in two modalities: after only
48 h of single treatment, and after 7 days of continuous
treatment. We observed that the Wnt activator CHIR was able
to induce a more neuronal-like morphology in these cells,
against the presence of bFGF which promotes self-renewal
and delays neural progression. Once neuronal maturation was
induced by removing bFGF and changing cell growing conditions
to those promoting neuronal differentiation, CHIR modestly
enhanced neuronal fate determination, in synergism with the

effects of BDNF, GDNF, and NT-3. We conclude that, as
expected (Bengoa-Vergniory and Kypta, 2015), Wnt activation
working via enhancement of β-catenin activity, seems to promote
neuralization of hNPCs.

Counterpart experiments using the Wnt inhibitor XAV
showed, as expected, the opposite effect. In the presence of
bFGF, stable hNPCs treated with XAV adopted a morphology
more reminiscent of undifferentiated hESCs or epithelial
cells, lacking membrane projections or spindle-like somata,
characteristic of hNPCs, neuroblasts and early neurons.
Whereas XAV induced de-differentiation of hNPCs back to
hESCs, or trans-differentiation into endoderm- o mesoderm-
like lineages, is out of the scope of this study. Induction
of neuronal differentiation of hNPCs for 30 days in the
presence of XAV resulted in significantly reduced levels
of MAP2 and GFAP expression, and in cells lacking any
microstructure identifiable as neuronal, including neurites
or axons. In line with previous knowledge (Bengoa-
Vergniory and Kypta, 2015), we conclude that inhibition
of Wnt prevents neuronal maturation of hNPCs despite
the presence of neuronal growth factors that favor in vitro
generation of neurons.

Taking advantage of our in vitro drug screening platform of
self-renewable hNPCs, we also asked whether CHIR or XAV
might be cytotoxic, by measuring cell proliferation and survival.
Both drugs were used in this study at the same concentration or
lower as in similar studies employing human or murine ESCs,
hiPSCs and other types of stem cells (De Kumar et al., 2017;
Malleske et al., 2018; Shafa et al., 2018; Gomez et al., 2019; Hamad
et al., 2019; Qiu et al., 2019; Shin et al., 2019; Almasoud et al.,
2020; Bataille et al., 2020; Bejoy et al., 2020; Govarthanan et al.,
2020; Han et al., 2020; Kanagaki et al., 2020; Leigh et al., 2020;
Yang J. et al., 2020; Yang Y. et al., 2020; Ren et al., 2021; Wang
et al., 2021). When stem cells differentiate into more mature cell
types, their proliferation potential is gradually reduced, until cells
reach a post-mitotic fate. In addition, cells that fail to differentiate
usually die and are lost with subsequent medium changes.
Therefore, it is no surprise that most chemically defined neural
and neuronal differentiation protocols result in cultures with far
less cells than the original numbers of precursors present at the
beginning of the process. However, in our hands, we observed
a reduction of ∼70% in proliferation and ∼80% in survival
of hNPCs when treated with CHIR for 7 days, suggesting that
CHIR might be toxic to these cells. Despite the growing number
of studies in recent years utilizing CHIR to induce neuronal
differentiation, a systematic study of its potential cytotoxicity is
still lacking, and only two studies addressed this question using
different cellular paradigms and readouts. Naujok et al. (2014),
using undifferentiated mouse ESCs, showed that a treatment of
3 days with 2.5 µM CHIR reduced cell viability by ∼25%, and
increasing CHIR concentration to 5 µM or more, reduced cell
viability by>50%. Tu et al. (2017), employing hiPSCs, observed a
pro-apoptotic synergistic effect of 8 µM CHIR and different thiol-
containing antioxidants, that are otherwise non-toxic when GSK-
3β is not being inhibited. A comparison between these studies
and ours seems to suggest that CHIR toxicity increases with more
advanced differentiation of stem cells, but the scarcity of similar
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studies and the different conditions under which each study
conducted its measurements preclude the drawing of meaningful
conclusions. In any case, we suggest that all studies using CHIR
as an inducer of neural or neuronal differentiation should also
include direct or indirect measurements of proliferation, survival,
apoptosis, and cell viability.

Finally, we should mention that studies using human stem
cells, both hESCs and hiPSCs, seem to confirm CHIR’s role in
promoting neuronal differentiation (Li et al., 2011; Chambers
et al., 2012; Denham et al., 2012; Esfandiari et al., 2012;
Titmarsh et al., 2012), similar to one study conducted in iPSCs
derived from monkeys (Xi et al., 2012). However, in rodent-
based models, this was inconsistent. Two studies reported that
in rat-derived ESCs and in MEFs, CHIR promoted neural
differentiation similar to the human models (Peng et al., 2013;
Cheng et al., 2014), but two other studies showed that in
mouse ESCs CHIR inhibits neural differentiation, enhancing
pluripotency-maintenance mechanisms (Ye et al., 2012; Wu
et al., 2013). This discrepancy between human and murine
in vitro platforms, highlights the importance of the use of
human-based models in neurodevelopmental research and in
in vitro drug screening.
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