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A B S T R A C T   

White matter (WM) alterations have been identified as a relevant pathological feature of Huntington’s disease 
(HD). Increasing evidence suggests that WM changes in this disorder are due to alterations in myelin-associated 
biological processes. Multi-compartmental analysis of the complex gradient-echo MRI signal evolution in WM 
has been shown to quantify myelin in vivo, therefore pointing to the potential of this technique for the study of 
WM myelin changes in health and disease. This study first characterized the reproducibility of metrics derived 
from the complex multi-echo gradient-recalled echo (mGRE) signal across the corpus callosum in healthy par-
ticipants, finding highest reproducibility in the posterior callosal segment. Subsequently, the same analysis 
pipeline was applied in this callosal region in a sample of premanifest HD patients (n = 19) and age, sex and 
education matched healthy controls (n = 21). In particular, we focused on two myelin-associated derivatives: i. 
the myelin water signal fraction (fm), a parameter dependent on myelin content; and ii. The difference in fre-
quency between myelin and intra-axonal water pools (Δω), a parameter dependent on the ratio between the 
inner and the outer axonal radii. fm was found to be lower in HD patients (β = − 0.13, p = 0.03), while Δω did not 
show a group effect. Performance in tests of working memory, executive function, social cognition and move-
ment was also assessed, and a greater age-related decline in executive function was detected in HD patients (β =
− 0.06, p = 0.006), replicating previous evidence of executive dysfunction in HD. Finally, the correlation between 
fm, executive function, and proximity to disease onset was explored in patients, and a positive correlation be-
tween executive function and fm was detected (r = 0.542; p = 0.02). This study emphasises the potential of 
complex mGRE signal analysis for aiding understanding of HD pathogenesis and progression. Moreover, 
expanding on evidence from pathology and animal studies, it provides novel in vivo evidence supporting myelin 
breakdown as an early feature of HD.   

Abbreviations: CAG, cytosine, adenine, and guanine; CC, corpus callosum; CV, coefficient of variation; DBS, disease burden score; DCL, diagnostic confidence level; 
DT-MRI, diffusion tensor magnetic resonance imaging; FDM, frequency difference mapping; HD, Huntington’s disease; HTT, huntingtin; mGRE, multi-echo gradient- 
recalled echo; MoCA, Montreal Cognitive Assessment; MTR, magnetization transfer ratio; MW, myelin water; MWF, myelin water fraction; MWI, myelin water 
imaging; PCA, principal component analysis; PEBL, Psychology Experiment Building Language (PEBL); RF, radiofrequency; TE, echo time; TMS, total motor score; 
TOPFUK, Test of Premorbid Functioning - UK Version; TR, repetition time; UHDRS, Unified Huntington’s Disease Rating Scale; WAIS-R, Wechsler Adult Intelligence 
Scale-Revised; WM, white matter. 
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1. Introduction 

1.1. Why study myelin changes in Huntington’s disease? 

Huntington’s disease (HD) is a debilitating genetic disorder caused 
by an expansion of the CAG (cytosine, adenine, guanine) repeat within 
the huntingtin (HTT) gene, and characterised by motor, cognitive and 
psychiatric symptoms associated with neuropathological decline. 
Although clinical onset of the disease is formally identified with the 
development of movement symptoms (Nopoulos, 2016), critical patho-
genic events are present early on in the disease course (see Casella et al., 
2020 for a review). Accordingly, subtle and progressive white matter 
(WM) alterations (Dayalu and Albin, 2015), have been observed early in 
HD progression, before the onset of motor symptoms (Aylward et al., 
2011; Bourbon-Teles et al., 2019; Ciarmiello et al., 2006; De Paepe et al., 
2019; Dumas et al., 2012; Faria et al., 2016; Gregory et al., 2018; 
McColgan et al., 2017; Paulsen et al., 2008; Ruocco et al., 2008; Shaffer 
et al., 2017; Tabrizi et al., 2009; Wu et al., 2017; Zhang et al., 2018). 

An increasing body of research suggests that WM changes in HD are 
due to changes in myelin-associated biological processes at the cellular 
and molecular level (Bardile et al., 2019; Gomez-Tortosa et al., 2001; 
Huang et al., 2015; Jin et al., 2015; Myers et al., 1991; Radulescu et al., 
2018; Teo et al., 2016; Yin et al., 2020) – for a critical review of such 
changes see Casella et al., (2020). Myelin, a multi-layered membrane 
sheath wrapping axons, is crucial for axonal structure and WM func-
tionality (Martenson, 1992). In HD, myelin changes are suggested to 
follow both a topologically selective and temporally specific degenera-
tion, with early myelinated fibres being the most susceptible to, and the 
first to be affected by, myelin breakdown (Bartzokis et al., 1999, 2007; 
Dumas et al., 2012; Faria et al., 2016; Phillips et al., 2013; Tabrizi et al., 
2011). 

The assessment of early myelin changes in the HD brain is therefore 
of fundamental importance for the understanding of disease pathogen-
esis and progression. Notably, as no disease-modifying treatment 
currently exists for HD, understanding the biological underpinning of 
HD-associated WM changes may prove useful for the identification of 
disease-related biomarkers, and for measuring responsiveness to phar-
maceutical and other therapeutic approaches. Critically, given the cer-
tainty of onset in those that inherit the HD mutation, we can examine 
HD-associated myelin-related changes from the earliest, premanifest 
disease stages, with the potential to identify novel treatment targets for 
delaying disease onset. 

1.2. Probing myelin changes in the HD brain with a multi-echo gradient- 
recalled echo (mGRE) sequence 

Quantitative MRI of myelin affords valuable insight into myelin al-
terations and is thus of particular interest in the study of myelin-related 
disorders. Most neuroimaging studies that have quantified WM tissue 
properties in HD have used diffusion tensor magnetic resonance imaging 
(DT-MRI) (see Casella et al. 2020 for a review). However, while sensi-
tive, DT-MRI measures are not specific to WM sub-compartments, 
challenging the interpretation of any observed change in these indices 
(Beaulieu, 2002; De Santis et al., 2014; Wheeler-Kingshott and Cer-
cignani, 2009). 

Other MRI techniques have the promise to provide much more 
myelin-specific information (MacKay and Laule, 2016). For example, 
myelin water imaging (MWI) quantifies the fraction of the faster 
decaying signal from water trapped between myelin lipid bilayers 
(MacKay et al., 1994), the so-called myelin water fraction (MWF). MWF 
has a good correlation with histological measurements of myelin, 
demonstrating its potential as an in vivo myelin marker (Laule et al., 
2004, 2006; Webb et al., 2003). MWI techniques are typically based on 
spin-echo (MacKay et al., 1994) or mGRE sequences (Du et al., 2007). 
Interestingly, mGRE enables further characterisation of the myelin 
sheath by exploring its interaction with the magnetic field B0, which is 

suggestively dependent on the g-ratio (i.e. the ratio of the inner-to-outer 
diameter of a myelinated axon) (Wharton and Bowtell, 2012). 

A plethora of studies have demonstrated the non-mono-exponential 
nature of mGRE signal evolution with echo time (TE) in WM (e.g. Sati 
et al., 2013; Wharton and Bowtell, 2012, 2013), arising from sub-voxel 
microstructure, with distinct signal components originating from water 
confined to the myelin, intra-axonal and extra-axonal water pools 
(Cronin et al., 2017; Nam et al., 2015b; Nunes et al., 2017; Sati et al., 
2013; Tendler and Bowtell, 2019; Thapaliya et al., 2018; Wharton and 
Bowtell, 2012). As a result of the rapid T2* decay of the myelin water 
signal, the frequency of the total signal changes with TE, producing a 
local, microstructure-dependent contribution to the signal phase. 
However, in order to uncover the specific effects of microstructure on 
phase signal evolution, it is necessary to remove TE-dependent signal 
inhomogeneities resulting from non-local field variation, together with 
other non-TE-dependent phase changes, such as those due to radio-
frequency interaction with the tissue (Schweser et al., 2011). 

For this purpose, frequency difference mapping (FDM) has been 
presented recently as a phase-processing technique (Kleban et al., 2021; 
Sati et al., 2013; Schweser et al., 2011; Tendler and Bowtell, 2019; van 
Gelderen et al., 2012; Wharton and Bowtell, 2013). FDM is performed by 
comparing frequency maps acquired at short and long TEs so as to yield 
local frequency difference values which depend solely upon the under-
lying tissue microstructure, and in particular upon the local nerve fibre 
orientation with respect to the applied magnetic field. Critically, since 
both compartmentalization and myelination are prerequisites for the 
generation of frequency differences, FDM has great potential for the 
study of myelin changes in WM (Li et al., 2016; Wisnieff et al., 2015). 

The aim of the present study was to exploit, for the first time in the 
HD literature, the sensitivity of the complex mGRE signal to WM 
microstructure, and particularly to myelin content, to assess callosal 
myelin changes at the premanifest stage of the disease. The corpus cal-
losum (CC) is the largest WM fibre tract in the brain and carries infor-
mation between the hemispheres; additionally, this tract plays an 
integral role in relaying sensory, motor and cognitive information be-
tween homologous cortical regions (Aboitiz et al., 1992), and provides 
vital connections to cortical areas known to be affected in HD (Crawford 
et al., 2013). Crucially, given its perpendicular orientation with respect 
to the B0 field, as a ‘proof of concept’ of the utility of the FDM approach 
in HD, the CC is a natural choice. Investigating this tract indeed afforded 
the largest possible frequency offsets in the myelin and axonal com-
partments, thus giving the most marked frequency difference ‘signature’ 
of myelin (Sati et al., 2013; Wharton and Bowtell, 2012; Yablonskiy 
et al., 2014). 

Previous evidence from DT-MRI and volumetric studies has shown 
that changes in macro- and microstructure are detectable in the CC early 
in the disease course (Crawford et al., 2013; Di Paola et al., 2012, 2014; 
Phillips et al., 2013). The aim of the present work was to provide novel 
evidence on callosal changes in HD, and specifically to move beyond the 
existing literature by employing ultra-high field susceptibility mea-
surements in order to afford a more biologically-meaningful interpre-
tation of microstructure changes in this tract. Importantly, scanning 
participants at ultra-high field strength (i.e., 7 T) afforded higher signal- 
to-noise ratio (SNR) and signal contrast (MacKay and Laule, 2016) per 
unit time, compared to more commonly-available field strengths (e.g. 3 
T). 

Specifically, we sought to: i. establish the reliability of this method 
by investigating the anatomical variability in the reproducibility of FDM 
across the callosum at 7 T; ii. compare two myelin-related parameters 
between premanifest HD patients and healthy controls; and iii. assess 
brain-function relationships in patients by exploring correlations be-
tween myelin content and cognitive function, as well as proximity to 
disease onset. The two myelin-sensitive metrics we assessed were: i. the 
myelin water signal fraction (fm) and ii. the difference in frequency 
offsets between myelin water pool and axonal water pool (Δω). The 
former is linked to the myelin volume fraction and may be used as a 
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proxy for tissue myelin content (Laule et al., 2008; Li et al., 2015); the 
latter depends on the magnetic susceptibility difference and on the g- 
ratio, which is the ratio of the inner to outer diameter of myelinated 
axons (Wharton and Bowtell, 2012). Cognitive tests were selected in 
order to capture functioning across executive functions, working mem-
ory, social cognition and motor performance (Table 5), as these repre-
sent the earliest cognitive indicators of HD (Paulsen, 2011), and 
impaired performance in these domains has been associated with cal-
losal microstructure changes (Kennedy and Raz, 2009; Lenzi et al., 2007; 
McDonald et al., 2018). 

2. Materials and methods 

2.1. Subjects  

• Reproducibility study 

To investigate the anatomical variability in the precision of the 
complex mGRE signal and the subsequent multi-compartmental analysis 
across the CC, six healthy subjects without known neurological or psy-
chiatric conditions (3 female, 26–33 years-old) were scanned five times 
over a two-week period each. The study was approved by the Cardiff 
University School of Psychology Ethics Committee and written informed 
consent was obtained from all participants.  

• HD study 

For the assessment of callosal myelin content in premanifest HD, MRI 
scans and cognitive tests were performed on 19 premanifest HD patients 
and 21 age, sex, and education matched healthy controls (Table 1). The 
study was performed with ethics approval by the local National Health 
Service (NHS) Research Ethics Committee (Wales REC 5 18/WA/0172); 
all participants provided written informed consent. 

HD patients were recruited from the Cardiff HD Research and Man-
agement clinic, the Bristol Brain Centre at Southmead Hospital, and the 
Birmingham HD clinic at the Birmingham and Solihull NHS Trust. 
Healthy controls were recruited from Cardiff University, the School of 
Psychology community panel, and from patients’ spouses or family 
members. 

In order to take part in the study, HD carriers had to be at the pre-
manifest disease stage, and hence have no motor diagnosis, and to be 
enrolled in the EHDN Registry/ENROLL study (NCT01574053, htt 
ps://enroll-hd.org). The progression of symptoms in ENROLL-HD par-
ticipants is monitored longitudinally. As such, a full clinical dataset 
including medical history is available for each research participant, and 
some of these data were used for this study. 

Table 1 summarizes information about demographic variables and 
performance in the Montreal Cognitive Assessment (MoCA) (Nasreddine 
et al., 2005) and in the Test of Premorbid Functioning - UK Version 
(TOPF-UK) for patients and controls. Although the two groups did not 
differ significantly in age, MoCA score, or TOPF-UK IQ, controls were on 

average slightly older and had a slightly higher IQ. Table 2 summarizes 
patients’ background clinical characteristics. Three individuals with 
CAG repeats of 37 (n = 1) and 38 (n = 2) were included in the current 
study. Although these individuals can be considered “affected”, they 
may have a lower risk of becoming symptomatic within their life span. 
Based on total motor scores (TMS), all patients were at the premanifest 
disease stage. Based on diagnostic confidence level scores (DCL), four 
patients presented some motor abnormalities, but none of them pre-
sented unequivocal motor signs of HD. Table 3 summarizes information 
about patients’ medication. 

2.2. MRI data acquisition and processing  

• Imaging protocol 

Complex multi-echo gradient-recalled echo (mGRE) data were ac-
quired on a whole-body 7 T research MR-system (Siemens Healthcare 
GmbH, Erlangen, Germany) equipped with a 32-channel head receive/ 
volume transmit coil (Nova Medical). 

By using a prototype mGRE sequence, a single mid-sagittal 5 mm- 
thick slice was acquired, with in-plane field of view and resolution of 
256 × 256 mm2 and 1 × 1 mm2, respectively. Acquiring a relatively 
thick slice afforded higher SNR and greater robustness in terms of slice 
misalignments across scans. The first echo time, echo spacing, and 
repetition time (TR) were set to TE1/ΔTE/TR = 1.62/1.23/100 ms, the 
flip-angle of the radiofrequency excitation pulse was 15̊ and a total of 25 
bipolar gradient echoes were acquired. Specifically, we acquired this 20 
times, with read gradient polarities inverted half way through, with a 
total acquisition time of 8 min and 32 s. 

Table 2 
Background clinical information of the patients’ cohort. CAG = cytosine, 
adenine, and guanine repeat size. DBS = disease burden score, a measure of 
proximity to clinical onset of the disease (Tabrizi et al., 2012), calculated as 
follows: DBS = age × (CAG-35.5); the higher the DBS, the closer the patient’s 
proximity to disease onset. TMS = Total Motor Score out of 124 from the Unified 
Huntington’s Disease Rating Scale (UHDRS) Motor Diagnostic Confidence 
(Motor) – the higher the score stands for the higher the motor impairment. DCL 
= diagnostic confidence level, asks whether the participant “meets the opera-
tional definition of the unequivocal presence of an otherwise unexplained 
extrapyramidal movement disorder in a subject at risk for HD” (normal/no ab-
normalities = 0, non-specific motor abnormalities = 1, motor abnormalities that 
may be signs of HD = 2, motor abnormalities that are likely signs of HD = 3, 
motor abnormalities that are unequivocal signs of HD = 4).  

CAG (SD, 
range) 

Mean DBS (SD, 
range) 

Mean TMS (SD, 
range) 

Mean DCL (SD, 
range) 

41.3 (2.14, 
37–45) 

236.15 (84.52, 
80–450) 

3.625 (5.11, 0–18) 0.875 (1.31, 0–3)  

Table 3 
Information about patients’ medication. Out of the 19 patients we assessed, 11 
had been on stable medication for four weeks prior to taking part in the study.  

Patient Medication 

1 Sumatriptan 10 g, Ventolin 400 mg, Mirtazapine 15 mg 
2 Zolmitriptan, Loratadine 
3 Ethinylestradiol 30mcg, Trimethoprim 400 mg 
4 Ibuprofen 10 g, Paracetamol 10 g 
5 Depomedrone + lidocaine 40 mg/ml 
6 Paracetamol 10 g, Mebeverine 405 mg, Prochlorperazine 15 mg 
7 Symbicort 10 g, Ventolin 10 g, Stemetil 10 g 
8 Tamoxifen 20 mg, Venlafaxine 150 mg, Migraleve 10 g, Paracetamol 1000 

mg, Bisoprolol 5 mg 
9 Oxybutynin 1 mg, Cerazette 10 g, Amitriptyline 10 mg 
10 Symbicort 10 g, Medroxyprogesterone 10 mg 
11 Citalopram 30 mg, Aspirin 75 mg, Nasonex, Topamax 50 mg, Zopiclone 

7.5 mg  

Table 1 
Summary of participants’ demographic and clinical background information. 
Age is displayed in years. MoCA = Montreal Cognitive Assessment out of 30; the 
higher the score the better the performance. TOPF-UK IQ = verbal IQ estimate 
based on the Test of Premorbid Functioning, UK version.  

Group Gender 
male/female 
(%) 

Mean age 
(SD, range) 

Mean MoCA 
score (SD, 
range) 

Mean TOPF-UK 
IQ (SD, range) 

HD (n =
19) 

12(63.15)/7 
(36.85) 

41.61 
(13.1, 
21–70) 

27.82 (2.29, 
24–30) 

117.19 (11.58, 
98–137.4) 

Controls (n 
= 21) 

10(47.6)/11 
(52.4) 

45.14 
(12.5, 
27–71) 

28.16 (2.00, 
26–30) 

123.42 (7.85, 
109–131.9)  
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• Pre-processing steps 

The complex data were reconstructed per receive channel, followed 
by a complex multiplication of signals acquired with opposite read- 
gradient-polarities, in order to remove phase shift between adjacent 
echoes (Kleban et al., 2021). Image-based coil-sensitivity-estimation 
was then used to perform coil combination (Bydder et al., 2002; Roemer 
et al., 1990). Frequency difference maps (FDM) were calculated from the 
phase data to correct for the RF-related phase offsets and the effects of 
the non-local B0 field inhomogeneities (Kleban et al., 2021; Tendler and 
Bowtell, 2019). Finally, a 3rd degree spatial polynomial was fitted to the 
FDM data at each echo to correct for the residual eddy current effects. 
Fig. 1 summarises the pre-processing steps. Additional details on pre- 
processing can be found in the Appendix.  

• Signal analysis 

For each scan we manually segmented the corpus callosum from a 
magnitude mGRE image acquired at TE = 15 ms and further parcellated 
it into anterior, middle and posterior portions as shown in Fig. 2. 
Magnitude and FDM data were averaged over each callosal segment. 

FDM and magnitude signal evolution from each callosal segment 
were modelled using a three-pool-model of complex signal evolution 
(Fig. 3a), where myelin water, intra-axonal and extra-axonal compart-
ments each have different signal amplitudes, decay rates, and frequency 
offsets (Cronin et al., 2017; Nam et al., 2015b; Nunes et al., 2017; Sati 
et al., 2013; Tendler and Bowtell, 2019; Thapaliya et al., 2018; Wharton 
and Bowtell, 2013): 

S(t) = Sa(t) + Se(t) + Sm(t) ∼ fa⋅eωa te− R*
2,a t

+ fe⋅e− R*
2,e t

+ fm⋅eωm te− R*
2,m t

.#

(1) 

Here, a, e, and m denote intra-, extra-axonal and myelin water and 
the complex mGRE signal S(t) is a superposition of their signals; f are the 
signal fractions, ω are the mean frequency offsets to the extra-axonal 
compartment, and R*

2 are the transverse relaxation rates. 
By including the frequency offset characteristics of the different 

water compartments (Sati et al., 2013; Wharton and Bowtell, 2012), this 
model offers reliable myelin water estimation (Nam et al., 2015b; Sati 
et al., 2013; van Gelderen et al., 2012). Furthermore, previous research 
has suggested that ωm and ωa may both depend on the g-ratio (Wharton 
and Bowtell, 2012). We represent the dependence of the frequency offset 
Δω = ωm − ωa on the g-ratio in Fig. 3b, while the relationship between 
the myelin water signal and myelin content is shown in Fig. 3c. 

R*
2-values of the slow-decaying intra-axonal signal were constrained 

to 0 because of relatively low maximum TE (31 ms). This constraint 
helped to reduce the effect of the limited number of long TEs on the 
value estimation uncertainty at a cost of the potential under-/over-
estimation of the intra-/extra-axonal water signal fractions, respec-
tively. Non-linear least-squares fitting was performed with initial 
parameter estimates and fitting boundaries based on previous literature 
(Sati et al., 2013; Tendler and Bowtell, 2019; Thapaliya et al., 2018; 
Wharton and Bowtell, 2012, 2013) (Table 4). 

Pre-processing and signal analysis were performed in Matlab (Mat-
lab, The Mathworks, Natick, MA). 

2.3. Cognitive tests 

Cognitive performance was assessed in premanifest HD patients and 
age, sex and education matched healthy controls in the following tests: 
(1) the n-back task (Kirchner, 1958); (2) the digit span test from the 
Wechsler Adult Intelligence Scale-Revised (WAIS-R) (Wechsler, 1997); 
(3) the visual patterns test (Della Sala et al., 1997); (4) the Reading the 
Mind in the Eyes test (Baron-Cohen et al., 2001), hereafter referred to as 
the eyes test; and (5) the finger tapping task (Freeman, 1940). Tests (3) 
and (4) were administered as paper and pencil tests, tests (1), (2), (5), 
and (6) by using the computerized version provided by the Psychology 
Experiment Building Language (PEBL) Test Battery (Mueller and Piper, 
2014). Overall, we obtained a total of 6 cognitive outcome measures, 
which are summarised in Table 5, together with a short description of 
each task. 

2.4. Statistical analysis 

We selected fm, ωm, ωa, and Δω = ωm − ωa obtained from mGRE 
complex signal analysis to perform further statistical analyses, as these 
metrics may reflect myelin changes in WM (see diagrams in Fig. 3bc).  

• Reproducibility study 

To assess the test–retest reproducibility of the data, we obtained the 
Fréchet distance (Fréchet, 1957) between FDM curves to measure their 
similarity. This method takes into account the location and ordering of 
points along the curves. Specifically, given two curves, Q and P, the 
Fréchet distance is defined as the minimum cord-length sufficient to join 
a point traveling forward along P and one traveling forward along Q. 
Furthermore, the coefficients of variation (CVs, the ratio of the standard 
deviation to the mean) across the 5 visits were computed for fm, ωa,m, 
and Δω for each participant, for each segment. Finally, we used the R 
package cvequality (Version 0.1.3, Marwick and Krishnamoorthy 2019) 
to compute the ‘modified signed-likelihood ratio test for equality of CVs’ 
(Krishnamoorthy and Lee, 2014). This allowed us to test for significant 
differences between the CVs across the three segments, for each metric.  

• HD study 

As greater measurement reproducibility was detected in the poste-
rior segment of the CC, this was chosen as the region of interest for the 
assessment of patient-control differences in callosal myelin content. Age, 
but not TOPF-UK IQ, was found to be significantly correlated with both 
fm and Δω. Hence age was included as a covariate in the analysis of 
group effects. Specifically, multiple regression analyses, assessing the 
effect of group, age, and a group-by-age interaction on fm and Δω, were 
run in order to assess whether these metrics could disentangle age- 

Fig. 2. Schematic representation of the callosal segmentation protocol. The CC 
was segmented into three equal portions. Abbreviations: A = anterior; P 
= posterior. 

Fig. 1. Schematic representation of the processing pipeline. FDM allowed removal of the RF-related phase offsets and linear effect of large-length-scale field per-
turbations, without perturbing the local non-mono-exponential WM signal. 
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related changes from pathologic HD-associated neurodegeneration. We 
performed regression diagnostics and examined QQ plots and outlier 
profiles to detect any values above or below the upper/lower boundary 
of 95% confidence intervals of the slope of the regression line. As a 
sanity check, we also confirmed our results by running robust linear 
regression analyses, using the lmRob R function from the robust package 
(Wang et al., 2009), which handles small sample sizes, skewed distri-
butions and outliers (Wilkinson, 1999). 

Principal component analysis (PCA) was employed to reduce the 
complexity of the cognitive data and hence the problem of multiple 
comparisons, as well as to increase experimental power. We examined 
potential confounding effects of age or TOPF-UK IQ on the extracted 
components. Age was included as a covariate in the model, which 
explored the effect of group, age, and a group-by-age interaction on the 
scores on the extracted components. We interpreted any significant ef-
fect by referring to the variables with significant component loadings, as 

Fig. 3. a. Schematic representation of the three-pool model for describing mGRE signal evolution in WM fibres perpendicular to B0. The signal is modelled as a 
superposition of complex myelin, intra- and extra-axonal water signals. b. Schematic representation of the relationship between g-ratio and the frequency offset 
between myelin and axonal water pools. An increase in g-ratio will be reflected by a decrease in Δω. c. Schematic representation of the relationship between the 
myelin water fraction and the myelin fraction. Such relationship highlights the potential of fm as in vivo myelin marker. 

Table 4 
Parameter values (initial and range) used in non-linear least squares fitting. Choice of fitting boundaries was based on previous literature (Sati et al., 2013; Tendler and 
Bowtell, 2019; Thapaliya et al., 2017; Wharton and Bowtell, 2012, 2013).  

Parameter fm fa fe ωa/2π (Hz) ωm/2π (Hz) R*
2,a(s− 1)  R*

2,m(s− 1)  R*
2,e(s

− 1)  

Initial value 0.5 0.5 0.5 − 8 30 0 150 25 
Minimum value 0 0 0 − 30 0 0 50 0 
Maximum value 1 1 1 0 50 0 300 100  
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highlighted in bold in Table 7. 
As a significant group effect was detected on fm, Spearman’s rho 

correlation coefficients were calculated in patients between this metric, 
DBS, and scores on the first cognitive component (i.e., the component 
capturing the greatest amount of variability in the data), to assess 
disease-related brain-function relationships. We corrected for multiple 
comparisons with the Bonferroni correction with a family-wise alpha 
level of 5% (two-tailed). Significant correlations were further assessed 
with partial correlations to control for age as potentially mediating 
variable. 

All statistical analyses were carried out in R Statistical Software 
(Foundation for Statistical Computing, Vienna, Austria) and Matlab 
(Matlab, The Mathworks, Natick, MA). 

3. Results 

3.1. The precision of FDM in the corpus callosum is anatomically variable 

Fig. 4 shows an example of FDM and magnitude signal evolution as a 
function of TE, for anterior/middle/posterior callosal segments, and the 
corresponding images at TE = 15 ms for five visits. 

Analysis of curve similarity (Fig. 5) and fitting parameter repeat-
ability (Fig. 6, Table 6) suggested greater reproducibility of measures in 
the posterior callosal portion as compared to the anterior sections. This 
is shown by generally lower Fréchet distance values and by overall low 
coefficients of variation calculated for the fitting parameters, which 
ranged between 3.72% and 12.02%, in this region (Table 6). The 
modified signed-likelihood ratio test for equality of CVs confirmed that 
CVs in the posterior callosal segment were significantly smaller across 
all measures [fm: p = 0.02; ωa/2π (Hz): p < 0.001; ωm/2π (Hz): p <
0.001; Δω//2π) (Hz): p = 0.020]. 

3.2. Multi-compartment analysis reveals HD-related myelin changes in 
the posterior segment of the CC 

Fig. 7 plots the relationship between age and fm, and between age 
and Δω, split by group, in Segment 3 of the CC. Group and age explained 
45% of the variance in fm [R2 = 0.45, F(4, 35) = 7.18, p < 0.001]. 
Specifically, it was found that group significantly predicted fm values in 
this portion of the CC (β = -0.13, p = 0.03), as did age (β = -0.82, p <
0.001). However, we did not detect a significant group-by-age interac-
tion effect (β = 0.82, p = 0.08) (Fig. 7, left). Overall, HD patients pre-
sented a flatter age-related variation in this metric, with values being 

overall lower, especially in younger subjects. 
On the other hand, age and group explained 31% of the variance in 

Δω [R2 = 0.31, F(4, 35) = 3.87, p = 0.01]. Age was found to be a sig-
nificant predictor of variance in this metric (β = 0.55, p = 0.009), so that 
being older was associated with a greater Δω in this sample. However, 
belonging to the patient or the control group did not have a significant 
effect on this measure (β = 0.13, p = 0.8) (Fig. 7, right). 

3.3. Premanifest HD is associated with greater age-related decline in 
executive functions 

With PCA of cognitive test scores, the first three components 
explained 77.7% of the variability in performance in the administered 
tests (Fig. 8). The first component loaded positively on variables from 
the n-back task and was therefore summarized as an “executive func-
tion/updating” component. Principal component 2 (PC2) was summar-
ised as a “visuo-spatial motor function” component. Finally, PC3 was 
summarized as a “verbal working memory capacity” component as this 
loaded mostly on the digit span task. 

We detected no significant main effect of group (although a trend 
was present) (β = 1.9, p = 0.059) or age (β = 0.004, p = 0.815) on the 
executive function/updating component, but a significant interaction 
effect was present between group and age [β = − 0.06, p = 0.006, R2 =

0.52, F(3,28) = 10.6, p = 0.006], indicating that while younger HD 
patients present executive function scores which tend to overlap with 
those of healthy controls, the gap in performance between the two 
groups is significantly larger at later ages (Fig. 9, left). 

On the other hand, the main effects of group (β = − 1.71, p = 0.23) 
and age (β = − 0.036, p = 0.14), and the interaction effect between 
group and age (β = 0.03, p = 0.31) on the visuo-spatial motor function 
component were not significant [R2 = 0.09, F(3,28) = 0.94, p = 0.43]. 
Similarly, we did not detect a significant main effect of group (β = 0.03, 
p = 0.82) and age (β = 0.03, p = 0.15), nor a significant interaction 
effect between group and age (β = − 0.003, p = 0.91) on the verbal 
working memory capacity component [R2 = 0.14, F(3,28) = 1.63, p =
0.20]. 

3.4. Interindividual differences in myelin content in the posterior callosum 
relate to executive function but not to proximity to disease onset in 
premanifest HD patients 

We detected a significant positive correlation between the patients’ 
inter-individual variation in fm and their scores on the executive 

Table 5 
Cognitive outcome variables employed to assess patient-control differences in cognition. A short description of the task is provided, together with a list of outcome 
variables and cognitive domains assessed.  

Task Description Outcome variable Cognitive process assessed 

N-back (Kirchner, 
1958) 

For each letter presented in a sequence, subjects judge 
whether it matches the one presented ‘n’ items ago. 

Percentage of correct 
responses in the 1) 1-back 
and 2) 2-back condition. 

Encoding, temporary storage and updating of stored 
information with new upcoming information, inhibition 
of irrelevant items (Ecker et al., 2014; Rey-Mermet et al., 
2018). 

Digit span test from 
the WAIS-R ( 
Wechsler, 1997) 

Participants have to repeat a sequence of digits in the same 
order in which they were presented. The number of digits in 
each sequence is sequentially increased. 

Maximum span of digits 
recalled. 

Verbal working-memory capacity. 

Visual patterns test ( 
Della Sala et al., 
1997) 

Participants are shown a checkerboard-like grid, with the 
squares in the grid each randomly coloured. They are then 
shown a blank grid and are asked to reproduce each grid. The 
size of the grid is sequentially increased. 

Maximum grid size recalled 
correctly. 

Spatial working-memory capacity. 

Eyes test (Baron- 
Cohen et al., 2001) 

36 still pictures of the eye regions within faces expressing 
different emotional states are presented. Subjects are asked to 
match a list of provided emotional tags to the emotions 
displayed in the pictures. 

Number of emotional states 
correctly matched. 

Social cognition and mentalising. 

Finger tapping task ( 
Freeman, 1940) 

Participants are required to press a button on the keyboard as 
quickly as possible with the index finger of their dominant 
hand. 

Mean number of taps across 
3 trials. 

Motor speed.  
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component (r = 0.542, p = 0.02, corrected p = 0.04) (Fig. 9, right); 
although a positive trend remained, this relationship was no longer 
significant after partialling out age (r = 0.37, p = 0.13). Additionally, 
there was no association between inter-individual variation in fm and 
proximity to disease onset as measured with DBS (r = − 0.09, p = 0.686, 
corrected p = 1). 

4. Discussion 

4.1. Reproducibility of the mGRE signal across the CC 

The reproducibility of FDM evolution and 3-pool model derivatives 
in the CC was found vary according to anatomical location, with more 
precise fitting parameters in the posterior portion of the callosum. Lower 
reproducibility of the data in the anterior portions of the CC could be 
attributed to in-flow artifacts from the anterior cerebral artery (Nam 

et al., 2015a; Tendler and Bowtell, 2019). Potential solutions and their 
limitations have been discussed in previous work, such as the applica-
tion of flow saturation RF pulses to the inferior portion of the head (Nam 
et al., 2015a). 

The estimated fitting parameters for the intra-axonal and myelin 
water frequency offsets (− 7.9 to − 8.5 Hz and 27.1 to 37.4 Hz, respec-
tively) and the myelin water signal fraction (0.15 to 0.16) were 
consistent with previously reported values (Sati et al., 2013; Tendler and 
Bowtell, 2019; Thapaliya et al., 2018; Wharton and Bowtell, 2012). On 
the other hand, the relative signal fraction between intra- and extra- 
axonal compartments was lower than in other studies (Tendler and 
Bowtell, 2019). This could be attributed to the constraint we placed on 
the intra-axonal water R*

2 when modelling the data, which we intro-
duced in order to reduce the effect of the limited number of long TEs on 
the value estimation uncertainty. Please refer to Appendix B for 

Fig. 4. Example reproducibility data from one representative subject. The top image shows the callosal parcellation overlaid on a magnitude image; the plots show 
frequency difference and magnitude of signal as function of TE for anterior/middle/posterior callosal segments; corresponding frequency difference and magnitude 
images at TE = 15 ms for five visits are shown at the bottom. 
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Fig. 5. Assessment of the similarity of frequency difference curves. Top: Fréchet distance matrices from a representative participant for the three callosal segments. 
Bottom: Repeatability of frequency difference evolution across five visits for all subjects. 

Fig. 6. Fitting parameters estimated from the three-pool model, grouped for all subjects. Colours represent the three callosal segments (red/green/blue for anterior/ 
mid/posterior segments, respectively). The first plot shows signal fractions of myelin, intra-/extra-axonal water; the frequency offsets are displayed in the middle 
plot; the last plot shows the relation rates of myelin and extra-axonal water signals. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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simulations we conducted on the impact of setting R*
2,a = 0 on MW signal 

fraction values. Finally, slice positioning relative to the CC, and the 
subsequent ROI segmentation, may also have introduced some vari-
ability in test–retest scans signal and estimated parameters. 

4.2. Application of the 3-pool model to assess myelin content in 
premanifest HD 

We observed significantly lower fm values in premanifest HD patients 
compared to healthy controls, suggesting the presence of myelin 
impairment (Bartzokis et al., 2007). Previous animal studies have 

already shown a link between HD pathology and changes in myelin- 
associated biological processes at the cellular and molecular level 
(Bardile et al., 2019; Huang et al., 2015; Jin et al., 2015; Teo et al., 
2016). Crucially, however, previous in vivo investigations of WM 
changes in HD have predominantly employed indices from DT-MRI 
(Pierpaoli & Basser, 1996) or magnetization transfer ratio (MTR) im-
aging (Henkelman et al., 2001). These indices may be influenced by a 
multitude of processes affecting tissue microstructure and biochemistry 
(Beaulieu, 2002; De Santis et al., 2014; Harsan et al., 2006; Henkelman 
et al., 1993; Wheeler-Kingshott and Cercignani, 2009). In contrast, our 
study exploited FDM and a three-pool modelling of the mGRE signal to 
afford improved WM compartmental specificity, and to estimate fm as a 
marker of myelin content. Importantly, histological evidence shows that 
this metric is less sensitive to concomitant pathological processes such as 
inflammation (Gareau et al., 2000), suggesting that this may be a more 
specific measure of tissue myelination than other MRI-derived measures. 
Our results highlight the potential of fm in helping to better understand 
HD pathogenesis and progression, and to gain further insight into the 
biological basis of WM microstructural changes in the HD brain. Addi-
tionally, they suggest the presence of myelin breakdown as an early 
feature of HD progression and are consistent with evidence from a 
quantitative magnetisation transfer study (Bourbon-Teles et al., 2019), 
which demonstrated reductions in the macromolecular proton fraction - 
a myelin sensitive measure - in HD patients. 

In this study, we did not detect a group effect on Δω, while this 
parameter was shown to significantly increase with age. Based on the 
model proposed by Wharton and Bowtell (2012), this might reflect two 
processes: i. the g-ratio decreases with age; ii. the magnetic suscepti-
bility difference between the myelin sheath and the extra-axonal pool 
increases with age. The first suggestion contradicts previous studies 

Fig. 7. Top: Parcellation of segment 3 of the CC overlaid on a magnitude image; the same protocol as the one detailed in the reproducibility study section was 
utilised. Left: Regression plot showing the relationship between age and fm, split by group. Both age and group were significant predictors of variance in fm. No 
significant interaction effect was detected. Right: Regression plot showing the relationship between age and Δω, split by group. Age was a significant predictor in the 
model, while group did not significantly predict variance in this metric. No significant interaction effect was detected. HD data points are coloured by CAG repeat 
size: older HD carriers presented shorter CAG repeat mutation and a trend for a greater overlap in fm with values of age-matched healthy controls, indicating that CAG 
repeat size may directly affect myelin content in premanifest HD. 

Table 6 
Reproducibility of myelin water signal fraction (fm), frequency offsets of axonal 
(ωa/2π) and myelin (ωm/2π) water pools, and difference in frequency offsets 
between myelin and axonal water pools (Δω/2π)). Means, standard deviation 
(SD) and coefficients of variation (CV) are reported for each value, across the 
different segments.  

Metric Callosal segment Mean SD CV (%) 

fm Segment 1 0.15 0.08 49.14 
ωa/2π (Hz) − 8.5 2.0 24.84 
ωm/2π (Hz) 31.4 10.2 37.01 
Δω/2π (Hz) 39.9 7.95 23.02 
fm Segment 2 0.15 0.04 26.98 
ωa/2π (Hz) − 7.9 1.1 13.42 
ωm/2π (Hz) 27.1 4.4 16.60 
Δω/2π (Hz) 35.2 3.70 11.00 
fm Segment 3 0.16 0.02 12.02 
ωa/2π (Hz) − 8.5 0.6 7.07 
ωm/2π (Hz) 27.3 2.1 7.61 
Δω/2π (Hz) 35.8 1.80 5.10  
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showing g-ratio increases with age (Peters, 2009). However, as fibres 
with smaller diameters tend to have slightly lower g-ratios (Berthold 
et al., 1983), a selective loss of large-diameter axons would lead to an 
overall reduced voxel-averaged g-ratio (Cercignani et al., 2017). This 
scenario is a plausible explanation of our finding, as fibres in the pos-
terior portion of the CC are predominantly large and early myelinated 
(Aboitiz et al., 1992). Additionally, an increase in iron-containing glial 
cells in the surrounding extra-axonal space could result in the increase of 
the susceptibility difference between myelin sheath and the extra-axonal 
space (Xu et al., 2015). This is consistent with evidence showing that 

over the course of aging, iron accumulates in the brain (Connor et al., 
1990; Dexter et al., 1991; Jellinger et al., 1990; Zecca et al., 2004). 

With regards to the cognitive assessments, our results indicate that 
executive functions, and specifically the updating of relevant informa-
tion, tend to deteriorate to a larger extent with age in HD patients, 
compared to controls. Nevertheless, these results might have been 
confounded by stage of disease progression, as older participants pre-
sented a higher DBS. Understanding of the nature of cognitive deficits 
associated with HD pathogenesis and progression provide useful guid-
ance for future research into the efficacy of cognitive training and 

Fig. 8. PCA of the cognitive data with varimax rotation. Left: PCA scree plot. Right: Plot summarising how each variable is accounted for in every principal 
component. The absolute correlation coefficient is plotted. Colour intensity and the size of the circles are proportional to the loading. Three components explaining 
over 77% of the data variability were extracted. PC1 loaded on n-back task performance and was therefore summarized as “executive function” component; PC2 was 
summarized as “visuo-spatial motor function” component; PC3 loaded on digit span task performance and was therefore summarized as “working memory” 
component. 7 control cases did not complete all tests and were therefore excluded from the PCA. The final sample size for the PCA was n = 19 for the HD group and n 
= 14 for the control group. 

Fig. 9. Left: Relationship between executive function scores and age, in patients and controls. A significant interaction effect between group and age was detected, 
suggesting that the group difference in executive function scores is larger at later ages. HD data points are coloured by DBS. Older HD patients tend to be closer to 
disease onset, possibly confounding the effect of age on this measure. Right: Relationship between fm executive function scores and DBS in patients, Bonferroni- 
corrected. A significant positive correlation was found between fm and executive function scores. Colour intensity is proportional to the strength and direction of 
the correlation. * p < 0.05, ** p < 0.01, *** p < 0.001, Bonferroni-corrected. 

C. Casella et al.                                                                                                                                                                                                                                 



NeuroImage: Clinical 30 (2021) 102658

11

rehabilitation approaches in HD (Andrews et al., 2015). Our findings 
suggest that such approaches might be more effective early in the life-
time and in disease progression. 

In the present study, we also found that patients’ inter-individual 
variability in fm was positively associated with their scores on the ex-
ecutive/updating component. Although anterior, rather than posterior, 
callosal portions have been normally associated with frontal-lobe- 
mediated executive functions (e.g. Jokinen et al., 2007), posterior cal-
losal fibres are connected to posterior parietal areas of the brain 
(Goldstein et al., 2020); these areas have been associated with top-down 
modulation during inhibition and attention processes (Erickson et al., 
2009; Hopfinger et al., 2000), which are recruited during maintenance 
and updating of relevant information. It is therefore plausible that 
microstructural variation in this callosal segment may impact perfor-
mance in this cognitive domain. Additionally, although a positive trend 
remained, this relationship was no longer significant after partialling out 
age, stressing the important role of aging in both myelin content in the 
brain, and executive functioning (Grieve et al., 2007; Guttmann et al., 
1998; Lintl and Braak, 1983; Pakkenberg et al., 2003). Interestingly, we 
found no association between inter-individual variation in fm and 
proximity to disease onset as measured with DBS. This suggests that 
myelin differences may precede the onset of clinical symptoms in HD 
and may not directly relate to disease stages. 

4.3. Challenges to the interpretation of mGRE signal evolution 

In this work, the complex WM mGRE signal was modelled as a su-
perposition of three water signals which were assigned to the MW, intra- 
, and extra-axonal pools. Similar to previous work, the pool with the 
shortest T*

2 and the largest (positive) frequency offset was assigned to the 
myelin water (MW) pool. This representation assumes that chemical 
exchange between the MW pool and the intra-/extra-axonal water pools 
is negligibly small and that the myelin sheath is the dominant source of 
magnetic susceptibility effects in WM. 

However, it has previously been suggested that magnetisation ex-
change can affect the interpretation of tissue compartmentalisation from 
MR signals or NMR frequency in brain tissues (Shmueli et al., 2011; van 
Gelderen and Duyn, 2019). Other work has suggested that the presence 
of iron-rich oligodendrocytes and the geometry of axons may have an 
impact on compartmental frequency distributions and consequently on 
the MR signal (Xu et al., 2015, 2018). Additionally, a previous study 
performed MWI using T2-weighted techniques on a post-mortem brain 
before and after iron extraction by reductive dissolution and reported a 
26% reduction in the MW signal fraction (Birkl et al., 2019). Based on 
the reportedly excellent agreement between mGRE and T2-weighted 
MWI techniques at 3 T (Alonso-Ortiz et al., 2018b), it is plausible that 
iron deposition may have altered the MW signal fraction in our mGRE 
experiments at 7 T. Finally, the similarity between intra- and extra- 
axonal mGRE signal evolutions may further confound the accuracy of 
compartmentalisation, especially at lower magnetic fields and short 
echo times (Chan and Marques, 2020). Crucially, this work exploited 
ultra-high magnetic fields and this may have allowed a better separation 
between the intra- and extra-axonal signals (Alonso-Ortiz et al., 2018a). 
Nevertheless, simultaneous variation of multiple experimental param-
eters and additional information derived from other MRI contrasts may 
further improve mGRE signal interpretation (Chan and Marques, 2020; 
Kleban et al., 2020). 

5. Conclusions and future directions 

In summary the present study exploited, for the first time in HD 
research, the sensitivity of the 3-pool model analysis of the complex 
mGRE signal to quantify myelin changes in premanifest HD. Results 
stress the potential of this marker in helping to better understand HD 
pathogenesis and progression, and provide original in-vivo evidence for 

reductions in fm, a proxy MRI marker of myelin, in human premanifest 
HD. Expanding on evidence from pathology and animal studies, our 
results suggest that myelin breakdown is an early feature of HD pro-
gression, and lend supporting evidence to the progression model sug-
gesting that early myelinated fibres are affected by myelin breakdown 
early in the disease (Bartzokis et al., 2007). 

Our findings were based on a relatively small sample size and war-
rant replication in larger samples. In addition, three individuals with 
CAG repeats of 37 and 38 were included in the current study. Though 
these individuals can be considered “affected”, they may have a lower 
risk of becoming symptomatic within their life span, and some studies 
have chosen to exclude individuals with reduced disease penetrance (e. 
g. Rubinsztein et al., 1996). Although the aim of this study was to look at 
the premanifest, rather than symptomatic, stage of the disease, their 
inclusion in the current study may raise the possibility of Type II errors 
when generalizing to the wider population of individuals with HD. 
Though this did not seem to be the case in the present study as we did 
detect a group effect, future studies may want to replicate these results 
in a sample of premanifest HD patients with full disease penetrance. 
Finally, while it is tempting to assign, unequivocally, a one-to-one cor-
relation between changes in MRI signal and biological properties, and 
thus interpret these changes purely in terms of changes in myelination, 
these findings need to be interpreted with caution. For example, changes 
in iron content cannot be ruled out. 

Future studies should assess HD-related changes in fm longitudinally 
rather than cross-sectionally and investigate how these changes relate to 
clinical symptoms over time, to further understand the utility of this 
metric as a marker of early disease development and progression. 
Additionally, this study utilised a single-slice technique, and investi-
gated a small portion of the CC, thus limiting the assessment of global 
diffuse tissue damage. Of special interest for future investigations might 
be to increase brain coverage and assess how fm changes may differen-
tially impact early and later myelinating regions in the premanifest HD 
brain. With regards to the observed increase of Δω with age, MR axon 
radius mapping using diffusion MRI and ultra-strong gradients (Veraart 
et al., 2020, 2021) may help elucidate whether a selective loss of large- 
diameter axons is producing this effect. 
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Appendix A:. Details on mGRE signal pre-processing 

In this work the mGRE signal was acquired using bipolar gradient readouts with the polarity of the first echo inverted halfway through the number 
of repeats. We use ± sign to indicate where the polarity of the read gradient may affect the corresponding mGRE signal. 

The complex mGRE signal was reconstructed per receive channel k and gradient echo n at corresponding echo time TEn and can be represented as 
follows (Sati et al., 2013; Tendler and Bowtell, 2019; Thapaliya et al., 2018; Wharton and Bowtell, 2012; Nam et al., 2015a, 2015b; Kleban et al., 
2021): 

S±
n,k( r→,TEn) ∼ S0( r→)⋅eiΩ( r→)TEn ⋅eiϕ0,k( r→)⋅e±(− 1)niψn ⋅F( r→, TEn) (A.1) 

Fn = F( r→,TEn) represents the complex WM signal as a function of echo time, which in this work was modelled using a three-pool model. 
The exponentials preceding Fn in Eq. (A.1) reflect macroscopic spatio-temporal phase effects which contribute to the total complex mGRE signal 

and need to be addressed before Fn can be analysed (Lee et al., 2018; Sati et al., 2013; Tendler and Bowtell, 2019; Thapaliya et al., 2018; Wharton and 
Bowtell, 2013): 

1) The frequency Ω represents the effect of large-length-scale field perturbations; 2) The phase ϕ0,k describes collective phase offsets including 
those specific for each receiver channel; 3) The phase ψn highlights phase differences arising when signal from the same echo is acquired with opposite 
gradient polarities. 

We correct for the phase effects in following steps: 
The phase shifts ψn can be removed by multiplying S+

n,k by S−
n,k (Kleban et al. 2021): 

S+
n,k⋅S−

n,k ∼ S0,k( r→)
2⋅ei2ΩTEn ⋅ei2ϕ0,k ⋅F2

n (A.2) 

Remove phase offsets, particularly those varying between channels (Tendler and Bowtell, 2019; Kleban et al., 2021; Bydder et al., 2002): 
[
S+

n,k⋅S−
n,k

]′

=
S+

n,k⋅S−
n,k

S+
1,k⋅S−

1,k
⋅
⃒
⃒
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1,k⋅S−
1,k

⃒
⃒
⃒ ∼ S0,k( r→)

2ei2Ω(TEn)⋅
F2

n

F2
1

(A.3) 

This is the first step of frequency difference mapping which in this case also removes phase inconsistencies between the receive channels, so that 
the coil combination can be applied next. 

The signals from all receive channels are combined by calculating the sum of over the channels weighted by the channels’ sensitivity mk (Bydder 
et al., 2002; Roemer et al., 1990). 
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1

∑
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where mk was approximated from signal magnitude of the first echo: 

mk =
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The final step of FDM calculation aims to remove the effects of Ω (Tendler amd Bowtell, 2019; Kleban et al., 2021): 

S’’
n =

S’
n

[
S’

2

]n− 1 =

[
Fn⋅[F1]

n− 2

[F2]
n− 1

]2

, (A.7) 

which can be translated to frequency: 

FDMn =
arg

(
S’’

n

)

4π[n − 2]ΔTE
(A.8) 

As evident from Eq. (A.7), each echo contributes to the estimation of the frequency difference. 

Appendix B:. Simulations to address the impact of R*
2,a = 0 assumption on MW signal fraction 

We simulated the complex mGRE signal using a 3-pool model: 

S(t) = Sa(t) + Se(t) + Sm(t) ∼ fa⋅eωa te− R*
2,a t

+ fe⋅e− R*
2,e t

+ fm⋅eωm te− R*
2,m t

,# (B.1) 

and the signal parameters reported by Sati et al (2013), also listed in Table B1, unless stated otherwise. We then simulated two cases and varied: i. 
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the myelin water signal fraction, fm, from 0.1 to 0.2; or ii. the intra-axonal relaxation rate, R*
2,a, from 15 to 35 s− 1. Fig. 1(2)A and B show the frequency 

difference and the magnitude of the signal for each case, respectively. 
We then fitted the 3-pool model assuming R*

2,a = 0, to test the influence of this assumption on the estimated myelin water signal fraction. Fig. 1C 
shows the estimated MW signal fraction plotted against the input value. We also tested the effect of the assumption R*

2,a = R*
2,e in Fig. 1D. Finally, 

Fig. 2C shows MW signal fraction values estimated under the assumption of R*
2,a = 0 and plotted against the input R*

2,a-value. Colormaps in Figs. B1 and 
B2 reflect the variable input values for fm and R*

2,a, respectively. 
Overall, though a small bias can be observed in the estimated MW signal fractions for the given extra-axonal R2*, such bias is of the same 

magnitude for all input MW signal fractions and is smaller than the calculated CV values for this segment of the CC, suggesting that any bias introduced 
by possible differences in axonal R2* between groups is unlikely to have affected results in our study. 

Fig. B1. Frequency difference (A) and magnitude (B) were estimated from a complex signal, which was simulated for myelin water signal fraction, fm, ranging from 
0.1 to 0.2. Other parameters used to simulate the 3-pool complex signal are listed in Table 1. The colour bar corresponds to fm. The 3-pool model was then fitted for 
two assumptions: R*

2,a = 0 and R*
2,a = R*

2,e, and the estimated MW signal fraction values were plotted against the input values in (C) and (D), respectively. The red line 
represents the linear relationship between the estimated fm and the input fm, slopes and intercepts are indicated in the plots. 

Table B1 
Input parameters for the simulated signal. The MW signal fraction fm was varied from 0.1 to 0.2 for Fig. B1, and the intra-axonal relaxation rate was varied from 15 to 
35 s− 1 for Fig. B2.  

ωa[Hz]  ωm[Hz]  R*
2,m[s− 1]  R*

2,a[s− 1]  R*
2,e[s

− 1]  fa/f e  fm  

− 6 30 160 25 40 2/3  0.15  
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