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Abstract: The IP-based Ubiquitous Sensor Network (IP-USN) is an effort to build the 

“Internet of things”. By utilizing IP for low power networks, we can benefit from existing 

well established tools and technologies of IP networks. Along with many other unresolved 

issues, securing IP-USN is of great concern for researchers so that future market 

satisfaction and demands can be met. Without proper security measures, both reactive and 

proactive, it is hard to envisage an IP-USN realm. In this paper we present a design of an 

IDS (Intrusion Detection System) called RIDES (Robust Intrusion DEtection System) for 

IP-USN. RIDES is a hybrid intrusion detection system, which incorporates both Signature 

and Anomaly based intrusion detection components. For signature based intrusion 

detection this paper only discusses the implementation of distributed pattern matching 

algorithm with the help of signature-code, a dynamically created attack-signature 

identifier. Other aspects, such as creation of rules are not discussed. On the other hand, for 

anomaly based detection we propose a scoring classifier based on the SPC (Statistical 

Process Control) technique called CUSUM charts. We also investigate the settings and 

their effects on the performance of related parameters for both of the components. 
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1. Introduction  

 

The term “Ubiquitous Sensor Networks” (USN) is used to describe networks of smart sensor nodes 

capable of communicating wirelessly, and possessing limited computing power and storage capacity. 

USN can be used in a wide range of civilian and military fields, including environment and habitat 

monitoring, real-time healthcare, landmine detection, intelligent transport systems and so on [1]. 

Unfortunately, many of the current USN implementations use a proprietary suite of protocols which 

are specifically tailored for the environment under observation. Attaining interoperability among these 

various protocols is always desirable so that applications of one network paradigm can avail the 

services offered by other networks. Therefore, by empowering sensor nodes with IP (Internet Protocol) 

features we get a unified and simple naming and addressing hierarchy and consequently we obtain a 

certain level of interoperability among different sensor network standards. With the help of IP in 

sensor networks, we can also utilize the tools already available for configuring, managing, 

commissioning or accounting of the IP networks. Since the underlying protocols are based upon IP, 

designer of new sensor applications can use existing standards to speed up the design and development 

process. The network of IP enabled USN devices is usually termed as IP-USN (IP-based Ubiquitous 

Sensor Networks). 

One of the promising features of IP-USN is remote accessibility of sensor nodes. This enables 

remote monitoring and management of sensitive environments such as healthcare systems. Health care 

systems are connected to patients and monitor patient’s health, levels of medications and procedural 

outcomes. In such systems, it is not just sufficient to ensure confidentiality by encrypting the 

information sent out by the sensor nodes but it is also necessary to detect malicious or abnormal events 

in the system. Attacks and intrusions, for instance DoS (Denial of Service) or DDoS (Distributed 

DoS), against such systems may permit fatal damage to the health and safety of the patients. Such 

threats can be minimized by using firewalls and packet filtering. However, mechanisms that attempt to 

detect intrusions when occurred are also inevitable so that the intruder cannot damage the system for a 

long duration. This problem of detection is not specific to IP-USN. A wide variety of literature is 

available on intrusion detection for both IP and sensor networks. However, IP-USN devices supports 

broader range of applications, for example, a few of the implementations of IP-USN now have the 

support of embedded web services [2]. Any possible security holes in the implementation of such 

applications can be eliminated by updating the firmware of the device or by using any signature based 

IDS which knows about the pattern of the request required to exploit the bug. As updating firmware is 

not scalable, considering the large scale deployment of IP-USN, the later approach of signature-based 

IDS is an appealing solution.  

Moreover, other attacks which exploit the weak hardware of the sensor networks are also possible 

in IP-USN. For example, IP layer usually works with available transport layer protocol. A few of the 

IP-USN implementations, such as Arch Rock [3], provide standard TCP and UDP protocols as 

transport layer for IP-USN; so that one can make connection easily to a sensor node to fetch the 

readings. Due to three way handshake protocol of TCP, a well known SYN flood attack can be 

launched on TCP-enabled sensor nodes. Likewise, other well known attacks such as Smurf [4] and 

UDP flooding [5] are also possible in IP-based sensor networks. Both of these types of attacks appear 

in the top 10 list of threats published by KrCERT [6]. None of these attack types have ever been 
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addressed for sensor networks before. The question may arise here that why we cannot apply existing 

solutions of the aforementioned problems on IP-USN. It is so, because in IP-USN we have resource 

constrained devices and it is not an expedient decision to equip them with resource hungry intrusion 

detection schemes. Therefore, we need an IDS which is lightweight in terms of computation, 

communication and resources as well as able to detect new class of attacks possible in IP-USN 

environment. 

In this paper we propose a design of an IDS for IP-USN environment called RIDES (Robust 

Intrusion DEtection System). RIDES is a hybrid IDS which incorporates both Signature based and 

Anomaly based IDS [7]. Thus, it is capable of detecting a large number of anomalies and intrusions, 

which makes RIDES a robust intrusion detection system. We preferred hybrid architecture due to the 

fact that there is a class of attacks which requires only a small number of packets to subvert the victim, 

such as Ping of Death [8], Land [8] and so on. In such cases, anomaly-based IDS fails drastically with 

high false negatives or Type-II errors. In other words, anomaly based IDS are unable to detect single 

packet attacks. Therefore, we strengthen our architecture with signature based attack detection. 

However, it is unwise to equip sensor nodes with the resource hungry detection schemes because 

signature-based intrusion detection system demands sufficient storage to store the signatures, and high 

processing power to match the incoming packets with stored signatures. To overcome this problem, we 

propose a novel coding scheme so that signature based IDS can be implemented on resource 

constrained sensor nodes. On the other hand, for anomaly-based IDS we need a scheme which is 

lightweight and capable of detecting even a minor shift from the normal behavior. Unfortunately, the 

later requirement is a major cause of large number of false positives or Type-I errors. To cope with 

these two contradictory requirements we adapt an optimal system from control theory and based our 

anomaly detection algorithm on CUSUM control charts. We also used the sensitivity of CUSUM to 

build a scoring based classifier. In short, we can summarize our contributions as follows: 

 We accentuate the need of an IDS specifically tailored for IP-USN environment, 

 Identify possible attack models in IP-USN environment, 

 Introduce a dynamic creation of attack-signature identifier so that signature based IDS can be 

implemented on IP-USN, 

 Design an anomaly based IDS for IP-USN environment,  

 Provide evaluation results of both coding scheme and anomaly based IDS.  

The rest of the paper is organized as follows: Section 2 discusses the background and relevant work 

of IP-USN. Section 3 gives the details of the proposed architecture and related schemes. Section 4 

provides the evaluation results and finally Section 5 concludes our work. 

 

2. Background and Relevant Work 

 

2.1. IP-USN and Related Technologies 

 

So far, 6LoWPAN (IPv6 over Low power WPAN) [9] is the only standard implementation of IP-

USN. 6LoWPAN promises to transparently connect two different network paradigms, providing most 

of the advantages offered by the IP layer without forfeiting low-power operations of sensor networks. 
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As 6LoWPAN is a merger of 802.15.4 and IPv6, it inherently supports 81 to 93 octets MTU 

(Maximum Transmission Unit), depending upon link layer security parameters. This MTU is 

significantly lower than the 1,280 octet MTU which is a minimum standard for IPv6. Therefore, an 

Adaptation Layer is used, as shown in Figure 1. The main function of the Adaptation Layer is to 

fragment and reassemble the packets. Figure 1 also depicts the position of gateway which is required 

to connect sensor nodes to the Internet. Devices in 6LoWPAN can be divided in to FFD (Full Function 

Device) and RFD (Reduced Function Device), depending upon their computation and memory 

resources. FFDs usually have more resources and can support RFDs by providing functions such as 

network coordination, packet forwarding, interfacing with other types of networks, etc. The IEEE 

802.15.4 standard allows both star and peer-to-peer topologies with the presence of a central 

coordinator. Although, our IDS can be applied to any IP-based sensor networks, however throughout 

the paper we will refer 6LoWPAN to exemplify and illustrate the concept.  

Figure 1. Traffic flow in IP-USN. 
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2.2. Signature Based Intrusion Detection 

 

Intrusion Detection Systems can be divided broadly into two categories: Signature based Intrusion 

Detection and Anomaly based Intrusion Detection. In signature based IDS, if incoming packet header 

matches a certain set of rules, its payload is scrutinized against a set of known patterns (also called 

signatures). In case of a match, the ongoing activity is considered as an intrusion. Signature-based IDS 

is very efficient at sniffing out known attacks, however its efficiency is highly dependent on the stored 

signatures. As the number of patterns could range up to thousands, pattern matching consumes not 

only the storage but also the most of the CPU cycles to execute the complex pattern matching 

algorithms [10]. Therefore, so far there is no signature based IDS which can work on resource 

constrained sensor nodes. Our survey indicates that techniques like string matching, production rules, 

colored Petri nets, state transition diagrams, decision trees, and cluster structures have all been used to 

represent, store and match intrusion signatures [10-15]. Most of the commercial signature based IDS 

use automata theory or FSM (Finite State Machines) signature matching. Specially the works of Aho-

Corasick [16] (its optimized version is used in Snort [17]) and Commentz-Walter [16] can be 

considered as epitomes in this area. However, these solutions are not practical for sensor networks due 

to their high demand of resources. In [10] authors presented a fast and scalable pattern matching 

scheme using Bloom filters [18]. This scheme scales well with multiple patterns matching and requires 

less storage and computation, which is discussed later. Therefore, we based our proposal on this 
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scheme and proposed a coding mechanism so that a signature based IDS can be applied on low-power 

and low-storage sensor networks.  

 

2.2.1. Bloom Filter 

 

Bloom filter, proposed by Burton Bloom [18], is a simple space-efficient randomized data structure 

which, in its basic form, is represented by a bit array. The array is first initialized to all zeros. A Bloom 

filter computes k distinct digests for each entity with the help of independent uniform hash functions 

and uses the r-bit results to index into a 2r-sized bit array. The indexed bits are then set to one. Figure 

2 depicts the working of Bloom filters.  

Membership queries can be carried out by computing the k digests on the incoming entities and 

checking the indicated bit positions. If any one of them is zero, the entity in question was not stored in 

the array. However, if all the bits are one, it is most likely that it was stored. A Bloom filter may yield 

a false positive, where it suggests that given entity is in Bloom filter even though it is not. However, 

the probability of false positives can be controlled, which is discussed later in the Evaluation section. 

Figure 2. Basic operation of Bloom filters. 
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2.3. Anomaly Based Intrusion Detection 

 

In an Anomaly-based Intrusion Detection certain parameters which reflect the normal state of a 

network system are defined or learned in advance. Any activity which then deviates from the 

predefined parameters significantly is considered as an intrusion [7]. Anomaly-based IDS is good at 

detecting new threats, but with certain number of false alarms, which is highly dependent on the 

parameters under observation and the definition of ‘significant change’. Methods from artificial 

intelligence, signal processing, statistics and data mining have been used to implement anomaly based 

IDS. Of these, schemes from the domain of signal processing, artificial intelligence and data mining 

are considered unsuitable for sensor networks as they rely on resource intensive algorithms for 

abnormality detection. In contrast, most of the statistical abnormality detection methods require basic 
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sets of mathematical operations to detect the abnormality, which makes these schemes appealing for 

anomaly detection in IP-USN. 

In the field of SPC (Statistical Process Control) techniques like Shewhart control charts, CUSUM 

control charts, and EWMA control charts are used for intrusion detection. A good survey of these 

techniques has been provided in [19]. Reference [19] also proposes modified forms of aforementioned 

control charts called MBM (Modified Batch Mean) charts to detect network intrusions. In [20] authors 

applied, tested, and compared two EWMA techniques to detect abnormality: EWMA for auto-

correlated data and EWMA for uncorrelated data. Our scheme, on the other hand, uses CUSUM charts 

and utilizes the sensitivity of CUSUM charts to build a scoring classifier. We also investigate the 

settings and their affects on performance of certain parameters on our scheme.  

 

3. RIDES Architecture 

 

This section describes our intrusion detection framework for IP-USN. Table 1 shows the main 

components of RIDES and their placement: 

Table 1. Main Components of RIDES and Their Placement. 

Gateway/Sink Rules and Signatures Database 
Anomaly based Analyzer 

IP-based sensor nodes SCG (Signature-code Generator), 
Bloom filters 
NAD (Network Anomaly Detector) 

 

Figure 3. Internal architecture of intrusion detection component on a sensor node. 
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Rules and signature database holds the complete attack-signature, signature-code and associated 

rules. Anomaly based Analyzer stores the CS (Contamination Score) of a network which will be 

discussed in detail in later section. Gateway or Sink is also responsible for initiating the intrusion 

response. However, intrusion response techniques such as traceback are out of the scope of this paper. 

Interested readers are encouraged to refer [21,22] for a good survey of intrusion response techniques. 

Figure 3 depicts the interaction between SCG (Signature-code Generator) and NAD (Network 

Anomaly Detector). As shown in Figure 3, a sensor node passes only those packets to SCG which are 

destined for itself. On the other hand, NAD checks every packet promiscuously. Figure 3 also depicts 
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that both components are not connected to each other so that they can be realized separately on 

separate nodes as well. The rest of the section describes both of these components in detail.  

 

3.1. SCG (Signature-code Generator) 

 

In [10], authors presented a fast and lightweight pattern matching scheme for traditional IP 

networks using Bloom filters. However, in the current state of the technology this scheme cannot be 

implemented on sensor networks for the following reasons: 

The scheme in [10] resides on a single machine and all traffic passes through that machine. 

Moreover, in [10] the authors used a separate hash table for Bloom filter match verification. Bloom 

filter match verification is required due to the probability of false positives associated with Bloom 

filters, as discussed later. However, in sensor networks many nodes are working as relay nodes. And 

due to resource limitations, it is unwise to place a hash table at every relaying node. In addition, if a 

distributed approach is used to implement this method such that the hash table and Bloom filters reside 

on separate machines (at the Sink and sensor node, respectively) then the entire payload of the packet 

would have to be sent to the Sink as well. This condition also lessens the efficiency of [10] because 

sensor needs more energy in transmission, as compared to calculation [23].  

To overcome the aforementioned problems we propose the concept of a signature-code, a 

dynamically created attack-signature identifier which allows us to represent an attack-signature with 

only a few bytes. Therefore, instead of sending a complete payload we only send a signature-code for 

Bloom filter match verification to the Sink. Consequently, we not only save the storage of sensor 

nodes but also the energy required for transmitting long bit patterns. Thus, with the help of signature-

code a lightweight signature based intrusion detection system can be realized.  

Figure 4. Generation of signature-code for the signatures having same length. 
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3.1.1. Signature-code 

 

The signature-code is an r*Ө-bit number which is formed by concatenating the output of last Ө 

hash functions. Where Ө is the number of hash functions used to generate the signature-code. Let Si 
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denotes the signature-code for attack-signature i. Then according to the definition, for Ө = 2 Si can be 

given by:  
   1

where represents string concatination
i k kS H i H i 

 (1)

Figure 4 depicts generation of signature-codes. In Figure 4, the attack-signature AS1 is passed 

through four hash functions which produce the r-bit output and set the corresponding bit to 1. For 

example, the output of hash function H3 and H4 is 100 and 111 (in terms of bits), respectively. 

Therefore, the bits on the 4th and 7th position (indexed from 0) are then set to 1. The outputs of the hash 

functions H3 and H4 are also used to generate the signature-code. In this case, the signature-code of 

AS1 is 47.  

We used signature-code to dynamically locate the attack-signatures and their associated rules in the 

signature database. It is possible that due to hash collision we may experience a signature-code 

collision. However, it is only possible when all of the hash functions involved in a signature-code 

generation experience a collision. Even if we have only one hash function which did not experience a 

hash collision, we would have a unique signature-code. For example, consider two input attack-

signatures a1 and a2 then according to (1), without any hash collision the signature-codes would be: 

   
1 1 1

1 1 1 11  and where    
a

k k

S O P

O H a P H a



 


 

   
2 2 2

2 2 2 21  and where    
a

k k

S O P

O H a P H a



 


 

Now suppose that we experience a hash collision in only one of the hash functions:  

If (Hk-1(a1)=Hk-1(a2)=O1) then: If (Hk(a1)=Hk(a2)=P1) then: 

1 1 1aS O P   
1 1 1aS O P   

2 1 2aS O P   
2 2 1aS O P   

If (Hk-1(a1)=Hk-1(a2)=O2) then: If (Hk(a1)=Hk(a2)=P2) then: 

1 2 1aS O P   
1 1 2aS O P   

2 2 2aS O P   
2 2 2aS O P   

It can be seen that signature-codes are unique, even if we have hash collision in one of the hash 

functions. Moreover, It is very unlikely that all of the hash functions experience a hash collision 

simultaneously for a given attack-signature; especially in a small data set with relatively large bit array 

m. It will be shown in the Evaluation section that with small dataset the signature-codes are  

completely unique.  

 

3.1.2. Working of SCG 

 

The scheme in [10] uses separate Bloom filters for signatures of different sizes. Therefore, in the 

first phase, signatures of different length are passed from their respective Bloom filters. As a result, 

Bloom filters give us a bit array representation of the input signatures and signature-codes. The 

programmed Bloom filters are then placed at every sensor node. Sensor nodes pass the payload of each 
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incoming packet through the Bloom filters. If a match is found, further processing over the packet is 

stopped and an alert signal is sent to the Sink, along with the signature-code, to verify the Bloom filter 

match. As there are separate Bloom filters for the signatures of different lengths, an alert signal might 

have multiple signature-codes within a packet. The signature-code points to the position of the 

signature and its associated rule in rules and signature database. The rules associated with the signature 

such as drop, notify, log etc. are then downloaded from the sink and applied on the packet in question. 

The scheme can be optimized by storing the downloaded rules in a small cache for later use; so that 

extra messaging can be avoided for similar packets. Since attack-signatures are rarely found in the 

packets, the swift check in Bloom filter avoids not only the unnecessary messaging but also the 

unneeded searching of attack-signature in whole signature database. Furthermore, the algorithm in [10] 

works for IP networks, where both signature creation and detection is performed on the same system. 

In such systems, false positives of Bloom filters are tolerable because in case of a false match we do 

not have to worry about messaging cost required to eliminate the compromised nodes. However, in 

sensor network, if we do not identify the attack-signature exactly then there would be a huge overhead 

of messaging to avoid the compromised nodes. Therefore, with the help of signature-code we try to 

identify exact attack-signatures so that extra messaging overhead can be minimized.  

Sending of signature-code instead of entire payload also lessens the bits to be transmitted. This 

factor is mainly helpful in extending the lifetime of the sensor networks as shown in Evaluation 

section. In addition, the compressed representation of attack-signatures in a form of bit vectors also 

reduces the storage requirement on sensor nodes. Although this saving of space is inherited advantage 

of Bloom filters; however, application of Bloom filters in sensor network in the context of intrusion 

detection has never been addressed before. 

In essence, this scheme is similar to the variant of Rabin-Karp algorithm provided in [24]. The 

complexity of Rabin-Karp multiple pattern algorithm can be given by O(η + ε), where η is the number 

of strings stored in the Bloom filter, and ε is the number of patterns to be searched for a packet [24]. 

As the packet payload in IP-USN is much smaller than traditional networks [9], the given complexity 

is acceptable for IP-USN. For example, in 6LoWPAN, the payload is only 33 bytes for TCP traffic and 

45 bytes for UDP traffic, without header compression techniques. If we consider the payload of Link 

layer security then we have only 21 bytes for TCP traffic and 33 bytes for UDP traffic [9]. With this 

limited payload we believe that the proposed scheme can work efficiently for IP-USN. 

 

3.2. NAD (Network Anomaly Detector) 

 

3.2.1. CUSUM Control Charts 

 

For anomaly based intrusion detection we used CUSUM control chart for detecting the abnormal 

network activity. In CUSUM charts a cumulative sum of the deviations of the sample values from a 

target value is observed. For example, let the samples of size 1n   are collected, and jX is the 

average of the jth sample. Then CUSUM can be plotted by: 

01
( )

i
i jj

S X 


   (2)
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Where 0  is the in-control Mean of the system and Si is the cumulative sum up to and including the ith 

sample. If the value of CUSUM revolves around 0, the system is considered to be in-control. However, 
if the mean shifts to some value say 1  such that 1  > 0 , an upward or positive drift will be 

developed in the cumulative sum Si. On the other hand, if 1  < 0 , a downward or negative drift in Si 

will be developed [25]. Therefore, if trend develops in the observed points either upward or downward, 

we can infer that system is in the abnormal state.  

As Si reflects the information of several samples, cumulative sum charts are more effective than 

other types of control charts for detecting small process shifts. More importantly, CUSUM is more 

efficacious than other control charts for samples n = 1. These two features make CUSUM a good 

candidate for the use in intrusion detection system. The former feature is particularly beneficial for 

sensor networks because in sensor networks even a minor shift in traffic parameters can be fatal. On 

the other hand, with sample size n = 1, IDS can handle each new event notification discretely 

considering the sample size of 1 which provides us a way of online detection. In addition to that, 

usually sensor networks use event driven notification of the processes and events rarely follow any 

standard probability distribution model. Therefore, parametric approaches of change detection, which 

based upon the assumption of the normality of the data, are not efficient for network systems. 

However, non-parametric approaches of change detection such as CUSUM, due to its adaptable nature, 

provide very good and significant results. We also evaluated the non-parametric nature of CUSUM in 

Evaluation section by applying our scheme to two different traffic models. 

 

3.2.2. Detection Thresholds  

 

The control limits of CUSUM charts can be defined by two methods 1) V-mask and 2) Tabular 

CUSUM. V-Mask is a visual procedure proposed by Barnard in 1959 [25]. It is rarely used to 

determine whether a process is out of control or not. More details of V-Mask can be found in [26]. On 

the other hand, Tabular CUSUM is an attractive approach if the CUSUM algorithm is implemented on 

computers [25]. To generate the tabular form, we use H and K parameters which are expressed in the 

original data units. Let SH(i) be an upper one-sided CUSUM for period i and SL(i) be a lower one-sided 

CUSUM for period i. These quantities can be calculated by: 

0( ) max[0, ( ) ( 1)]H i HS i x K S i    
 (3)

0( ) max[0, ( ) ( 1)]L i LS i K x S i    
 (4)

where SH(0) and SL(0) are 0. When either SH(i) or SL(i) exceeds H, called decision interval, the process 

is out of control. K is called the reference value, which is calculated by equation (5). In equation (5), 

1  depicts the out-of-control mean value:  

1 0,
2

K where  
   

 
(5)

Figure 5 depicts an example CUSUM chart, made with the help of a tabular form. Control charts are 

usually evaluated by ARL (Average Run Length). If p is a probability that certain reading is not in 
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control limits then the ARL of the system can be expressed as 1/p. Studies suggest that for the 1 

standard deviation shift, CUSUM shows good ARL properties for ˆ
X

H h  and ˆ
X

K k , where 
X

  

is the standard deviation of the sample variable used to create CUSUM control chart , (if n=1, 

XX
   ) [25]. The optimal value of ĥ  is 4 or 5 and for k̂  it is 0.4 or 0.5. 

Figure 5. Example of CUSUM chart. 

0 4 8 12 16 20 24

0

2

4

6

8

10

12

14

16

18

S
H
,S

L

Number of observations

S
H
(i),  S

L
(i),  HOut-of-control

state

 
 

3.2.3. Intrusion Detection and Overall Framework 

 

In this paper we consider rate based DDoS attacks. Examples of such attacks possible in IP-based 

sensor networks are UDP flooding [5] and ICMP Smurf [4] attacks. Therefore, each detecting node 

maintains inter packet delay (delay between two consecutive packets). Initially each detecting node 

observes the network for a predefined time interval, which we termed as learning phase. In learning 
phase, each node calculates the values of process mean 0 , standard deviation

X
 , and respective 

values of H and K for inter packet delay. After setting thresholds each detecting node starts to maintain 

the values of Sh and Sl for inter packet delay. If the value of Sh or Sl crosses the value of H, an attack 

signal is generated and sent to the IP-USN Gateway. However, as CUSUM charts are sensitive to a 

slight change, therefore, with small values of k̂  many detecting nodes may generate a false alarm; 

more specifically a false positive. We utilized this behavior to create a scoring based CUSUM 

classifier. We termed the score of a classifier as CS (Contamination Score). CS of node i for jth learning 

phase can be represented by:  

1 2) ) )max(max( ,max( ,...,max( )j
i i i iCS      (6) 

where, j
i shows the false positive rate of CUSUM classifier in jth learning phase of node i. As the 

value of CS for a normal traffic is much lower than abnormal traffic, we can define a threshold above 

which the network is considered as contaminated. The maximum value of CS at a particular sensor 

node during learning phase is set as the threshold value for that node by the gateway. After receiving 

an alert signal from the sensor node, the gateway checks the ratio of alert signals against CS. If it is 
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greater than CS the gateway initiates the attack response to subvert the attack or tries to identify the 

attacking or compromised nodes. Attack signal contains the source address of the victim, sensed data 

and the CUSUM value of the network parameters under observation. IP-USN Gateway, on the other 

hand, also manages the CUSUM of the sensed data. So that it can identify any false reading or 

malfunctioning sensor nodes. With the help of these network parameters we can detect a large set of 

cyber attacks ranging from traffic based DDoS attacks to false data injection. 

 

3.3. Location of Intrusion Detection Components 

 

There are usually two choices available for deciding the intrusion detection point in network 

systems, centralized or distributed. In a centralized system, a center node with high computing 

resources performs the intrusion detection based on the traffic profile gathered periodically from the 

distributed nodes. On the other hand, in a distributed IDS the detection algorithm runs on multiple 

nodes in the network. In case of attack, one or multiple nodes generate the attack signal which is 

passed to the centralized decision server. Both schemes can be characterized by the frequency of the 

generated messages. In case of centralized system the frequency of the generated messages to deliver 

the system state to the sink or base station is apparently higher than distributed systems. However, 

distributed IDS takes more network resources by duplicating the detection module on multiple nodes. 

Therefore, a balance is usually maintained by optimally choosing the right detection points. 

Fortunately in 6LoWPAN, the network topology allows us to optimally place the detecting nodes in 

the network. As discussed in Section 2, 6LoWPAN supports both star and mesh topology. In these, 

6LoWPAN are expected to run more on mesh topology [9], in which FFDs are used as routers in 

scenarios where the receiver is not within direct reach of the sender of a packet. This makes FFD a 

good candidate for use as a packet interceptor.  

There are also two advantages of implementing the scheme in distributed nature rather than having 

a single intrusion detection point at the gateway or the sink node. The first is that in an IP-USN 

network, all packets may not be destined to the gateway node; hence, internal attacks in the IP-USN 

would not be detected by the gateway node. The second reason is that by the collaboration of the relay 

nodes of the IP-USN for the intrusion detection, we are able to identify an intrusion packet earlier and 

might be able to stop the adversary packet from traversing through the network and wasting the scarce 

resources of the IP-USN. 

 

4. Evaluation of RIDES 

 

Table 2 lists the symbols used in the Evaluation section and their meanings: 

Table 2. Symbols and Their Meanings. 

Symbols Meaning 

m Size of Bloom filter’s bit array 

n Number of attack-signatures to be added 

k Number of hash functions 
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Table 2. Cont. 

i
  Range of the hash function Hi in bits 

r Controlled range of the hash functions in bits 

Ө Number of hash functions used in signature-code generation 

fpr False positive rate of Bloom filters 

pH
i Probability of experiencing a collision in hash function Hi 

pS Probability of signature-code collision 

PX(x) Probability of experiencing a collision in a signature-set 

K Reference value of CUSUM chart 

H Decision interval of CUSUM chart 

FPP False positive probability of scoring classifier 

TPP True positive probability of scoring classifier 

 

4.1. Performance Evaluation of SCG 

 

Currently, IP-USN is in its evolutionary stage. Thus, at the moment it is hard to realize any attack-

signature in IP-USN traffic. Therefore, to evaluate the performance of our scheme we use Snort 

signature-set [17]. Snort can be regarded as a de-facto IDS for traditional IP networks. In current 

signature-set of version 2.8 of Snort [17], there are 13,339 attack-signatures. With current limited set 

of applications for IP-USN, this signature-set can easily be regarded as the upper bound for number of 

signatures in IP-based Ubiquitous Sensor Networks.  

 The performance of our signature based detection component mainly depends upon the size of the 

bit array m, the number of attack-signatures n and the number of hash functions k. We start our 

performance evaluation of the SCG from the analysis given in [27]. Given an array m, the probability 

of setting a certain bit to 1 is 1/m and the probability that is still 0 is 1 – 1/m. The probability that any 

of the hash function did not set the bit can be given by (1 – 1/m)k. If n numbers of attack-signatures are 

inserted, the probability that a certain bit is still unset can be given by (1 – 1/m)kn. And probability that 

it is set to 1 can be given by equation (7) [27]: 

11 1
kn

m
 
 
 

   (7)

The probability that the r bit output of all k hash functions point to the locations in m which are 

already set is given by:  

11 1 1

k kkn kn
mfpr e

m

               

      (8)

Studies have shown that global minimum of false positive rate can be achieved with k = ln2 × (m/n) 

[28]. In this case the right hand side of equation (8) becomes:  

 1 0.6185
2

k m
n 

 
 

  (9)



Sensors 2009, 9              

 

 

3460

Further simplification shows that Bloom filter uses 21.44 log (1/ )fpr bits of space per inserted attack-

signature.  As discussed above that there are 13,339 attack patterns available in the current release of 

Snort, so these attack signatures require approximately 252 KB of storage. Figure 6 shows the number 

of bits required to store current Snort signature-set by using our scheme. For example, with fpr = 

0.024, our scheme on an average requires 13 KB (≈ 8bits/signature) as compared to 252 KB to 

represent the whole signature-set. Approximately, we require 95% less space than normal storage 

requirements. 

Figure 6. Size of m for representing current Snort signature-set with respect to fpr. 
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If i  is the range of the hash function Hi in bits then 2 i

iR   represents the number of unique 

signatures that can be indexed by the hash function Hi. However, iR  could be greater than m. 

Therefore, to limit it in the boundaries of bit vector m, we use a modulo operation. If iR m  then the 

probability of hash collision PH
i would be equal to i . Here i is the probability of the hash collision 

associated to individual hash functions without any modulo operation. However, for Ri > m the PH
i can 

be given by equation (10): 

  11 1 . 1i

n

iH
p m  

 
 

     (10)

As the signature-code collision occurs only when all of the hash functions, involved in the 

construction of signature-code, collide. Therefore, the probability of signature-code collision can be 

given by  1 k is i H
p p




 . Figure 7 depicts the effects of φ, m and n on signature-code for Ө = 2. We 

can see that as we increase the size of bit array m the probability of hash collision becomes low. On the 
other hand, as we increase the probability i  the probability of hash collision approaches 1.  

Furthermore, if X is the number of signatures added up to and including the first signature that 

experience a collision then the probability PX(x) of experiencing a collision in a signature-set can be 

given by: 

  1
( ) . 1

x
s sXP x p p


   (11)
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And the expected number of signatures which can be added without experiencing a collision can be 

given by: 

1 1[ ] . (1 ) .(1 )x x
S S S SE X x p p p x p     
(1 )

. .(1 )
(1 ) (1 )

x
xS S

S S
S S

p p
p x x p

p p


  

  
 

2

(1 )
.

(1 ) ( )
S S

S S

p p
p p





 

1[ ]
S

E X
p

   (12)

Figure 7. Probability of signature-code collision with respect to φ, m and n with Ө = 2. 
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Figure 8 shows the expected number of signatures that can be added without experiencing a 

collision with increasing probability of signature-code collision and different values of Ө in Log10 

scale. For example, for 1 2 0.01k k
H Hp p    and Ө = 2 the probability that signature-code will also 

experience a collision is 0.0001. Theoretically, this shows that approximately 10,000 signatures can be 

added without experiencing a collision. However, when implemented, we did not observe even a single 

signature-code collision in the 13,339 signature long signature-set of Snort [17].  

Figure 8. Number of signatures that can be added without experiencing a collision. 
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The maximum length of an attack-signature in current Snort’s signature-set is 487 bytes; whereas, 

the average length of an attack-signature is 20 bytes. If we assume that the incoming packet only 

contains attack-signature of the length of 20 bytes then without our scheme 20 bytes are required to be 

sent to the Sink for searching a rule in signature database. On the other hand, our scheme requires only 

4 bytes with Ө = 2 to search a rule in signature database, even for the biggest signature in Snort 

signature-set. Figure 9 shows the differences in energy consumption in single-hop transmission and 

reception of a message in both of these schemes according to the radio model given in [23]; with 

average attack-signature length of 20 bytes, Ө = 2 and r = 16. 

Figure 9. Comparison of energy consumption with and without signature-code. 
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4.2. Performance Evaluation of NAD 

 

We use UDP flooding to evaluate the performance of NAD. We conducted our simulation on ns-2 

[29]. We placed 25 nodes randomly in mesh topology. Source – destination pairs are chosen randomly 

and the selected source initiates the data transfer at random time for random duration. Other 

parameters of the simulation are given in Table 3. 

Table 3. Simulation Parameters of NAD. 

Parameter Value 

Number of nodes 25 

Number of data generating nodes 11 

Terrain 50 m × 50 m 

Topology Mesh 

Traffic model cbr/poisson 

Beaconing mode No 

Maximum data rate  250 kbps 

Routing protocol  AODV 

MAC protocol 802.15.4 
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Figure 10. (a) False positive probability for different values of ĥ and k̂  for CBR traffic; (b) 

False positive probability for different values of ĥ and k̂  for Poisson traffic. 
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We made two modules for our Anomaly detection system. The first module is used to learn the 
parameters 0  and X ; while the second module is used to detect the intrusion in the network. The 

value of 0  is used in equation (3) and (4); whereas the value of X is used to derive the value of H 

and K as discussed in Section 3.2.2. To verify the recommended values of ĥ and k̂  given in Section 
3.2.2 we first learn the parameters 0 and X from one simulation and then apply it on the same 

simulation for different values of ĥ and k̂ . In this way we nullify the effects of traffic dissimilarity and 

only consider the changes of ĥ and k̂ . Figure 10a,b shows the false positive probability with different 

values of ĥ  and k̂ for two different traffic models. As shown in the figure, a little increment in 

k̂ significantly reduces the FPP. On the other hand, the values of ĥ  slightly affects the FPP. This also 

shows that CUSUM charts are more sensitive to the value of k̂ instead of ĥ . However, as discussed 

later, higher values of k̂ turn CUSUM into a bad classifier. In other words, with higher values of 

k̂ CUSUM is unable to classify normal traffic and abnormal traffic. 

Figure 11. (a) True positive probability with increasing number of attackers and increasing 

intensity of the attack with k̂  = 0.5. (b)True positive probability with increasing number of 

attackers and increasing intensity of the attack with k̂  = 1. 
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Our next set of simulations depicts the performance of CUSUM with increasing traffic load and 

number of attackers. Figures 11a,b shows the true positive probability with k̂  = 0.5 and k̂  = 1, 

respectively. For both of the simulations we use ĥ  = 5. In these figures, N represents the normal 

packet transmission interval. As we can see that with k̂  = 0.5 the CUSUM is very sensitive and able to 

detect even minor surge in the traffic load. While with k̂  = 1 we are able to detect the attack if the 

inter-packet transmission interval is at least five times more than the normal rate. 

Figure 12. ROC curves when attacking traffic rate is 10 times faster than normal traffic rate. 

 
 

To further evaluate the performance of our scoring based classifier we used ROC (Receiver 
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attacks with acceptable false positive probability. However, as we can see in Figures 12d and 13d that 

(a) k̂  = 0.5 (b) k̂  = 1.0 

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

AUC=0.98

T
P

P

FPP

 TPP
 Lower
 Upper

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

AUC=0.98
T

P
P

FPP

 TPP
 Lower
 Upper

(c) k̂  = 1.5 (d) k̂  = 2.0 

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

T
P

P

FPP

 TPP
 Lower
 Upper

AUC=0.98

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

AUC=0.85

T
P

P

FPP

 TPP
 Lowwer
 Upper



Sensors 2009, 9              

 

 

3465

with k̂  = 2 our scoring scheme performs very badly in classification. This difference is more 

prominent especially in Figure 13d, where the difference between normal and attacking traffic is less. 

In fact, any real life classifier doesn’t have AUC less than 0.5. This behavior is due to the high 

reference value k̂  of CUSUM charts, which severely affects the performance of CUSUM and 

consequently of our scoring classifier. In both Figure 12 and 13 the lower and upper curves depict the 

95% confidence interval boundaries [30].  

Figure 13. ROC curves when attacking traffic rate is 5 times faster than normal traffic rate. 
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For signature based intrusion detection component, this paper only discussed the implementation of 

a distributed pattern matching algorithm with the help of signature-code, a dynamically created attack-

signature identifier. Other aspects like rule creation are not discussed. Evaluation results show that we 

require approximately 95% less space than normal storage requirements to store Snort signature-set. In 

addition, with the help of signature-codes we can greatly enhance the lifetime of a sensor node. 

On the other hand, for Anomaly based intrusion detection component, we utilized a lightweight 

statistical process control method called CUSUM control charts and proposed a scoring based 

classifier to mitigate the sensitivity of CUSUM. We also discussed the effects of different parameters 

of CUSUM on our scheme. We evaluated the performance of our scoring classifier with the help of 

ROC curves. ROC curves show that our scoring classifier can effectively classify normal traffic and 

abnormal traffic and the probability of false positives is also very low. These results conclude that 

RIDES is appropriate for resource constraint sensor nodes for detecting network intrusions.  

Finally, intrusion detection alone is not sufficient; effective response to detected intrusion is equally 

important. Therefore, currently we are exploring the automated intrusion response schemes such as 

traceback or packet filtering that should be activated after detecting a network intrusion.  

 

Acknowledgements 

 

This research was supported by the MKE, Korea, under the ITRC support program supervised by 

the IITA (IITA-2009-(C1090-0902-0016)) 

 

References 

 

1. Choe, Y.H.; Kelly, T.; Adolph, M. Ubiquitous Sensor Networks; ITU-T Technology Watch 

Report # 4; ITU: Geneva, Switzerland, 2008. 

2. Culler, D. Embedded Web Services: Making Sense out of Diverse Sensors, 2007; Available online: 

http://www.sensorsmag.com/sensors/article/articleDetail.jsp?id=430624, accessed April 11, 2009. 

3. Hui, J.; Culler, D. Extending IP to low-power, wireless personal area networks. IEEE Internet 

Comput. 2008, 12, 37-45. 

4. Garber, L. Denial-of-service attacks rip the Internet. Computer 2000, 33, 12-17. 

5. CERT Advisory CA-1996-01 UDP Port Denial-of-Service Attack. Available online: http://www. 

cert.org/advisories/CA-1996- 01.html, accessed February 22, 2009. 

6. Korea Internet Security Center (In Korean). Available online: http://www.krcert.or.kr/, accessed 

February 22, 2009. 

7. Axelsson, S. Intrusion detection systems: A survey and taxonomy; Tech. Rep. 99-15; Chalmers 

University: Göteborg, Sweden, 2000. 

8. Kendall, K. A database of computer attacks for the evaluation of intrusion detection systems. 

Ph.D. dissertation. Massachusetts Institute of Technology: Massachusetts, USA, 1999. 

9. Montenegro, G.; Kushalnagar, N.; Hui, J.; Culler, D. IPv6 over Low-Power Wireless Personal 

Area Networks (6LoWPANs): Overview, assumptions, problem statement and goals (RFC 4919). 

IETF Trust: AMS, Fremont, CA, USA, August, 2007. 



Sensors 2009, 9              

 

 

3467

10. Dharmapurikar, S.; Lockwood, J. Fast and scalable pattern matching for network intrusion 

detection systems. IEEE JSAC 2006, 24, 1781-1792. 

11. Anderson, D.; Frivold, T.; Valdes, A.; Next-generation intrusion detection expert system 

(NIDES): A summary; Tech. Rep. SRI-CSL-97-07; SRI International: Menlo Park, CA, USA, 

1995. 

12. Vigna, G.; Eckmann, S.; Kemmerer, R. The STAT tool suite. In Proceedings of DARPA 

Information Survivability Conference and Exposition, IEEE Computer Society, Hilton Head, SC, 

USA, 2000; pp. 46-55. 

13. Kumar, S. Classification and detection of computer intrusions. Ph.D. dissertation. Department of 

Computer Science: Purdue University, Indiana, USA, 1995. 

14. Lee, W; Stolfo, S.J.; Mok, K. Mining in a data-flow environment: Experience in network intrusion 

detection. In Proceedings of 5th ACM SIGKDD International Conference on Knowledge 

Discovery and Data Mining, San Diego, CA, USA, August 15-18, 1999; pp. 114-124. 

15. Ye, N.; Li, X. A scalable clustering technique for intrusion signature recognition. In Proceedings 

of the 2001 IEEE Workshop on Information Assurance and Security, United States Military 

Academy, West Point, NY, USA, 2001; pp. 5-6. 

16. Stephen, D.L. String Searching Algorithms; In Lectures Notes Series on Computing; World 

Scientific Publishing Co.: Hackensack, NJ, USA, 1994; Vol. 3, pp. 1-256. 

17. Snort – the de facto standard for intrusion detection/prevention. Available online: 

http://www.snort.org/, accessed February 22, 2009. 

18. Bloom, B. Space/time trade-offs in hash coding with allowable errors. ACM Commun. 1970, 13, 

422-426. 

19. Park, Y. A statistical process control approach for network intrusion detection. Ph.D. dissertation. 

School of Industrial and Systems Engineering: Georgia Institute of Technology, Atlanta, Georgia, 

USA, 2005. 

20. Ye, N; Vilbert, S; Chen, Q. Computer intrusion detection through EWMA for autocorrelated and 

uncorrelated data. IEEE Trans. Reliab. 2003, 52, 75-82.  

21. Stakhanova, N.; Basu, S.; Wong, J. A taxonomy of intrusion response systems. Int. J. Inf. Comput. 

Secur. 2007, 1, 169-184. 

22. Amin, S.O.; Siddiqui, M.S.; Hong, C.S. A novel IPv6 traceback architecture using COPS 

protocol. Ann. Telecommun. 2008, 63, 207-221.  

23. Heinzelman, W.R.; Chandrakasan, A.; Balakrishnan, H. Energy-efficient communication protocol 

for wireless microsensor networks. In Proceedings of the Hawaii International Conference on 

System Sciences, Maui, Hawaii, USA, 2000; pp. 1-10. 

24. Rabin-Karp string search algorithm. Available online: http://en.wikipedia.org/w/ 

index.php?title=Rabin-Karp_string_search_algorithm&oldid=278622749, accessed April 11, 

2009. 

25. Montgomery, D.C.; Runger, G.C. Applied Statistics and Probability for Engineers, 3rd Ed.; John 

Wiley & Sons Inc.: Hoboken, NJ, USA, 2004. 

26. Montgomery, D.C. Introduction to Statistical Quality Control; Wiley: New York, NY, USA, 

2001. 



Sensors 2009, 9              

 

 

3468

27. Broder, A.; Mitzenmacher, M., Network applications of bloom filters: A survey. Internet Math. 

2004, 1, 485-509. 

28. Fan, L.; Cao, P.; Almeida, J.; Broder, A., Summary cache: A scalable wide-area web cache 

sharing protocol. IEEE/ACM TON 2000, 8, 281-293. 

29. McCanne, S.; Floyd, S.; Fall, K.; Varadhan, K. Network Simulator – ns-2. Available online: 

http://www.isi.edu/nsnam/ns/, accessed February 22, 2009. 

30. Fawcett, T. An introduction to ROC analysis. Pattern Recognition Lett. 2006, 27, 861-874. 

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. 

This article is an open-access article distributed under the terms and conditions of the Creative 

Commons Attribution license (http://creativecommons.org/licenses/by/3.0/) 


