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Abstract: The present research studied the influence of blanching and microwave pretreatment of
seeds on the quality of pomegranate seed oil (PSO) extracted by cold pressing. Pomegranate seeds
(cv. Acco) were independently blanched (95 ± 2 ◦C/3 min) and microwave heated (261 W/102
s) before cold pressing. The quality of the extracted oil was evaluated with respect to oxidation
indices, refractive index, yellowness index, total carotenoids content, total phenolic content, flavor
compounds, fatty acid composition, and 2.2-diphenyl-1-picryl hydrazyl (DPPH) and 2.2-azino-bis (3-
ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging capacity. Blanching and microwave
pretreatments of seeds before pressing enhanced oil yield, total phenolic content, flavor compounds,
and DPPH and ABTS radical scavenging capacity. Although the levels of oxidation indices, including
the peroxide value, free fatty acids, acid value, ρ-anisidine value, and total oxidation value, also
increased, and the oil quality conformed to the requirements of the Codex Alimentarius Commission
(CODEX STAN 19-1981) standard for cold-pressed vegetable oils. On the other hand, blanching
and microwave heating of seeds decreased the pomegranate seed oil’s yellowness index, whilst the
refractive index was not significantly (p > 0.05) affected. Even though both blanching and microwave
pretreatment of seeds added value to the cold-pressed PSO, the oil extracted from blanched seeds
exhibited lower oxidation indices. Regarding fatty acids, microwave pretreatment of seeds before
cold pressing significantly increased palmitic acid, oleic acid, and linoleic acid, whilst it decreased
the level of punicic acid. On the contrary, blanching of seeds did not significantly affect the fatty acid
composition of PSO, indicating that the nutritional quality of the oil was not significantly affected.
Therefore, blanching of seeds is an appropriate and valuable step that could be incorporated into the
mechanical processing of PSO.

Keywords: pomegranate seed; oil; pretreatment; cold pressing; total phenolic content; antiradical
activity

1. Introduction

Pomegranates (Punica granatum L.) are consumed as fresh fruits and processed into
products such as jam, juice, jelly, wine, and dried snacks [1]. In addition to increased
production volumes, the inconvenience associated with fresh pomegranate consumption
due to the fruit complexity has promoted the fruit’s processing into these ready to eat and
convenient products [2]. Moreover, the consumption of the fruit is related to its medicinal
properties. The fruit’s pharmacological value can be traced back to ancient times when the
fruit was used as a traditional medicine to treat different ailments [3].

The literature has shown that every part of the fruit contains compounds with health
benefits. The juice and peels contain punicalagins, hydrolyzable tannins, anthocyanins,
and ellagic acid [4]. Pomegranate seeds, one of the waste products from the processing of
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the fruit, serve as a rich source of oil (12–20%) high in tocopherols, polyphenols, sterols,
and punicic acid [5]. It has been demonstrated that these bioactive phytochemicals are
implicated in pomegranate seed oil’s chemopreventive activities such as anti-mutagenicity,
antihypertension, antioxidative potential, and reduction in liver injury [6]. In line with this,
pomegranate seed can be considered for value-added products. Further, processing the
seeds into specialty oil is a profitable alternative to managing the postharvest waste from
pomegranate fruit processing. Pomegranate seed oil can be extracted from the seeds using
various techniques such as cold pressing and solvent, supercritical carbon dioxide, and
ultrasound-assisted aqueous enzymatic extraction [7,8]. Prior research has indicated that
the extraction technique is a major determinant of seed oil quality [9].

Seed oil extraction by cold pressing is the most preferred by processors and consumers
because of the low production costs and high concentration of bioactive compounds such as
essential fatty acids, tocopherols, phenols, carotenoids, and phytosterols in the oil [10]. The
retention of antioxidant compounds may provide cold-pressed oils with acceptable oxida-
tive stability and better health properties [11]. Cold-pressed oils are obtained mechanically
using either a hydraulic or screw press without the application of heat, solvents, or chemical
treatments, which makes the process environmentally friendly and the extracted oil safer
for human consumption [12]. Therefore, there is a growing demand for cold-pressed oil,
such as cold-pressed pomegranate seed oil. The maximum temperature of cold-pressed oil
should not exceed 50 ◦C [13,14]. The cold-pressed oil may be physically purified through
filtration, sedimentation, or centrifugation processes, which do not degrade the oil qual-
ity [10].

Despite the many advantages of cold pressing, the low-cost and sustainable oil extrac-
tion technique suffers from low oil yield due to a significant amount of oil that remains
trapped in the pressed meal, which has hindered its development and commercial via-
bility [15]. Nonetheless, this may be improved by blanching or microwave heating the
oil-bearing seeds before pressing. According to Kaseke et al. [9], blanching seeds improved
the pomegranate seed oil yield and bioactive compounds recovery with ethanol. More-
over, seed blanching is a novel technique that presents a sustainable strategy capable
of improving seed oil quality whilst significantly reducing the oil extraction time and
energy consumption during cold pressing [16]. Blanching significantly changes the seed
matrix’s structural integrity by disintegrating the cell walls and membranes, which may
enhance the extractability of the intracellular material by cold pressing [17]. Neverthe-
less, microwave pretreatment is the commonly used technique to improve oil yield and
bioactive compounds recovery in cold-pressed oils [18–21], due to its uniform energy de-
livery, high thermal conductivity to the interior of the material, energy saving, and precise
process control [22]. Although the influence of seed pretreatment on the oil recovery effi-
ciency of mechanical pressing has been studied, comparative studies on seed pretreatment
techniques’ potential to improve the quality of cold-pressed oil are limited.

In this regard, the current study aimed to investigate the effect of blanching and
microwave heating pomegranate seeds on the quality and functional properties of oil
extracted by cold pressing.

2. Materials and Methods
2.1. Plant Material

‘Acco’ pomegranates were harvested in April during the 2019 season from Blyde-
verwacht Farm (33◦48′0”S, 19◦53′0”E) in Western Cape Province, South Africa, at the
commercial maturity stage (total soluble solids: 14.02–16.61◦Brix). The seeds were sepa-
rated from the peels, membranes, and juice before they were thoroughly cleaned with tap
water.
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2.2. Sample Preparation and Pretreatments
2.2.1. Blanching

Freshly extracted and clean pomegranate seeds (PS) were blanched in a water bath
(Scientific, South Africa) at 95 ± 2 ◦C for 3 min [9]. After blanching, samples were cooled
promptly in an ice water bath, drained off, and then oven dried at 55 ± 2 ◦C to 10% (w/w)
moisture content. The thermogravimetric technique was applied to measure the moisture
content using a moisture analyzer set at 100 ◦C (KERN, DBS60-3, Balingen, Germany).

2.2.2. Microwave Pretreatment

Fifty grams of oven-dried PS were uniformly spread in a glass Petri dish (190 mm in
diameter) inside a calibrated domestic microwave oven (Model: DMO 351, Defy Appli-
ances, Cape Town, South Africa) with a nominal power of 900 W. The microwave oven
was calibrated following the method described by Rekas et al. [23]. The samples were
microwave heated at 2450 MHz and 261 W for 102 s [24]. The microwave-heated seeds
were cooled at ambient temperature (25–27 ◦C) and thoroughly mixed to uniform samples.
The moisture content of the seeds after microwave heating was adjusted to 10%.

2.3. Cold Pressing

PS (250 g) were pressed using a single-screw press (Farmet UNO, Ceska Skalice, Czech
Republic) equipped with a 10 mm diameter die. The capacity of the expeller press is about 8–
12 kg seed/h. The press head was heated to 60± 5 ◦C before oil pressing using a removable
heating element, and the temperature of the outflowing oil was 50 ± 5 ◦C. Temperature
was measured using a type-K thermocouple connected to a digital temperature sensor
(KIMO Instruments, Wilmington, NC, USA). The pressed oil was centrifuged at 4000 rpm
for 15 min (Centrifuge 5810R, Eppendorf, Horsholm, Germany) to remove solid particles.
Pomegranate seed oil (PSO) extraction yield was defined as gram per hundred gram of
pomegranate seed (g/100 g seed). The oil samples were packed in brown bottles and stored
at −20 ◦C before further analyses to minimize oxidation.

2.4. Determination of Pomegranate Seed Oil Quality Indices
2.4.1. Yellowness and Refractive Index

The refractive index was evaluated at 25 ◦C using a calibrated Abbe 5 refractometer
(Bellingham + Stanley, Kent, United Kingdom). The yellowness index (YI) was calcu-
lated from the PSO color properties, including lightness (L*) and yellowness (b*) values,
which were measured using a calibrated Chroma meter CR-410 (Konica Minolta, INC,
Tokyo, Japan).

YI =
142.86b∗

L∗
(1)

2.4.2. Oxidation Indices

Free fatty acids (FFA) and acid value (AV) were measured following the AOCS stan-
dard [25]. The modified ferrous oxidation-xylenol orange (FOX) method was used to
determine peroxide value (PV) [26]. ρ-Anisidine value (AnV) was determined accord-
ing to [25]. Total oxidation (TOTOX) value was calculated from the PV and AnV using
Equation (2).

TOTOX = 2PV + AnV (2)

2.5. Determination of Bioactive Compounds and Antiradical Activity
2.5.1. Total Carotenoids Content and Total Phenolic Content

The method described by Ranjith et al. [27] was used to determine total carotenoids
content (TCC). PSO (0.2 g) was dissolved in hexane (5 mL) and 0.5 mL sodium chloride
(NaCl) (0.5%, w/w) and thoroughly vortexed before being centrifuged (Centrifuge 5810R,
Eppendorf, Horsholm, Germany) at 4000 rpm for 5 min. The absorbance was measured
at 460 nm using a UV spectrophotometer (Spectrum Instruments, United Scientific, Cape
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Town, South Africa), and the results were expressed as mgβ-carotene/g of PSO. The Folin–
Ciocalteu method was applied to evaluate the total phenolic content (TPC) [28]. Briefly,
200 µL of PSO methanol extracts, 250 µL of the Folin–Ciocalteau reagent, 750 µL of 2% (w/v)
sodium carbonate, and 3 mL of distilled water were sequentially mixed, and the mixtures
were vortexed and incubated in the dark for 40 min. The absorbances were measured at
760 nm using a UV spectrophotometer (Spectrum Instruments, United Scientific, Cape
Town, South Africa), and the results were reported as milligram gallic acid equivalent per
g PSO (mg GAE/g PSO).

2.5.2. Antiradical Activity

The PSO antiradical activity was evaluated using 2.2-azino-bis (3-ethylbenzothiazoline-
6-sulfonic acid) (ABTS) and 2.2-diphenyl-1-picryl hydrazyl (DPPH) assays. Briefly, ABTS
radical cation (ABTS+) stock solution, prepared by mixing equal volumes of 2.2-azino-bis (3-
ethylbenzothiazoline-6-sulfonic acid) (ABTS) solution (7.4 mM) and potassium persulfate
solution (2.6 mM), was kept in the dark for 12–16 h. The absorbance was adjusted to
0.7 ± 0.02 at 750 nm after the incubation period, using 80% (v/v) methanol [29]. Three
hundred microliters of methanol PSO extracts were mixed with 300 µL of the freshly
prepared ABTS+ solution and the samples were incubated for 10 min in the dark. The
absorbances of the samples were measured at 750 nm using a microplate reader (Thermo
Fisher Scientific, Shanghai, China). The results were reported as mmol Trolox/g of PSO.

The method described by Siano et al. [30] was used to determine the DPPH radical
scavenging capacity of PSO. Aliquots of 200 µL of methanol PSO extracts were added to
2.5 mL of 0.04% (w/v) DPPH in 80% (v/v) methanol and vortexed before incubation in the
dark for 60 min. The absorbance was measured using a UV spectrophotometer (Spectrum
Instruments, United Scientific, Cape Town, South Africa) at 517 nm. Results were expressed
as mmol Trolox/g of PSO.

2.6. Fatty Acid Composition

The gas chromatography-mass spectrometry (GC-MS) method was used to determine
the PSO fatty acid composition [31]. PSO (0.1 g), 2.0 mL hexane, 50 µL heptadecanoic
acid (1000 ppm, internal standard), and 1.0 mL of 20% (v/v) H2SO4 in methanol were
sequentially mixed, vortexed, and incubated at 80 ◦C for 1 h in an oven. To the cooled
samples, 3 mL of saturated NaCl was added, and the mixture was further vortexed before
centrifugation (Centrifuge 5810R, Eppendorf, Horsholm, Germany) at 4000 rpm for 3 min.
The supernatant (hexane extract) was analyzed using a gas chromatograph (6890N, Agilent
Technologies, Palo Alto, CA, USA) coupled to a flame ionization detector (FID). The fatty
acid methyl esters were separated on a polar RT-2560 (100 m, 0.25 mm ID, 0.20 µm film
thickness) (Restek, Bellefonte, PA, USA) capillary column and helium (1 mL/min) was
used as the carrier gas. The sample (1µL) was injected in a 5:1 split ratio and at 240 ◦C.
The oven temperature was programmed as 60 ◦C/min and increased to 120 ◦C at a rate
of 8 ◦C/min, then to 245 ◦C at 1.5 ◦C/min, and finally to 250 ◦C at 20 ◦C/min for 2 min.
Gas-chromatographic peaks of FAME were identified by comparison with a commercial
mixture of standards, and the NIST library was used to identify the pomegranate seed oil
fatty acids profiles. The relative content (%) of each fatty acid was calculated by dividing
the peak area of each fatty acid by the total peak area of all the fatty acids identified.

2.7. Determination of Volatile Compounds

Volatile compounds were analyzed by HS-SPME-GC-MS [32]. One thousand mi-
croliters of oil samples was put in 20 mL SPME vials and 1 µL was injected into the
SPME-GC-MS system. Separation was performed on a gas chromatograph (6890N, Agilent
technologies network) coupled to an Agilent technologies inert XL EI/CI Mass Selective
Detector (MSD) (5975B, Agilent Technologies Inc., Palo Alto, CA). The GC-MS system was
coupled to a CTC Analytics PAL autosampler. Separation of the oil volatiles was performed
on a ZBWaxPlus (30 m, 0.25 mm ID, 0.25 µm film thickness) capillary column. Helium
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was used as the carrier gas at a flow rate of 1 mL/min. The injector temperature was
maintained at 250 ◦C. Injection was performed in splitless mode. The oven temperature
was programmed as follows: 35 ◦C for 5 min, followed by a ramping rate of 5 ◦C/min
until 50 ◦C and held for 3 min, ramped again at a rate of 5 ◦C/min until 120 ◦C and held
for 3 min, and finally ramped up to 240 ◦C at a rate of 10 ◦C/min for 3 min. The MSD was
operated in a full scan mode, and the source and quad temperatures were maintained at
230 ◦C and 150 ◦C, respectively. The transfer line temperature was maintained at 250 ◦C.
The mass spectrometer was operated under electron impact (EI) mode at an ionization
energy of 70 eV, scanning from 25 to 650 m/z. Compound identification was based on
mass spectral data of samples with the standard NIST and Wiley Library and with the
comparison of retention indices. The relative content (%) of each volatile compound was
calculated by dividing the peak area of each component by the total peak area of all the
compounds identified.

2.8. Statistical Analysis

The results of all the studied variables are presented as mean ± SD (standard devia-
tion). One-way analysis of variance (ANOVA) was carried out using Statistica software
(Statistical v13, TIBC, Palo Alto, CA 94304, USA) and the mean values were separated
according to Duncan’s multiple range test. Graphical presentations were made using
Microsoft Excel (Version: 16.0.13029.20344, Microsoft Cooperation, Washington, DC, USA).

3. Results and Discussion
3.1. Oil Yield

Oil yield is an essential factor in maximizing the gross income for seed oil processers.
In this regard, pretreatment of the oleaginous material is crucial in promoting oil release
from the seed matrix. The results in Figure 1 show that blanching and microwave heating of
seeds enhanced the PSO yield (55 and 91%, respectively), with blanched seeds exhibiting a
significantly higher oil yield (6.12%) than microwave-heated seeds (4.97%). The initial yield
of PSO from unpretreated seeds was 3.20%. The finding that blanching and microwave
heating of seeds significantly improved the PSO yield could be attributed to altering the
pomegranate seed cellular structures, which increased the permeability of the cell walls and
mass transfer of lipids during pressing [9,19]. Prior research has also reported significant
enhancement of cold press oil extraction efficiency by thermal seed pretreatment [18,33,34].
For instance, seed microwave pretreatment doubled the yield of cold-pressed black cumin
seed oil [35]. In a recent study, Lee et al. [36] observed a 2.3- to 2.4-fold increase in cold-
pressed perilla seed oil yield after steam pretreatment of the seeds. On the other hand,
in the absence of seed pretreatment, which provides cell disintegration, the permeability
of the pomegranate seed to oil could have been limited, hence the lower oil yield from
unpretreated seeds (Figure 1) [37]. The oil yield in the current study is 1.1- to 2.2-fold lower
than the one reported by Khoddami et al. [7], a fact that could be explained by differences
in seed variety, moisture content, oil press equipment, fruit maturity, and geographical
location, among other factors.

3.2. Yellowness and Refractive Index

The color and appearance of foods, including seed oil, constitute the first set of
sensory attributes and therefore affect the consumer perception of quality. The color of
food may be attributed to natural pigments or biochemical or chemical products developed
during processing such as seed thermal pretreatment [38]. The effect of processing on
food product color can be determined by measuring the YI. Table 1 depicts the changes in
the PSO yellowness index due to seed blanching and microwave heating. Blanching and
microwave heating of PS significantly decreased the oil YI by 7%. With respect to PSO from
blanched seeds, the decrease in the YI could be ascribed to the reduction in total carotenoids
content due to the conversion of trans-carotenoids, which are the usual configuration, to cis-
isomers, hence decreasing the oil yellowness (Figure 2a) [39]. According to Kha et al. [40],
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the extensive conjugated and trans-configured double bond system in carotenoids absorbs
light in the visible region and provides foods such as seed oil with color. The pomegranate
seed oil YI ranged from 37.30 to 40.21 and was lower than the one observed by Khoddami
et al. [7] from cold-pressed oil (81.15–91.55) of different pomegranate cultivars.

Figure 1. Oil yield of cold-pressed pomegranate seed oil from unpretreated, blanched (95 ± 2 ◦C/3 min),
and microwave-heated (261 W for 102 s) seeds. Columns followed by different letters are significantly
different (p < 0.05) according to Duncan’s multiple range test. Vertical bars indicate the standard
deviation of the mean.

Table 1. Physicochemical properties of cold-pressed pomegranate seed oil (PSO) from unpretreated, blanched
(95 ± 2 ◦C/3 min), and microwave-heated (261 W for 102 s) seeds.

Treatment RI YI FFA AV PV AnV TOTOX

Unpretreated 1.5197 ± 0.00 a 40.21 ± 0.03 a 0.60 ± 0.04 b 1.19 ± 0.09 b 0.73 ± 0.02 a 1.97 ± 0.15 b 3.42 ± 0.14 a

Blanched 1.5194 ± 0.00 a 37.30 ± 0.08 b 0.64 ± 0.10 ab 1.28 ± 0.19 ab 0.81 ± 0.01 b 2.71 ± 0.43 ab 4.33 ± 0.05 c

Microwaved 1.5195 ± 0.00 a 37.48 ± 0.09 b 0.92 ± 0.09 a 1.83 ± 0.18 a 0.86 ± 0.02 b 3.02 ± 0.08 a 4.74 ± 0.09 b

Means ± standard deviation of analysis (n = 3). Different superscript letters in the same column indicate significant difference (p < 0.05)
according to Duncan’s multiple range test. RI = refractive index (25 ◦C), YI = yellowness index, FFA = free fatty acid as punicic acid
(%), AV = acid value (mg KOH/g PSO), PV = peroxide value (meqO2/kg PSO, meqO2/kg = milli-equivalents of active oxygen per kg),
AnV = ρ-anisidine value, TOTOX = total oxidation value.

The refractive index is often applied to identify and characterize food materials,
including seed oil. The relationships between RI and fatty acid chain length as well as
the degree of unsaturation have been reported [41]. The refractive index of the oil did not
significantly (p > 0.05) change after seed pretreatment, regardless of the significant change
in fatty acid content after seed microwave pretreatment. In this sense, the interpretation
of RI results in the present study should be made with caution. The RI narrowly ranged
between 1.5194 and 1.5197, values typical of PSO and indicative of its high unsaturation
(Table 1) [41]. These values agree with those reported by Costa et al. [42] (1.5091–1.5177)
from cold-pressed PSO.

3.3. Peroxide Value, Free Fatty Acids, Acid Value, ρ-Anisidine, and Total Oxidation Value

The PV is used as the quantity measurement for peroxides, which are intermediate
products of lipid oxidation. The PV test is a good way to determine the amount of
primary oxidation products in freshly extracted seed oil. The PV of cold-pressed PSO from
unpretreated seeds was relatively low (0.73 meqO2/kg PSO). After seed blanching and
microwave heating, the PV significantly (p < 0.05) increased by 11 and 18%, although no
significant differences were observed between the PV of oils extracted from microwave-
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heated and blanched seeds (Table 1). Nevertheless, the PVs (0.73–0.86 meqO2/kg PSO)
from all oil samples were far below the level (15 meqO2/kg oil) established by the World
Health Organization (WHO) under the Codex Alimentarius Commission, indicating that
the oils were of good quality and acceptable at the international market [43]. The lower
values of peroxides in the oil samples may result from the lower extraction temperatures
during oil pressing.

Figure 2. (a) Total carotenoids content (TCC) and (b) total phenolic content (TPC) of cold-pressed
pomegranate seed oil (PSO) from unpretreated, blanched (95 ± 2 ◦C/3 min), and microwave-heated
(261 W for 102 s) seeds. Columns followed by different letters are significantly different (p < 0.05)
according to Duncan’s multiple range test. Vertical bars indicate the standard deviation of the mean.

Free fatty acids and the acid value may be used to indicate lipase activity in the seed
oil [7]. In this sense, higher FFA and AV in seed oil indicate a higher magnitude of hydrolytic
deterioration and lower-quality oil product. As shown in Table 1, PSO from blanched and
microwave-heated seeds had a relatively higher FFA and AV than PSO from unpretreated
seeds. The increase in FFA and AV after seed blanching and microwave heating ranged
between 7 and 54%. According to the quality requirements as recommended by the Codex
Alimentarius Commission, cold-pressed oils should have a maximum of 4.0 mg KOH/g
oil of AV [43]. Regardless of the increase after seed blanching and microwave heating, the
AVs (1.19–1.83 mg KOH/g PSO) were within the standardized requirements (Table 1). The
FFA (0.60–0.92%) in the present study were lower than those reported in previous studies.
For instance, Khoddami et al. [7] reported FFA values of cold-pressed PSO ranging from
0.65 to 1.39%, which were 1.1- to 1.5-fold higher than our results.

The ρ-anisidine value measures the aldehyde and ketonic breakdown products of
peroxides. These secondary products of oxidation are responsible for the development
of rancidity in oils and fats. As shown in Table 1, the AnV of PSO from unpretreated,
blanched, and microwave-heated seeds were 1.97, 2.71, and 3.02, respectively, which were 6
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to 7 times lower than those reported by Costa et al. [42]. The result that microwave heating
of seeds significantly increased the AV of PSO by 53% while blanching had an insignificant
effect on AV indicates the difference in the pretreatment methods’ mode of action. Despite
the unavailability of an internationally recognized seed oil quality standard on AnV, there
is a general agreement among researchers that for seed oil to be still acceptable, the AnV
should be less than 10 [42,44].

The total oxidation value of PSO was determined using the PV and AnV values,
representing the information for primary and secondary oxidation products. Therefore, the
TOTOX value indicates both the oxidation history and further oxidation potential of the
oils [45]. The changes in TOTOX values due to pomegranate seed pretreatment are shown
in Table 1. The TOTOX value for PSO from unpretreated seeds was 3.42, which significantly
increased to 4.33 and 4.74 after seed blanching and microwave heating, respectively. The
results suggest that blanching and microwave heating of seeds could have promoted lipase
enzyme activity and hydrolytic oxidation of the oil. The literature has reported increased
activity of lipolytic enzymes on fat and oil in damaged cells [46].

3.4. Total Carotenoids Content, Total Phenolic Content, and Antiradical Activity

While the consumption of foods rich in carotenoids has been strongly linked to the
reduction in incidences of diseases such as cancers, cardiovascular diseases, age-related
macular degeneration, and cataracts, these thermolabile antioxidant compounds might be
affected by processing [6]. According to Figure 2a, TCC significantly decreased (32%) after
pomegranate seed blanching. Nevertheless, it was not significantly (p > 0.05) affected by
seed microwave heating. The decrease in TCC after seed blanching could be explained by
the breakdown of carotenoid molecules through isomerization and thermal oxidation [20].
These values were higher than TCC values reported in previous studies. For example,
Costa et al. [42] reported TCC values ranging between 0.010 and 0.015 mg β-carotene/g
PSO. Moreover, other studies failed to detect carotenoids in PSO [5]. The variation in the
results could be due to dissimilarities in cultivars, fruit maturity, geographical location,
and oil extraction process, among other factors [47]. It should also be highlighted that the
absorbance in the spectrophotometric method might be increased by compounds other
than carotenoids, which are active in the carotenoids’ spectral range (400–500 nm) [48].
The TCC from other fruit seeds such as passion fruit and sour cherry ranged between 0.01
and 1.20 mg β-carotene/g oil [49,50]. The large disparity in the TCC of oil from different
fruit seeds could reflect differences in the sensitivity of the methods of analysis, and it is,
therefore, suggested that TCC calculated from the sum of individual carotenoids could be
more reliable.

The total phenolic contents of PSO from unpretreated, blanched, and microwave-
heated seeds are presented in Figure 2b. Blanching and microwave heating of pomegranate
seeds significantly improved the TPC of cold-pressed oil by 21 and 37%, respectively. The
findings suggest that blanching and microwaving of seeds facilitated the dissociation of
glycosylated and esterified phenolic compounds, enhancing the amount of free phenolic
compounds available for extraction [51]. The results coincide with Mazaheri et al. [20] and
Lee et al. [36], who also reported improvement in TPC of cold-pressed black cumin and
perilla seed oils after seed microwave and steam pretreatments, respectively. The levels of
TPC from blanched and microwaved seeds did not significantly differ (p > 0.05). Given
the potential bioactivity of phenolic compounds and the possible application of PSO as a
functional food, enhancement of TPC after seed pretreatment was a desirable development.
While the study of Zaouay et al. [52] reported TPC ranging from 0.03 to 0.07 mgGAE/g PSO,
the TPC values in the current study varied from 1.33 to 1.83 mgGAE/g PSO (Figure 2b).
Among other factors, the observed variation could be due to the selective nature of solvent
extraction towards the phenolic compounds, hence the lower TPC values compared to the
cold-pressed oil. On the contrary, Khoddami et al. [7] cold pressed oil from three different
pomegranate cultivars and reported TPC values ranging from 8.52 to 10.44 mgGAE/g
PSO that were 5.7 to 6.4 times higher than our results. These dissimilarities highlight
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the importance of preharvest and processing factors consideration in PSO processing
and quality.

The antiradical radical activity of PSO was determined using the DPPH and ABTS
assays. The DPPH radical scavenging activity of the cold-pressed PSO from unpretreated,
blanched, and microwaved seeds is given in Figure 3a. While blanching seeds significantly
improved the DPPH radical scavenging activity of the oil by 37%, microwave heating did
not significantly (p > 0.05) change the DPPH radical scavenging activity of the cold-pressed
PSO. Despite the insignificant effect of seed microwave pretreatment on the DPPH radical
scavenging activity of the oil, previous studies on purslane and rape seed have shown
increased DPPH radical scavenging activity in cold-pressed oil after seed microwave
heating [53,54]. It is nevertheless noteworthy that seed physical and cellular structures that
vary among different types of seeds and cultivars play a vital role in the efficiency of seed
pretreatment, cold pressing, and recovery of the antioxidant compounds. Considering that
antioxidant properties of oil have a major effect on its oxidative stability behavior, the PSO
from blanched seeds might exhibit better stability and improved shelf life. The ABTS radical
scavenging activity of the oil samples ranged between 10.95 and 11.55 mmol Trolox/g PSO,
with oil from microwaved seeds exhibiting significantly higher ABTS scavenging activity
than oil from blanched and unpretreated seeds (3 and 5%, respectively). The variation in
the oil samples’ (microwaved and blanched seeds) DPPH and ABTS radicals scavenging
suggests that the antioxidant compounds react differently with the different radicals, due
to factors such as synergism [55]. The high ABTS scavenging activity (10.95–11.55 mmol
Trolox/g PSO) in the present study could be attributed to the high levels of phenols in the
cold-pressed oils and their synergistic effect with other antioxidant compounds such as
tocopherols, which are also abundantly found in PSO [55,56].

3.5. Fatty Acid Composition

Fatty acid composition is one of the most critical quality characteristics of oilseeds,
considering that the suitability of the oil for food, nutraceutical, or pharmaceutical applica-
tions may be governed by the type of fatty acids. Table 2 shows the fatty acid composition
of cold-pressed PSO from unpretreated, blanched, and microwaved seeds. Chromatograms
of FAMES for the treatments are presented in Supplementary Figure S1. Ten different
types of fatty acids were identified in PSO, with palmitic acid, oleic acid, linoleic acid, and
punicic acid being the primary fatty acids and representing 7.73–9.22%, 9.53–10.48%, 15.93–
17.11%, and 54.12–58.32% of the total composition, respectively. Other fatty acids identified
but in minor quantities (0.06–4.32%) were arachidic acid, stearic acid, heneicosanoic acid,
docosanoic acid, docosenoic acid, and linolenic acid. Generally, thermal pretreatment of
oilseeds may alter the fatty acids composition due to the sensitivity of polyunsaturated
fatty acids [33]. While microwave heating of seeds significantly decreased punicic acid by
7%, blanching did not significantly (p > 0.05) affect the fatty acid. In a similar study, Ozcan
et al. [21] observed a 14 and 11% decrease in punicic acid after pomegranate seed roasting
(150 ◦C for 10 min) and microwave heating (750 W for 7.5 min), respectively. Considering
that punicic acid is implicated in most PSO biochemical properties, the decrease in punicic
acid after microwave heating of the seeds in the current study was not desirable. Although
punicic acid has been reported in other seeds such as bitter gourd [6], pomegranate seed
remains the major source of this bioactive lipid. Compared to the literature, the levels of
punicic acid (54.12–58.32%) in the current study are comparable to those reported by Costa
et al. [42] (55.24–60.62%) from cold-pressed PSO. Nevertheless, some previous studies on
cold-pressed PSO reported values that were higher (75.23–78.23%) than in the present
study [7,57]. The dissimilarities in the punicic acid content could be ascribed to variation
in processing techniques and pomegranate cultivars, among other factors. Linoleic acid
and γ-linolenic acid, essential fatty acids, significantly increased by 1.1- and 3.4-fold after
microwaving the pomegranate seed, whilst the blanching of the seeds did not significantly
change the respective fatty acids. This indicates differences in microwaving and blanching
modes of action and their impact on the fatty acids. Owing to the absence of appropriate
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enzymes, the human body cannot synthesize these essential fatty acids, and therefore their
maximum extraction from oilseeds is essential [58]. Oleic acid, the major monosaturated
fatty acid in PSO, insignificantly varied from 9.68% to 9.53% and 10.48% after blanching
and microwave heating the seeds, respectively (Table 2). Although the concentration of
palmitic acid and arachidic acid, the main saturated fatty acids, increased between 1.4 and
19% and 42 and 43%, respectively, after seed blanching and microwave heating, the levels
of stearic acid, heneicosanoic acid, and docosanoic acid were not significantly changed
by seed pretreatment. The insignificant effect of seed thermal pretreatment on some fatty
acids has also been reported in prior research [19].

Figure 3. (a) DPPH and (b) ABTS radical scavenging capacity of cold-pressed pomegranate seed oil
(PSO) from unpretreated, blanched (95 ± 2 ◦C/3 min), and microwave-heated (261 W for 102 s) seeds.
Columns followed by different letters are significantly different (p < 0.05) according to Duncan’s
multiple range test. Vertical bars indicate the standard deviation of the mean.

Regarding total saturated fatty acids (SFA), blanching and microwave heating of
seeds significantly increased the SFA by 9 and 18%, respectively. A 9% decrease in total
monosaturated fatty acids (MUFA) was observed in PSO from blanched seeds, and this
could be due to the significant decrease (7-fold) in docosenoic acid. No significant (p > 0.05)
variation in MUFA of PSO pressed from microwaved seeds was observed. The total
polyunsaturated fatty acids (PUFA) of oil from unpretreated seeds were 74.32% (Table 2).
After seed microwave pretreatment, the level significantly decreased by 6%, whilst it
insignificantly decreased in PSO from blanched seeds, indicating increased heat penetration
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and oxidation of polyunsaturated fatty acids during seed microwave heating (Table 1). The
MUFA/PUFA index, which could be used as an indicator of the PSO stability to oxidation,
among other factors [59], did not significantly vary after seed pretreatment. The finding
implies that seed pretreatment did not affect the balance between the monosaturated and
polyunsaturated fatty acids. However, the unsaturated fatty acids (UFA) to SFA index
decreased after seed pretreatment, which could be explained by the significant increase in
SFA after seed pretreatment.

Table 2. Fatty acid composition of cold-pressed pomegranate seed oil from unpretreated, blanched (95 ± 2 ◦C/3 min), and
microwave-heated (261 W/102 s) seeds.

Treatment Unpretreated Blanched Microwaved

SFA
Palmitic (C16:0) 7.73 ± 0.30 b 7.84 ± 0.14 b 9.22 ± 0.22 a

Stearic (C18:0) 2.53 ± 0.04 a 2.53 ± 0.05 a 2.64 ± 0.05 a

Arachidic (20:0) 3.02 ± 0.16 b 4.32 ± 0.20 a 4.28 ± 0.18 a

Heneicosanoic acid (C21:0) 1.04 ± 0.21 a 1.14 ± 0.10 a 0.88 ± 0.07 a

Docosanoic acid (C22:0) 0.77 ± 0.11 a 0.61 ± 0.04 a 0.80 ± 0.02 a

∑SFA 15.09 ± 0.50 b 16.44 ± 0.19 a 17.81 ± 0.30 c

MUFA
Oleic (C18:1 n-9 cis) 9.68 ± 0.12 b 9.53 ± 0.24 b 10.48 ± 0.17 a

Docosenoic acid (C22:1) 0.92 ± 0.24 a 0.13 ± 0.01 b 0.25 ± 0.05 b

∑MUFA 10.60 ± 0.15 a 9.65 ± 0.25 b 10.72 ± 0.22 a

PUFA
Linoleic (C18:2 n-6 cis) 15.93 ± 0.49 b 16.00 ± 0.23 ab 17.11 ± 0.18 a

γ-Linolenic (C18:3 n-6) 0.07 ± 0.01 b 0.06 ± 0.00 b 0.24 ± 0.00 a

Punicic (cis-9 trans-11 cis-13
C18:3) 58.32 ± 0.87 a 57.85 ± 0.62 a 54.12 ± 0.36 b

∑PUFA 74.32 ± 0.50 a 73.91 ± 0.41 a 71.47 ± 0.52 b

∑MUFA/∑PUFA index 0.14 ± 0.002 ab 0.13 ± 0.004 b 0.15 ± 0.004 a

∑UFA/∑SFA index 5.64 ± 0.22 a 5.09 ± 0.07 b 4.62 ± 0.09 b

Values (mean ± SD, n = 3) in the same row and followed by different superscript letters are significantly different (p < 0.05) according to
Duncan’s multiple range test, SFA = saturated fatty acids, MUFA = monounsaturated fatty acids, PUFA = polyunsaturated fatty acids,
UFA = unsaturated fatty acids, ∑ = sum of SFA, MUFA, or PUFA.

3.6. Volatile Compounds

The results of volatile compounds of cold-pressed PSO from unpretreated, blanched,
and microwave-heated seeds are presented in Table 3. A typical chromatogram of volatiles
from the investigated pomegranate seed oil is presented in Supplementary Figure S2.
Volatile compounds that can be perceived by humans have a greater influence on PSO
flavor. These are the primary volatile flavor substances and constitute the characteristic
flavor of PSO. The PSO samples showed varied volatile compounds belonging to the
following chemical classes: alcohols, aldehydes, ketones, esters, carboxylic acids, and
hydrocarbons. The groups of volatile compounds were comparable to the findings of
Costa et al. [42] and Dun et al. [60] from cold-pressed pomegranate seed and peanut oils,
respectively.

Esters, which are derived from the esterification of free fatty acids and alcohols, occur
naturally in many fruits and enhance their flavors. Pentyl pentanoate, the only ester
observed in the oil samples, was significantly higher in oil from blanched and microwaved
seeds (10- and 1.5-fold, respectively) than in unpretreated seeds, suggesting that blanching
and microwaving the seeds can enhance the oil flavor [61]. Ren et al. [62] also reported
the enhancement of ester compounds in rapeseed oil after microwave pretreatment of the
seeds. In addition, blanching and microwave heating of seeds may induce heterocyclic
compounds through the Maillard reaction, which enhances the positive flavors. Furan and
its derivatives belong to heterocyclic compounds and correlate with the flavor of foods [62].
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In the present study, 2.5-dimethyltetrahydrofuran was significantly higher (69%) in PSO
from microwaved seeds when compared to unpretreated seeds.

Table 3. Volatile compounds of cold-pressed pomegranate seed oil from unpretreated, blanched (95 ± 2 ◦C/3 min), and
microwave-heated (261 W/102 s) seeds.

Treatment Unpretreated Blanched Microwaved

Alcohols

Cycloheptanol 0.77 ± 0.05 b 1.58 ± 0.08 a 1.32 ± 0.11 a

Ethanol 1.84 ± 0.30 a 1.74 ± 0.11 a 1.26 ± 0.08 a

Pentanol 10.82 ± 0.76 b 13.70 ± 0.84 a 10.92 ± 0.42 b

Hexanol 0.95 ± 0.10 b 1.83 ± 0.14 a 1.47 ± 0.17 a

Butanol 0.43 ± 0.01 b 0.59 ± 0.02 a 0.47 ± 0.00 b

Octanol 0.51 ± 0.02 a 0.52 ± 0.03 a 0.43 ± 0.05 a

Heptanol 0.80 ± 0.16 a 1.13 ± 0.08 a ND
Aldehydes

Hexanal 0.74 ± 0.01 b 1.30 ± 0.09 a 1.27 ± 0.08 a

3-Methylbutanal 1.36 ± 0.08 b 6.47 ± 0.96 a 6.71 ± 0.55 a

2-Heptenal 3.67 ± 0.65 b 5.71 ± 0.11 a 4.78 ± 0.35 ab

Nonanal 0.78 ± 0.00 b 1.04 ± 0.07 a 1.05 ± 0.01 a

2.4-trans.trans-Nonadienal 2.71 ± 0.34 a 2.53 ± 0.16 a 3.48 ± 0.50 a

2.4 Nonadienal 3.05 ± 0.34 a 2.72 ± 0.10 a 2.97 ± 0.01 a

Benzaldehyde 0.77 ± 0.08 a 0.64 ± 0.03 a 0.62 ± 0.04 a

Pentanal 10.99 ± 0.09 a 13.71 ± 0.83 11.87 ± 0.55 a

Trans-2-hexenal ND 0.59 ± 0.01 b 0.50 ± 0.01 a

Benzene acetaldehyde ND 1.97 ± 0.28 b 0.93 ± 0.17 a

Ketones
2-Propanone 6.00 ± 0.40 a 7.01 ± 0.15 a 6.44 ± 0.29 a

5-Butyltetrahydro-2-furanone 0.22 ± 0.04 ND ND
5-Butyl-5 H-furan-2-one 0.28 ± 0.03 ND ND

Carboxylic acids
Hexanoic acid 0.71 ± 0.03 a 0.69 ± 0.03 a 0.78 ± 0.04 a

Acetic acid 3.23 ± 0.54 a 3.46 ± 0.15 a 4.11 ± 0.08 a

Pentanoic acid 7.15 ± 1.19 a ND 6.02 ± 0.13 a

Formic acid ND 0.27 ± 0.01 a 0.29 ± 0.02 a

Butanoic acid 0.50 ± 0.02 b 0.62 ± 0.02 a ND
Esters

Pentyl pentanoate 0.69 ± 0.07 b 6.81 ± 0.24 a 1.05 ± 0.07 b

Furans
2-Pentylfuran ND 0.21 ± 0.00 ND
2-Butylfuran ND 0.36± 0.04 a 0.37 ± 0.01 a

2.5-Dimethyltetrahydrofuran 0.22 ± 0.02 a ND 0.35 ± 0.05 b

Hydrocarbons
trans-alpha-Bergamotene 0.74 ± 0.09 a 0.32± 0.01 b 0.36 ± 0.03 b

2.3-Dimethyl-1-pentene 0.39 ± 0.06 a 0.51 ± 0.05 a ND
Limonene 0.52 ± 0.09 b 0.13 ± 0.01 a ND

Others
Trichloromethane 2.43 ± 0.23 a 2.35 ±0.44 a 1.57 ± 0.09 a

Means ± standard deviation of analysis (n = 3). Different superscript letters in the same row indicate significant difference (p < 0.05)
according to Duncan’s multiple range test. ND = non-detected.

Moreover, other furans including 2-pentylfuran and 2-butylfuran were only detected
in oil from blanched and microwaved seeds. This phenomenon indicates that the flavor
of PSO may be improved by blanching and microwave pretreatment of seeds. Pentanol,
the primary alcohol observed, was 25 to 27% higher in PSO from blanched seeds than
microwave-heated and unpretreated seeds (Table 3). Likewise, butanol and cycloheptanol
manifested higher in PSO extracts from blanched than microwaved and unpretreated seeds.
Other alcohol compounds observed in lower concentrations such as ethanol and octanol
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were not significantly affected by seed blanching and microwave heating. Alcohols have
also been reported in previous studies as important contributors to seed oil flavor [63].

Among the aldehydes, pentanal was the major compound observed in the cold-pressed
PSO and was significantly higher in PSO extracts from blanched and microwave-heated
seeds than unpretreated seeds. Pentanal is characterized by a nutty and fruity flavor
and has been naturally found in other seed oils such as sesame, olive, and peanut [63].
Other compounds including hexanal, 3-methylbutanal, 2-heptenal, and nonanal were also
significantly higher in oil extracts from blanched and microwaved pomegranate seeds
(Table 2). Aldehydes in seed oil are primarily produced either through the lipoxygenase
pathway during oilseed cell fragmentation or automatic oxidation of the oil during pro-
duction [64]. Hexanal is a typical oxidation volatile and has been commonly used as a
quality indicator for lipid oxidation in seed oils. It is characterized by green, oily, and
fruity odors [60]. Its level has been positively correlated with rancid taste. As shown
in Table 3, blanching and microwave pretreatment of seeds may promote the oxidative
degradation of the oil. Our results, therefore, indicate higher oxidation liability of oil from
pretreated pomegranate seeds compared with unpretreated seeds. The PV, AV, and AnV
results found in this study support these findings (Table 1). While 2-propanone did not
significantly differ in all oil samples, other ketones such as 5-butyltetrahydro-2-furanone
and 5-butyl-5H-furan-2-one were only detected in oil from pretreated seeds. Saturated
fatty acids including hexanoic acid, acetic acid, pentanoic acid, formic acid, and butanoic
acid did not significantly (p > 0.05) vary among the PSO samples. These free fatty acids,
which are linked to sour and pungent sensations synonymous with sensory defects, could
have been produced from the oxidation of their respective aldehydes [65]. It can be stated
that, although seed blanching and microwave heating may augment the positive flavor of
cold-pressed PSO, they may also promote the development of undesirable flavors.

4. Conclusions

In the current study, the effect of blanching and microwave pretreatment of seeds on
the quality of cold-pressed PSO was investigated. Blanching and microwave pretreatment
of seeds prior to pressing improved oil yield, total phenolic content, flavor compounds, and
DPPH and ABTS radical scavenging capacity. The findings are desirable to pomegranate
seed oil processors and consumers along the value chain, given that cold pressing is also a
greener and safer technology compared to the use of solvents such as hexane. The levels
of oxidation indices including the peroxide value, free fatty acids, acid value, ρ-anisidine
value, and total oxidation value also increased. Nevertheless, the oil quality conformed to
the requirements of the Codex Alimentarius Commission standard (CODEX STAN 19-1981)
on cold-pressed vegetable oils.

On the other hand, blanching and microwave heating of seeds decreased the pomegranate
seed oil’s yellowness index, whilst the refractive index was not significantly affected. Al-
though both blanching and microwave pretreatment of seeds added value to the cold-
pressed PSO, the oil extracted from blanched seeds exhibited lower oxidation indices. The
finding affirms that the processing technique is one of the important seed oil quality de-
terminants. Microwave pretreatment of seeds before cold pressing significantly increased
palmitic acid, oleic acid, and linoleic acid, whilst it decreased the level of punicic acid,
highlighting increased heat penetration and oxidation of the conjugated fatty acid. On
the contrary, blanching of seeds did not significantly affect the fatty acid composition of
PSO, an indication that the nutritional quality of the oil was not significantly affected. In
conclusion, blanching of seeds is a practical step that could be incorporated into mechanical
production of PSO.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/foods10040712/s1, Figure S1: Chromatograms of FAMES of oil from unpretreated, blanched
and microwave heated pomegranate seed, Figure S2: Typical chromatograms of volatiles from the
pomegranate seed oil.
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