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Current microbial source tracking techniques that rely on grab samples analyzed by
individual endpoint assays are inadequate to explain microbial sources across space
and time. Modeling and predicting host sources of microbial contamination could
add a useful tool for watershed management. In this study, we tested and evaluated
machine learning models to predict the major sources of microbial contamination in
a watershed. We examined the relationship between microbial sources, land cover,
weather, and hydrologic variables in a watershed in Northern California, United States.
Six models, including K-nearest neighbors (KNN), Naïve Bayes, Support vector machine
(SVM), simple neural network (NN), Random Forest, and XGBoost, were built to predict
major microbial sources using land cover, weather and hydrologic variables. The results
showed that these models successfully predicted microbial sources classified into
two categories (human and non-human), with the average accuracy ranging from
69% (Naïve Bayes) to 88% (XGBoost). The area under curve (AUC) of the receiver
operating characteristic (ROC) illustrated XGBoost had the best performance (average
AUC = 0.88), followed by Random Forest (average AUC = 0.84), and KNN (average
AUC = 0.74). The importance index obtained from Random Forest indicated that
precipitation and temperature were the two most important factors to predict the
dominant microbial source. These results suggest that machine learning models,
particularly XGBoost, can predict the dominant sources of microbial contamination
based on the relationship of microbial contaminants with daily weather and land cover,
providing a powerful tool to understand microbial sources in water.

Keywords: machine learning, XGBoost, fecal contamination, microbial source tracking, land use, rainfall

INTRODUCTION

Understanding the sources of microbial contamination in drinking and recreational water is
important for mitigating health risks of waterborne pathogens and protecting the public from
waterborne diseases (Scott et al., 2002; Simpson et al., 2002; Harwood et al., 2014). Currently,
multiple methods have been developed to track sources of microbial contamination, including
matching phenotypic or genotypic characteristics of indicator bacteria, detecting host-specific
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molecular markers, and identifying chemical indicators of
wastewater (Scott et al., 2002; Simpson et al., 2002; Meays et al.,
2004; Boehm et al., 2013; Harwood et al., 2014; Dubinsky et al.,
2016). However, these laboratory-based methods have limitations
including time and cost constraints and/or technique difficulty.
More importantly, these methods only help to identify sources of
contamination at the sites and time of sampling. The methods are
limited in their ability to map microbial sources across space and
time. Therefore, approaches to modeling and predicting sources
of fecal contamination in unsampled locations and times are
highly desirable.

To date, it is still difficult to determine optimal models and
appropriate variables for predicting the sources of microbial
contamination (Belanche-Muñoz and Blanch, 2008; Belanche
and Blanch, 2011). This is due in part to the complexity of
host-specific sources of microbial contaminants in water, which
may originate from humans, birds, dogs, or other animals.
It is also because factors affecting microbial sources are not
fully understood. Several recent studies have revealed that land
use/land cover (LULC) and weather significantly impact fecal
contamination and its sources in water (Peed et al., 2011; Wu
et al., 2011; Gentry-Shields et al., 2012; Haack et al., 2013; Jent
et al., 2013; Liang et al., 2013; Staley et al., 2013; Verhougstraete
et al., 2015; Wu, 2019). For example, in Jordan Lake, North
Carolina, and land use components but not rainfall were found
to associate with the concentrations of M. smithii (nifH) markers,
an indicator of human-source contamination (Gentry-Shields
et al., 2012). A study by Peed et al. (2011) reported that the
abundance of human-associated genetic markers had a positive
significant correlation with septic tank density following wet
weather events. In urbanized coastal watersheds in Florida,
microbial sources were strongly affected by the change in rainfall
patterns (Shehane et al., 2005). Besides land cover and weather,
microbial sources may also be affected by hydrological factors
because hydrology strongly influences the transport and fate of
fecal contaminants in water (Wilkes et al., 2009; Liao et al., 2015).
For example, microorganisms can be transported from upstream
to downstream, and between sediments and waterbodies (Wu
et al., 2009). These examples and many other studies have
substantiated that land use, weather, and hydrological factors
play an important role in determining the sources of fecal
contamination in water, and suggest that the relationship between
these factors and microbial sources are complicated and non-
linear.

Machine learning is a set of methods or algorithms to
automatically find patterns and extract valuable information
from data (Bishop, 1995; Hastie et al., 2009). Based on whether
input data include a response variable (also called target
variable, output variable, or label), machine learning algorithms
are divided into two major categories: unsupervised learning
and supervised learning (Bishop, 1995; Hastie et al., 2009).
For unsupervised learning, a model makes inferences from
datasets consisting of only features (predictive variables) but
no labeled responses. K-means clustering, principal component
analysis (PCA), and expectation–maximization algorithm (EM)
are common unsupervised learning algorithms. In contrast, for
supervised learning, a model is trained with input data that are

composed of both features and a response variable. Common
supervised learning algorithms include K-nearest neighbors
(KNN), Naïve Bayes, support vector machine (SVM), neural
network (NN), Random Forest, XGBoost, and others. These
algorithms are often used for two purposes: classification (input
data with discrete labels), and regression (input data with
continuous labels). For all these algorithms, research is needed
to inform selection and applicability of machine learning to help
identify and remediate sources of surface water contamination.

The objectives of this study are (1) to examine the relationship
of land cover, weather, and hydrologic variables with microbial
sources, (2) to predict the major types of microbial sources based
on these data inputs using machine learning, and (3) compare
the performance of six machine learning algorithms in predicting
the dominant source of microbial contamination. This study is
the first to predict host-specific sources of fecal contamination
based on land cover, weather, and hydrologic data using machine
learning; the output of which provides useful information for
making appropriate watershed management decisions.

MATERIALS AND METHODS

Microbial Source Tracking Data
Host-specific sources of fecal contamination in the Russian River
watershed (Figure 1), Northern California, were investigated
previously during 2011–2013 (Dubinsky et al., 2016). The
Russian River is heavily used for recreational activities in the
summer months including swimming, wading and paddling. The
area has a diverse and mixed land use types, such as urbanized
areas, open space, dairy farms and pastureland (Dubinsky et al.,
2016). Agriculture is the major land use type near Sites 10, 21, and
40, where ruminants (cows and deer) and horses are often found.
Forest land is the major land use type near Sites 24, 30, and 31,
where wildlife, such as deer, raccoons, rodents, rabbits, coyotes,
and birds are common.

During the original study (Dubinsky et al., 2016), 102 water
samples were collected from 46 sites, in both dry and wet seasons
(Figure 1). The sources of fecal bacteria in these water samples
were tested using the PhyloChip microarray and classified into six
major sources (human, bird, dog, horse, pig, and ruminant) using
SourceTracker, a machine learning approach for classification.
The existence of each host-specific source was indicated by the
positive likelihood ratio from the SourceTracker test. Briefly,
DNA was extracted from water samples and hybridized into the
PhyloChip microarray overnight. After stained and scanned, the
PhyloChip microarray provided raw data as fluorescent image
files. The fluorescent image files which were considered as probe-
quartet profiles, were analyzed using the probe quartet approach
described previously (Cao et al., 2013). To assign each probe-
quartet profile a specific source of microbial contamination, a
machine learning method (SourceTracker) was used to classify
the quartet data (Another machine learning approach, Random
Forest, was also used. We chose the result from SourceTracker
because of its better performance). The quartet profiles from 70
reference samples were used as the training data. The quartet
profiles from the test data were classified into six different
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FIGURE 1 | Sampling sites and hydrologic characteristics of the study area.
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source types: humans (stool, sewage, and septage), dogs and
cats, pigs, ruminants (cows, elk, and deer), horses, and birds.
In the classification, each source was given a probability that
its microbial community DNA was found in the probe-quartet
profile of each sample. The source with the highest probability
was regarded as the major source. One limitation of the
PhyloChip approach is that the method is not developed for
source apportionment and quantification. Detailed information
about microbial source tracking data and the relevant methods
were described by Dubinsky et al. (2016).

For this study, the microbial sources previously described were
reclassified into two categories: human vs. non-human sources.
In this way, the modeling problem becomes a binary classification
problem, which is simpler than a multi-class classification
problem and an appropriate first step for applying machine
learning to microbial source tracking.

Weather Data
Daily mean temperature and daily precipitation data during
2011–2013 were obtained from PRISM time-series datasets,
which are available online1. Daily climate data provided by
the PRIMS climate group have a spatial resolution of 4 km.
The methods for generating the climate data were described
previously (Daly et al., 2008). Based on the geographic
coordinates of each water sampling site, a 4 km × 4 km grid
from the climate data map was delineated, and the climate data
of this grid was assigned to the sampling site. Four weather
variables were created, including daily mean temperature on
the sampling date (Temp0), daily mean temperature on the day
before sampling (Temp−1), daily precipitation on the sampling
date (Prep0), and daily precipitation on the day before sampling
(Prep−1).

Hydrologic Data
The hydrologic information in the study area was obtained from
National Hydrologic Dataset (NHD) plus version 2 (NHDplus
V2) (Moore and Dewald, 2016). Developed by United States
EPA and United States Geological Survey, NHDplus V2 consists
of three major components: NHD, National Elevation Dataset
(NED), and Watershed Boundary Dataset (WBD). The drainage
network information including rivers, streams and ponds in the
study area was provided by the NHD. From the WBD, a six-level
hydrologic unit (the smallest classification unit of watershed) was
obtained. Generally, a hydrologic unit was delineated to let the
surface drainage within the unit converge at a single outlet. The
NED was used to determine stream flow directions based on the
assumption that water flows from high elevation to low elevation.

Land Cover Data and Processing
Land cover information was obtained from the National
Land Cover Database (NLCD) 2011 (Homer et al., 2015).
From the NLCD 2011, eight major types of land cover
classes were identified in the study area, including water,
developed land, barren land, forest, shrubland, grassland,
agriculture, and wetland.

1http://prism.oregonstate.edu/

Since there are no established criteria to determine the scale
of land cover that influences water quality in a watershed, two
approaches, distance-based and hydrologic-based approaches,
were used to calculate land cover components around a sampling
point. For the distance-based approach, a circular 2 km buffer
was created around each sampling site and the percentages of
eight land cover classes in the buffer were calculated. We chose
2 km as the buffer distance because a pervious study showed that
land cover in a 2 km buffer had strong associations with microbial
water quality (Wu and Jackson, 2016). For the hydrologic-based
approach, hydrologic characteristics of the watershed were taken
into account. Specifically, the scale of the influential land cover
of a sampling site was delineated based on the following criteria:
(1) only the land cover in a single 12-digit hydrologic unit
(sub-watershed level) was considered; (2) only land cover in the
upstream contributing area of a sampling site was considered;
and (3) when an upper stream and a downstream of a sampling
site are very close and their contributing areas are difficult to
distinguish, a midline was drawn to divide the land cover between
the upper stream and the downstream into two parts: one is
associated with the upper steams, and the other is associated with
the downstream. Based on these criteria, a buffer of 2 km was
drawn around the upstream in a single hydrologic unit where the
sample site is located. Then, the percentages of land cover classes
in the buffer were calculated. For a few sampling sites that are not
on a stream network, land cover associated with these sites were
calculated using the first approach, i.e., a circular 2 km buffer.

Exploratory Data Analysis
After these data were collected and processed, exploratory data
analysis was conducted to examine the mean, standard deviation,
and range of weather and land cover data as well as microbial
source tracking data obtained for the all sampling sites. The
relationships between microbial sources (the probabilities of
specific microbial sources), weather, and land cover variables
(the percentages of land use types) were examined by Spearman
correlation analysis.

Machine Learning Models
Predictive Feature Selection
To predict the dominant source of microbial contamination, we
selected two groups of predictive features to fit six supervised
machine learning algorithms, respectively. Group 1 includes eight
land cover variables measured by the distance-based approach
(the percentages of water, developed, barren land, forest,
shrubland, grassland, agriculture, and wetland), two weather
variables (daily mean temperature and daily precipitation on
the sampling date), and two hydrologic variables (elevation and
flow accumulation). Because the flow accumulation variable has
a large variability, we included it in the model after a square
root transformation. The daily mean temperature and daily
precipitation on the day before sampling were not included in the
model because of high correlation with the measures taken on the
day of sampling. Group 2 is similar as Group 1 except that land
cover variables measured by the distance-based approach were
replaced with those measured by the hydrologic-based approach.
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Model Implementation
The dataset was randomly divided into two subsets in the ratios
of 80 and 20% for training and testing the model, respectively.
The training dataset was used to train the model and obtain
the model parameters. The testing dataset was used to evaluate
prediction performance. We used k-fold cross validation to
tune the hyperparameters of the models for the training set.
Specifically, the training set was randomly split into four subsets
equally, three subsets were selected as the training data and
the remaining one was used as the test data to calculate the
model accuracy. This process was repeated four times, reserving
a different subset for validation for each repetition. Then six
models were used to predict the major source of microbial
contamination (human source vs. non-human source), including
KNN, Naïve Bayes, SVM, NN, Random Forest, and XGBoost. The
hyper-parameters (e.g., the number of iterations) of each model
were tuned using a random search approach. In the random
search, the hyperparameters are randomly combined and used
to find the optimal values for the model. The analyses were
conducted with Python (v 3.7) programming language.

K-nearest neighbors: KNN is a simple non-parametric
method for classification, which classifies a new data point in a
category same as the majority of its k neighbor points (Altman,
1992). Here, we set k as five and used “KNeighborsClassifier”2

from “scikit-learn” library for prediction.
Naïve Bayes: Naive Bayes is a probabilistic model based on

Bayes’ theorem. It calculates the conditional probability of each
class that a data point belongs to given training features with
a naïve assumption that the features are independent (Hastie
et al., 2009). Here, we used “GaussianNB”3 from the “scikit-learn”
library for prediction and set the parameters as default.

Support vector machine: SVM is a method to classify data by
find a hyperplane in a high dimensional feature space that has
the maximum margin, namely, the largest distance to the nearest
training data points. The train data points that are close or on
the boundary of the hyperplane are called support vectors, which
determine the classification (Hastie et al., 2009). In this study, we
used “LinearSVC”4 from the “scikit-learn” library for prediction.

Neural Network: NN is a model that attempts to mimic
neurons to process information, often called artificial neural
network (ANN). A typical NN comprises three layers, an input
layer that receives information, a hidden layer that processes
information, and an output layer that produces the model
outcomes. Each layer is composed of some computing elements
(called neurons or nodes), and neurons in different layers are
connected by weights (Jain et al., 1996; Samarasinghe, 2016).
During the learning process, the weights between neurons in
different layers are adjusted to obtain optimal model outcomes. In
this study, “MLPClassifier”5 from the “scikit-learn” library were
used for prediction.

2https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
KNeighborsClassifier.html
3https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.
GaussianNB.html
4https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
5https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.
MLPClassifier.html

Random forest: Random Forest is an ensemble method that
combines the results from multiple decision trees to obtain a
better performance (Breiman, 2001). Briefly, for the Random
Forest algorithm, the dataset is sampled n data points multiple
times with replacement. Each subset of samples is used to train
each decision tree. For the classification, Random Forest will
combine the results from multiple trees and determine the
class with the highest number of votes from these trees. One
advantage of this algorithm is that the method can rank the
importance of features (predictors) (Genuer et al., 2010). Here,
“RandomForestClassifier”6 was used for prediction.

Extreme gradient boosting (XGBoost): XGBoost is another
decision-tree based ensemble algorithm, which implements the
gradient boosting method to find the best tree model (Chen and
Guestrin, 2016). In traditional gradient boosting, each new tree
specifically focuses on the error of the previous tree. XGBoost
adds more regularization terms in the model to control model
over-fitting, which makes the model have a better performance
(Chen and Guestrin, 2016; Chen et al., 2020). In this study,
“XGBClassifier” from “xgboost” library7 was used for prediction.

Model Performance Evaluation
The performance of each model was evaluated by two metrics:
accuracy and the Area Under the Curve (AUC) of Receiver
Operating Characteristics (ROC). The accuracy was calculated
using the total number of correctly classified samples divided
by the number of total samples. The ROC curve illustrates
the ability of a binary classifier system to separate two groups
at various discrimination threshold settings. The curve is
plotted with the true positive rate (sensitivity) against the false
positive rate (1-specificity). The AUC value indicates degree
or measure of separability. When the value is closer to 1, the
performance is better.

RESULTS

Description of Microbial Source
Tracking, Land Cover, and Weather Data
Microbial sources in the Russian Watershed were tracked with
102 water samples (Dubinsky et al., 2016) and indicated by
categorical probability. When microbial sources were reclassified
into two categories, the probability of human sources ranged
from 0 to 0.81, and the probability of non-human (birds,
ruminants, horses, pigs, and dogs) sources ranged from 0 to 0.21.
When microbial sources were reclassified into three categories,
the probability of human sources was the same as that in the
two-way classification, while the probabilities of bird sources
and animal sources ranged from 0 to 0.08 and from 0 to 0.20,
respectively (Table 1).

Land cover components associated with the sampling sites
were calculated by two approaches. The result based on circular
2 km buffer approach showed that forest, urban, and grassland

6https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html
7https://xgboost.readthedocs.io/en/latest/python/python_api.html
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were the dominant land cover types, with the mean percentages
of 45, 16, and 19%, respectively. Water, barren land, and wetland
only accounted for small percentages, with the mean percentages
less than 2%. Similar results were observed when land cover was
tallied based on the upstream hydrologic unit. Forest, urban, and
grassland were still the major land cover types, with the mean
percentages of 39, 25, and 14%, respectively. Water, barren land,

and wetland were no more than 2%. In terms of weather, the
mean temperature on and before the sampling days ranged from
7.2 to 22.5◦C and from 6.1 to 23.3◦C, respectively. The daily
precipitation on and before the sampling days ranged from 0 mm
to 87.1 mm and from 0 to 62.7 mm, respectively. Among 102
samples, 61 samples were collected in wet weather and 41 samples
were collected in dry weather (0 mm of precipitation) (Table 1).

TABLE 1 | Descriptive statistics of variables in this study.

Categories Variables N Mean Standard deviation Minimum Maximum

Microbial sources Human 102 0.06 0.14 0.00 0.81

Non-human 102 0.03 0.04 0.00 0.21

Bird 102 0.01 0.01 0.00 0.08

Animal 102 0.02 0.04 0.00 0.20

Land cover variables calculated based on hydrologic unit Water 102 0.01 0.01 0.00 0.03

Urban 102 0.16 0.17 0.00 0.85

Barren land 102 0.00 0.01 0.00 0.06

Forest 102 0.45 0.32 0.00 0.96

Shrubland 102 0.11 0.09 0.00 0.40

Grassland 102 0.19 0.20 0.01 0.86

Agriculture 102 0.08 0.13 0.00 0.73

Wetland 102 0.01 0.01 0.00 0.10

Land cover variables calculated based on 2 km buffer Water 102 0.02 0.02 0.00 0.10

Urban 102 0.25 0.20 0.01 0.98

Barren land 102 0.00 0.01 0.00 0.04

Forest 102 0.39 0.32 0.00 0.93

Shrubland 102 0.07 0.07 0.00 0.38

Grassland 102 0.14 0.13 0.01 0.54

Agriculture 102 0.12 0.17 0.00 0.60

Wetland 102 0.01 0.01 0.00 0.05

Weather variables Temperature (t = 0), ◦C 102 13.33 4.29 7.17 22.50

Temperature (t = −1), ◦C 102 13.48 4.70 6.11 23.39

Precipitation (t = 0, mm) 102 17.02 25.24 0.00 87.12

Precipitation (t = −1, mm) 102 13.23 19.53 0.00 62.74

Hydrologic variable Elevation (m) 102 57 59 0 243

Flow accumulation (m2) 102 14245 48,592 0 2,48,045

TABLE 2 | Spearman correlation between microbial sources and weather and hydrologic variables.

Human sources Bird sources Animal sources Non-human sources

Temp0 r −0.119 0.135 −0.152 −0.051

p 0.235 0.176 0.128 0.609

Temp-1 r −0.108 0.140 −0.218 −0.123

p 0.280 0.161 0.028 0.216

Precp0 r 0.128 −0.048 0.372 0.304

p 0.198 0.632 <0.001 0.002

Precp-1 r −0.034 −0.047 0.346 0.271

p 0.733 0.642 <0.001 0.006

Elevation r −0.137 0.056 −0.100 −0.061

p 0.168 0.579 0.319 0.543

Flow accumulation r −0.214 −0.059 −0.064 −0.068

p 0.0301 0.557 0.521 0.494

Temp0, daily mean temperature in the sampling date; Temp−1, daily mean temperature in the day before sampling, Prep0, daily precipitation in the sampling date, Prep−1,
daily precipitation in the day before sampling. Bold fonts indicate the correlation is significant (p < 0.05).
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TABLE 3 | Spearman correlation between land cover and microbial sources during wet weather and dry weather.

Wet weather Dry weather

Land cover Human sources Non-human sources Animal source Bird source Human sources Non-human sources Animal source Bird source

Water1 r 0.163 −0.051 −0.015 −0.086 −0.029 0.186 0.366 −0.071

p 0.210 0.694 0.910 0.508 0.856 0.245 0.019 0.661

Developed land1 r 0.217 0.087 0.103 −0.254 0.018 −0.090 −0.048 −0.132

p 0.093 0.503 0.430 0.048 0.912 0.574 0.768 0.411

Barren land1 r −0.117 −0.198 −0.208 −0.011 −0.070 0.092 0.136 0.053

p 0.371 0.125 0.108 0.931 0.665 0.567 0.396 0.743

Forest1 r −0.016 −0.121 −0.152 0.280 −0.123 0.096 0.196 −0.098

p 0.902 0.351 0.243 0.029 0.445 0.549 0.220 0.542

Shrub land1 r −0.108 −0.370 −0.409 −0.023 −0.098 0.033 −0.206 0.301

p 0.408 0.003 0.001 0.863 0.543 0.838 0.195 0.056

Grassland1 r 0.109 0.047 0.028 −0.122 0.140 0.025 −0.129 0.248

p 0.402 0.719 0.830 0.350 0.382 0.875 0.421 0.119

Agriculture1 r −0.047 0.000 0.090 −0.279 0.186 −0.013 −0.243 0.246

p 0.719 0.998 0.492 0.030 0.246 0.935 0.126 0.121

Wetland1 r 0.246 −0.093 0.002 −0.273 −0.076 0.300 0.312 0.168

p 0.056 0.476 0.987 0.033 0.635 0.057 0.047 0.293

Water2 r 0.290 −0.273 −0.314 0.052 −0.075 0.067 0.088 −0.001

p 0.024 0.033 0.014 0.688 0.640 0.675 0.584 0.995

Developed land2 r 0.386 0.047 0.079 −0.124 0.052 −0.228 −0.159 −0.161

p 0.002 0.720 0.544 0.343 0.745 0.152 0.320 0.315

Barren land2 r −0.080 −0.385 −0.441 0.051 −0.114 0.208 0.179 0.095

p 0.539 0.002 0.000 0.694 0.477 0.191 0.263 0.555

Forest2 r −0.058 −0.072 −0.106 0.297 −0.137 0.006 0.198 −0.245

p 0.654 0.581 0.417 0.020 0.393 0.969 0.215 0.122

Shrub land2 r −0.174 −0.308 −0.383 −0.139 −0.190 −0.031 −0.110 0.082

p 0.181 0.016 0.002 0.287 0.235 0.847 0.495 0.612

Grassland2 r −0.002 0.090 0.067 −0.223 0.078 0.074 −0.061 0.231

p 0.989 0.490 0.607 0.084 0.628 0.647 0.705 0.147

Agriculture2 r −0.085 −0.303 −0.220 −0.333 −0.014 −0.159 −0.382 0.197

p 0.516 0.018 0.089 0.009 0.932 0.322 0.014 0.218

Wetland2 r 0.279 −0.200 −0.157 −0.313 −0.026 0.182 0.156 0.091

p 0.030 0.123 0.226 0.014 0.870 0.255 0.331 0.570

1Land cover components were calculated based on 2 km buffer.
2Land cover components were calculated based on hydrologic unit.
Bold fonts indicate the correlation is significant (p < 0.05).
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TABLE 4 | The performance of each machine learning algorithm for predicting major sources of fecal contamination.

Models Predictor Parameters Accuracy Precision Recall F1 score

KNN Group 1 n_neighbors = 5 0.71 0.7 0.7 0.7

Naïve Bayes Group 1 priors = None, var_smoothing = 1e-09 0.62 0.7 0.58 0.64

Support vector machine Group 1 C = 1, max_iter = 2000, tol = 1e-4 0.67 0.5 0.71 0.59

Neural network Group 1 solver = ’lbfgs’, alpha = 1e-4, hidden_layer_sizes = (5, 3) 0.76 0.7 0.78 0.74

Random forest Group 1 n_estimators = 20 0.81 0.7 0.88 0.78

XGBoost Group 1 n_estimators = 30 0.86 0.9 0.82 0.86

KNN Group 2 n_neighbors = 5 0.76 0.7 0.78 0.74

Naïve Bayes Group 2 priors = None, var_smoothing = 1e-09 0.76 1.0 0.67 0.8

Support vector machine Group 2 C = 1, max_iter = 2000, tol = 1e-4 0.71 0.5 0.83 0.63

Neural network Group 2 solver = ’lbfgs’, alpha = 1e-4, hidden_layer_sizes = (5, 2) 0.76 0.9 0.69 0.78

Random forest Group 2 n_estimators = 20 0.81 0.7 0.88 0.78

XGBoost Group 2 n_estimators = 10 0.90 0.9 0.9 0.9

Correlation Between Microbial Sources
and Land Cover and Weather
The Spearman correlation analysis showed that precipitation
on or 1 day before the sampling day had positive correlations
with non-human sources (p < 0.01) but was not significantly
correlated with human sources (p > 0.05). When microbial
sources were classified into three categories, precipitation on or
1 day before the sampling day had positive correlations with
animal sources, while temperature on the day before sampling
had a negative correlation with animal sources. No significant
correlations were found between these weather variables and bird
and human sources (Table 2).

Weather also affected the correlations between microbial
sources and land cover variables. No significant correlations were
observed for the samples collected in dry weather. However,
for samples collected during wet weather, correlations were
found between microbial sources and land cover variables. For
example, bird sources had a significant positive correlation
with the percentage of forest, but negative correlations with
the percentages of developed land, agriculture, and wetland
when these land cover variables were calculated based on
the circular 2 km-buffer approach. For land cover variables
calculated based on hydrologic unit, more significant correlations
between microbial sources and land cover variables were found.
Bird sources still had a significant positive correlation with
the percentage of forest but negative correlations with the
percentages of agriculture and wetland. Human sources had
significant positive correlations with the percentages of water
area, developed land, and wetland, while animal sources had
negative correlations with the percentages of water area, barren
land, shrubland, and agriculture (Table 3).

Prediction of Microbial Sources Using
Machine Learning
Six machine learning models were applied to predict whether the
microbial source of a sample was from human or non-human
sources. According to the average accuracy, XGBoost had the
best performance and correctly predicted 88% of the samples.
Random forest had the second best method with the accuracy of

81%. The other tested models included KNN (accuracy = 74%),
Neural Network (accuracy = 76%), SVM (accuracy = 69%), and
Naïve Bayes (accuracy = 69%). When the group of predictors
were compared, the accuracies of the neural network and
Random Forest models remained consistent for both groups. For
the other models, the accuracies were much higher when the
Group 2 predictors were used. The accuracy of XGBoost reached
up to 90% with the Group 2 predictors (Table 4).

The performance of these models was further evaluated using
the AUC of ROC, which showed similar results as measured
for accuracy. XGBoost had the highest AUC value, followed by
Random Forest, KNN, Neural Network, SVM, and Naïve Bayes.
Similarly, the performance of the Group 2 predictors was much
higher than that of the Group 1 predictors. The AUC of XGBoost
using the Group 2 predictors was up to 92%, which was the
highest among all models (Figure 2).

Importance Ranking for Predictors
According to the importance index calculated by the Random
Forest model, precipitation and temperature are the two most
important predictors, of which the importance index values were
above 20%. Flow accumulation, elevation, the percentages of
developed land, grassland, water, forest, and wetland were less
important predictors, of which the importance index values were
between 5% and 10%. The percentages of agriculture, shrubland
and barren land were not important predictors, of which the
importance index values were below 5% (Figure 3).

DISCUSSION

We examined the relationships of microbial sources with land
cover and weather variables. Based on their relationships, we
applied six machine learning models to predict microbial sources.
Our results revealed that all models using this dataset performed
well to predict microbial sources in two categories (human
vs. animal) and XGBoost had the best performance. To our
best knowledge, this is the first study to model and predict
major microbial sources of fecal contamination in water based
on land cover and weather data using machine learning. This
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FIGURE 2 | The ROC curves of six models with Group 1 and Group 2 predictors.

modeling approach is a promising complement to current
laboratory-based microbial source tracking methods because
it can overcome some of their limitations. For example, the
modeling approach enables estimation of microbial sources in
space and time while fecal contamination in water is inevitably
affected by weather, land cover, and other factors. As a result,
modeling outputs can help mangers to better understand major
microbial sources in water and make appropriate decisions to
protect public health.

Land cover is regarded as a key factor to determine the sources
of fecal contaminants because land cover is directly related to
the activities and habitats of hosts of fecal contaminants (Kerr
and Ostrovsky, 2003). For example, developed land, including
residential, and commercial areas, are places mainly for human
activities while other land covers tend to comprise habitats for
birds, livestock, and wildlife. In this study, birds are often the
major source in the area where forest is the primary land cover
(e.g., Site 18), while in the area where grassland and agriculture
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FIGURE 3 | The importance of predictors based on the importance index calculated by Random Forest.

dominate, the source of ruminant animals might have a higher
probability (e.g., Site 3). Our Spearman correlation analysis
supported these relationships as developed land had a significant
positive correlation with human sources but a significant negative
correlation with bird sources. The relationship between land
cover and the sources of fecal contaminants is further influenced
by wet weather because precipitation can facilitate the transport
fecal contaminants to water (Wilkes et al., 2009; Wu et al., 2009,
2011). In wet weather, runoff from different types of land cover
and overflow from sewer systems increase fecal contamination
of water (McLellan et al., 2007; Wu et al., 2011), while in dry
weather, microbes from land are transported to water to a lesser
extent. In addition, solar radiation may inactivate fecal bacteria,
thus reducing fecal contamination of water (Boehm et al., 2002).
As a result, land cover is likely to have a closer relationship
with microbial sources in wet weather than in dry weather.
The result of Spearman correlation analysis corroborated this
conclusion as no correlations between land cover and microbial
sources were found in dry weather but some correlations
(e.g., positive correlation between bird sources and forest land,
negative correlation between animal sources and shrubland) were
found in wet weather. We also found that animal sources had
a significant and positive correlation with daily precipitation,
which is consistent with results from other studies that have
reported more frequent detection of fecal contaminants from
animal sources during wet weather (Wu et al., 2009). Our
model also showed that precipitation and temperature were two
important predictors, suggesting that they have strong impact on
the sources of microbial contaminants.

We also took hydrologic features of sampling sites into
account in delineating influential land cover to predict microbial

sources because hydrologic features might significantly influence
the results of microbial source tracking (Reischer et al., 2008).
We hypothesized that land cover in the catchment area upstream
of a sampling site may influence microbial sources at that site
because when fecal contaminants are flushed from land to water,
they can be transported from upstream to downstream (Wu
et al., 2009). Therefore, the components of influential land cover
were calculated not only based on a circular 2 km buffer, but
also based on upstream catchment area within a hydrologic
unit. Our results clearly showed that the model performance
was improved greatly when hydrologic features were taken into
account. For example, the accuracies of KNN, Naïve Bayes,
and SVM changed from 71, 62%, and 67 to 86%, 76 and
71%, respectively.

Our study showed XGBoost performed best when predicting
microbial sources in two categories. The result is not surprising
as other studies have shown that XGBoost has advantages over
other models (Pan, 2018; Wang et al., 2020). Similar to Random
Forest, it is an ensemble method that makes inferences based
on multiple decision trees, thus reducing prediction errors.
In addition, XGBoost can avoid model overfitting by adding
additional regularization when the sample size is small, which is
the case of this study. Among six models selected, Naïve Bayes
had a relative low performance. This may be because that our
predictors are not independent of each other, which does not
meet the assumption of the model. Though Naïve Bayes did not
perform well this study, it has worked well in spam filter and
text classification (McCallum and Nigam, 1998; Metsis et al.,
2006). As shown in Table 5, each model has its advantages and
disadvantages. As a result, the selection of appropriate models
depends on the specific problem to solve.
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TABLE 5 | Comparison of the strength and weakness of different machine learning algorithms.

Algorithms Strength Weakness

KNN It is intuitive and simple; It is slow and not good for large dataset;

It has only one hyper parameter; It does not work well with high dimensional dataset;

No training period is needed. It is sensitive to noisy data, missing values and outliers.

Naive Bayes It is simple and easy to implement; It has the assumption of independent predictors, and the performance will be poor if the assumption is not met.

It only requires only small amount of training data;

It works well with high dimensional dataset such as text classification.

SVM The training is relatively easy; It is not suitable for a large dataset;

It is effective in high dimensional data; It requires feature scaling;

It has no local optimal. It difficult to choose appropriate kernel function.

Neural network It has fault tolerance; It is hard to interpret the model;

It can model complicated relationship; It is prone to overfitting;

It is expensive to compute;

It does not need any prior knowledge about the data. It tends to end up in local minima.

Random forest It does not require feature engineering; It is hard to interpret the model.

It does not need the assumptions on the distribution of the data;

It can handle collinearity;

It can rank variable importance.

XGBoost It has a high performance and accuracy as compared to other algorithms; It needs to tune multiple parameters to get the optimal model.

It does not require feature engineering;

It can rank variable importance.
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In this study, we did not predict microbial sources in more
than three categories but we expect the performance will be
reduced when multiple variables are predicted simultaneously.
Several approaches might improve the prediction performance,
for example, by increasing training data. Another limitation
of this study is that the sample size is relatively small. The
model trained on small data may not be generalized well. The
performance of these models may vary when the models are
applied to other environmental settings. Though the study has
these limitations, it is expected that these models have promise
to become a powerful tool to understand host-specific sources of
fecal contamination in water.
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