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Abstract

To extract the sensitive bands for estimating the winter wheat growth status and yields, field

experiments were conducted. The crop variables including aboveground biomass (AGB), soil

and plant analyzer development (SPAD) value, yield, and canopy spectra were determined.

Statistical methods of correlation analysis, partial least squares (PLS), and stepwise multiple

linear regression (SMLR) were used to extract sensitive bands and estimate the crop variables

with calibration set. The predictive model based on the selected bands was tested with valida-

tion set. The results showed that the crop variables were significantly correlated with spectral

reflectance. The major spectral regions were selected with the B-coefficient and variable impor-

tance on projection (VIP) parameter derived from the PLS analysis. The calibrated SMLR

model based on the selected wavelengths demonstrated an excellent performance as the R2,

TC, and RMSE were 0.634, 0.055, and 843.392 for yield; 0.671, 0.017, and 1.798 for SPAD;

and 0.760, 0.081, and 1.164 for AGB. These models also performed accurately and robustly

by using the field validation data set. It indicated that these wavelengths retained in models

were important. The determined wavelengths for yield, SPAD, and AGB were 350, 410, 730,

1015, 1185 and 1245 nm; 355, 400, 515, 705, 935, 1090, and 1365 nm; and 470, 570, 895,

1170, 1285, and 1355 nm, respectively. This study illustrated that it was feasible to predict the

crop variables by using the multivariate method. The step-by-step procedure to select the sig-

nificant bands and optimize the prediction model of crop variables may serve as a valuable

approach. The findings of this study may provide a theoretical and practical reference for rap-

idly and accurately monitoring the crop growth status and predicting the yield of winter wheat.

Introduction

The traditional method for obtaining the physiological and biochemical parameters of crops is

mainly based on taking physical samples from the fields, and then measuring them by using

chemical methods in the lab. However, it is time consuming, labor intensive, and destructive
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[1]. The non-destructive or non-intrusive approach by using hyperspectral technology can

provide an efficient tool to overcome these problems. This technology has been also proved to

be effective in rapidly estimating crop growth status, grain yield, and quality [2]. Crop canopy

sensors were commonly used in precision agriculture to estimate agronomic parameters

including chlorophyll, AGB, and plant nitrogen abundance (or deficiency) [3–6]. The simple

statistical analysis always suffers the problem of over-fitting because the number of spectral

band far exceeds the sample size [7]. Previous studies indicated that vegetation indexes com-

bined visible and near-infrared bands can minimize spectral noise, and correlate to the crop

growth variables and crop physiological parameters [8, 9]. The extraction of the sensitive

bands that mainly contain hyperspectral information of crop variables is the foundation and

the premise for constructing the vegetation index [10]. Recognizing and/or extracting some

sensitive spectral bands from numerous wavelengths is very crucial step for overcoming the

over-fitting and collinear problems and improving the model accuracy [11]. However, deter-

mining the central or sensitive wavelengths for establishing predictive model is often a chal-

lenge [12, 13]. The selection of new wavebands in hyperspectral imaging has been carried out

in a number of cases that mainly focused on how to increase sensitivity of the vegetation index

to chlorophyll, nitrogen content, and other physical parameters [14]. Optimizing multiple nar-

row bands by using stepwise linear regression analysis has been commonly used to identify the

important bands related to plant nitrogen status [15]. However, only depending on the SMLR

method could not significantly improve the generality of prediction model [9]. Thus, many

researchers have adopted mathematical technique and statistical procedure to effectively mine

the ill-posed hyperspectral data and overcome the over-fitting problems [16]. Vasques et al

[17] successfully extracted the sensitive bands of soil organic matter to realize its accurate pre-

diction using the stepwise multiple linear regression (SMLR) method. Li et al. [18] tested the

performance of spectral indicators and partial least squares (PLS) method to compare their

accuracy in predicting canopy nitrogen content of winter wheat. They further reported that

PLS was a potentially useful approach in deriving canopy nitrogen content of winter wheat

under the conditions of different growth stages and different cultivars when numerous kinds

of canopy reflectance data were included in the calibration models. Previous investigation also

proved that the PLS was an effective method in mining hyperspectral data during the model devel-

opment process [19], selecting significant bands [20], and overcoming the problems of collinearity

and over-fitting [21]. The PLS could be used to provide a useful exploratory and predictive tool in

analyzing hyperspectral data and extracting hyperspectral information [12, 22].

The leaf chlorophyll content, nitrogen content, and AGB are important crop parameters

because they can show the vegetative growth status [23, 24]. It is crucial to accurately and

quickly evaluate the growth status and grain yield with the hyperspectral technology [25].

Numerous studies found a close correlation between SPAD value and nitrogen content, leaf

chlorophyll content. They further recommended that the SPAD readings could be made as a

nitrogen status indicator [26, 27]. Wang et al. [28] reported that the SPAD value could be esti-

mated with a high coefficient of determination (R2 = 0.7444, RMSE = 7.359) by using the

method of continuous wavelet transformation.

In order to deal with the complicated phenomenon of high dimensionality and redundancy

in processing of hyperspectral data, it is essential to extract the sensitive bands for estimating

the winter wheat growth status and grain yield. More specifically, the objectives of the research

were to: (i) extract the significant band information representing growth status indicator and

yield of winter wheat, and overcome the high dimensionality and redundancy of hyperspectral

data with the method of multivariate analysis, (ii) effectively evaluate the growth status and

predict yield using extracted sensitive bands, and (iii) explore a feasible approach to extract the

sensitive bands of growth status indicator and yield of winter wheat.

Extraction of Sensitive Bands for Monitoring the Winter Wheat

PLOS ONE | DOI:10.1371/journal.pone.0167679 January 6, 2017 2 / 16

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing Interests: The authors have declared

that no competing interests exist.



Materials and Methods

Experiments design

Experiment (Exp.) 1: The experiment was carried out at the experimental station (N 37˚25’, E

112˚33’) of Shanxi Agriculture University (P. R. China) from September of 2011 to July of

2012. The climate in local area belongs to arid area with an average annual rainfall of 440 mm

and mean annual temperature of 11˚C. The soil of the field was classified as a Calcareous Cin-

namon soil developed from loess parent material (Alfisols in U.S. taxonomy) with 22.01 g kg-1

organic matter, 53.8 mg kg-1 total N, 18.43 mg kg-1 available phosphate, and 236.9 mg kg-1

available potassium. The winter wheat cultivar of Jing 9549 was sown in September of 2011

with a planting density of 6 million plants per hectare. The experiment was a randomized com-

plete block design with three replications. For each treatment, the nitrogen rates: 0 kg ha-1

(N0), 100 kg ha-1 (N1), 200 kg ha-1 (N2), 300 kg ha-1 (N3), and 400 kg ha-1 (N4) were applied

for each plot at pre-sowing basal and at jointing stage with the ratio of 6:4 [29]. For all treat-

ments, calcium phosphate and potassium chloride were applied as basal dose at 120 kg ha-1

(P2O5) and 150 kg ha-1 (K2O), respectively. The experiment plot was 20 (4 by 5) square meters

and the routine field management was conducted as usual. All plot measurement including

canopy spectra, SPAD value, and AGB was mainly made at reviving, jointing, heading, and fill-

ing stages. All data obtained from three replications for the same treatment were averaged.

Total 20 sample data were obtained, and these data were used as the calibration set.

Experiment (Exp).2: The experiment was conducted in the same area with Exp. 1 from Sep-

tember in 2012 to July in 2013. It was a split plot randomized complete block design with three

replications. Three varieties of winter wheat (Jing 9549, Chang 4738, and Jinnong 190) were

assigned as the main plot and five nitrogen application rates (0 kg ha-1, 75 kg ha-1, 150 kg ha-1,

225 kg ha-1, and 300 kg ha-1) were applied as the sub-plot treatments, with an area of 20 (4 by

5) square meters for each plot. The same amounts of P2O5 and K2O as of experiment 1 were

applied. The same field management of Exp. 1 was carried out in Exp. 2. All samples were

mainly taken at jointing, heading, and filling stages. 15 sample data were achieved for each

growth stage and total 45 samples were also designed as the calibration set.

Experiment (Exp).3: The experiment was conducted in Wenxi County (N 34˚35’-35˚49’, E

110˚13’-112˚4’), China, where the majority of the winter wheat located in flatland and minority

on the hill, with an average annual rainfall of 740 mm and mean annual temperature of 14˚C.

At heading stage of winter wheat, 20 sample sites including the irrigation wheat fields and non-

irrigation wheat fields owned by local farmers were randomly selected. The farmland size was

less than 0.5 hectare throughout the county. Therefore, the growth status of winter wheat for 20

sample sites had a wide range due to the various winter wheat varieties, diverse fertilizer applica-

tions, and different routine field managements. The experiment was used to further confirm the

accuracy of selected sensitive bands through validating the application and robustness of SMLR

models for crop variable. This experiment was initiated as the validation set.

Measurement of SPAD value, AGB, and yield

For each measurement of all crop growth indicators and canopy spectra, more than 2 m2 of

the winter wheat that had a consistent growth status were selected in each plot. The samples

were taken at each growth stage. The 1 m2 of the winter wheat was used for obtaining the spec-

tral reflectance, SPAD value, and AGB; and another 1 m2 was used to measure the grain yield

at harvesting period.

SPAD value: The SPAD value was determined by using a SPAD instrument (Soil and Plant

Analyzer Development, Japan, 502) on the top second leaf. The SPAD values were evenly
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measured for 9 times from the leaf sheath to leaf apex in each leaf. Five leaves were randomly

selected and measured. All the SPAD readings were averaged as the final SPAD value.

AGB (104 kg ha-1): 1 square meter of winter wheat plant samples was taken after the mea-

surement of canopy spectra and SPAD value. The sample was weighed in lab and the mass of

the sample was determined.

Yield (kg ha-1): At harvesting stage, the grain yield was determined at each target point (1

m2) in each of the growth stage.

Measurement of canopy reflectance

The canopy reflectance of winter wheat was obtained with an ASD spectroradiometer (Analyt-

ical Spectral Devices, Inc. (ASD), USA) under cloudless conditions and as close to solar noon

as possible. The ASD spectrometer is operated in the 350–2500 nm spectral region, with a sam-

pling interval of 1.4 nm and spectral resolution of 3 nm between 350 and 1050 nm; and a sam-

pling interval of 2 nm and spectral resolution of 10 nm between 1050 and 2500 nm. The

viewing angle was set at 25˚. In the target area of winter wheat, three target points were selected

and ten spectra were obtained for each point. These measurements were then averaged as the

final spectrum for the target area. The canopy of winter wheat height was 1 m. Prior to the

measurement of canopy reflectance in each plot, a standard whiteboard (Labsphere, North

Sutton, NH, USA) was used to calibrate the spectral reflectance.

Pre-process of hyperspectral reflectance and crop variables

The raw spectral reflectance obtained from the spectrometer always contains background infor-

mation and noise. Therefore, it is essential to process the raw spectral reflectance by eliminating

the abnormal spectrum, averaging the same canopy spectrum, and splicing correction. Then,

the spectral reflectance was smoothed with 8 points in a Savitzky-Golay way to eliminate the

effect of noise and background information [30]. In current study, we mainly paid attention to

the spectral region of 350–1400 nm that contained most of crop growth status information.

Every 5 wavebands was averaged into one spectral band variable to reduce the hyperspectral

dimension for all hyperspectral bands [31]. Eventually, 1051 wavebands were reduced to 211.

Multivariate analysis

Correlation analysis. The correlation coefficient analysis that can illustrate the relation-

ship between two variables is a common method to extract the sensitive bands from 2151

wavelengths that are always collinear and redundant. Previous studies [9, 19, 27, 28] reported

that the sensitive bands always appeared in the region where there was a large correlation coef-

ficient or the correlation coefficient rapidly shifting. These spectral regions are always deemed

to contain much more variable information.

PLS analysis. The PLS method is a technique that generalizes and/or combines the fea-

tures of principal component analysis and multiple regressions [32]. It is particularly useful

when PLS is used to predict a set of dependent variables from a large set of independent vari-

ables since it can overcome the co-linearity and realize the dimension reduction for hyperspec-

tral bands. It will be not losing much hyperspectral information [33]. Thus, the result of PLS

analysis is also used for selecting the sensitive band regions [34, 35].

Selecting the optimal factor number is one of the most important processes in PLS analysis.

The B-coefficient and variable importance on projection (VIP) derived from PLS analysis are

also important parameters. B-coefficient expresses the correlation between independent and

dependent variable, and represents the importance and influence of independent variables on

dependent variables. The independent variables with larger B-coefficients can always be
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viewed as a large contribution to the predictive model. However, Lee [36] thought that the sen-

sitive bands regions could not be selected based on B-coefficient parameters alone. VIP param-

eter is another variable to show the distribution and effect of independent variable to the PLS

model. Wold [37] reported that the independent variables could be eliminated if the B-coeffi-

cient parameter is lower and VIP value is less than 0.8, simultaneously.

SMLR analysis. The SMLR method combines a forward selection and a backward elimi-

nation. Initially, the independent variable is imported to the regression equation based on the

influence, distribution, and the significance of dependent variable as affected by independent

variable. Then, the best variable that has a higher coefficient at the significant probability level

(α = 0.05) in each step is added. Furthermore, all variables that enter the regression are

checked to see if any variables will be removed using the significant criterion (α = 0.01). The

next independent variable will be imported and the process will stop if no more variables can

be imported or eliminated. The independent variable that enters the model is closely related to

the dependent variable. Vasques et. al. [17] reported that it was a potential method to analyze

and select useful hyperspectral wavelengths.

Procedures of sensitive band extraction

To clearly show how to extract the sensitive bands of crop variable in the paper, the four steps

were initiated.

1. Correlation analysis: The correlation analysis was conducted between the SPAD, AGB,

yield variable, and canopy spectral variable by using the calibration set. The results would

provide reference for the extracted wavelengths derived from multivariate analysis.

2. PLS analysis: The PLS models of crop variables were established under the optimal factor

number by using the calibration set, and then the sensitive band regions were determined

with the B-coefficient and VIP parameters derived from PLS model.

3. SMLR analysis: The sensitive band regions were input to select the sensitive bands and the pre-

dictive models were constructed based on the selected wavelengths by using the calibration set.

4. Validation: The Exp. 3 was applied to confirm the accuracy of selected sensitive bands

through validating the application and robustness of SMLR models.

Validation parameters

The validation was based on the parameters of theil coefficient (TC), root mean squared error

(RMSE) [37]. Their equations were defined by:

TC ¼
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Where, t is the sample number, and byt , yt is the predictive value and measured value, respec-

tively. The TC value ranges from 0 to 1, indicating that the smaller number for TC, the better

predictive effectiveness for predicted value and measured value.

Results

Statistical analysis of crop variable

In this study, to accurately extract the important wavelengths that are sensitive to the grain

yield, SPAD, and AGB, the experiment 1 and 2 (including four cultivars under different years,

various nitrogen application rates and managements, together with different sample periods)

were merged into the calibration set (Table 1). The data in Table 1 shows that the range and

SD of three crop variables were wide. It indicated that the calibration set created a wide range

variation of growth status (SPAD and ABG) and grain yield. This might simulate the perfor-

mance of winter wheat growth and hyperspectral reflectance in practice as realistic as possible.

Moreover, the validation set derived from the field experiment 3 also held a similar range and

a larger SD value if comparing the results with calibration set. The experiment 3 would con-

firm the accuracy of selected sensitive bands through validating the application and robustness

of SMLR models for crop variables.

Analysis of canopy reflectance under different conditions

The data (Fig 1A) showed that the spectral reflectance in visible band as affected mainly by

chlorophyll [38] was similar to the same variety of winter wheat. However, there was an obvi-

ous difference in near-infrared band affected by the inner structure of leaf and the growth sta-

tus of winter wheat. There was a large difference for the spectral reflectance between three

varieties of winter wheat, especially for the variety of Jinnong 190 (Fig 1B). The spectral reflec-

tance did not change in a large degree in visible band with the application of nitrogen. How-

ever, it increased in near-infrared band where the increased rate gradually dwindled and the

spectral saturated phenomenon occurred [15, 39] (Fig 1C). The data (Fig 1D) demonstrate

that the spectral reflectance in visible band decreased at first and then increased with the

growth and development period of winter wheat until at mature stage when the wave crest and

wave trough disappeared. Moreover, the reflectance increased at first and then decreased to

the lowest at mature stage. Then, the double-peak disappeared that was the typical characteris-

tics of plant. Overall, the hyperspectral reflectance sensibly responded to the wide variation of

growth status. This sensitivity might provide the possibility to extract the hyperspectral infor-

mation of crop variables.

Table 1. Statistical analysis of yield, SPAD, and aboveground biomass (AGB) of winter wheat for three experiments.

Crop variables N Range Min Max Average SD

Calibration set (Experiment 1 and 2) Yield (kg ha-1) 65 5917.964 4549.171 10467.136 7596.864 1045.343

SPAD 65 14.116 48.184 62.300 53.171 3.161

AGB (104 kg ha-1) 65 8.183 3.590 11.773 6.870 2.392

Validation set (Experiment 3) Yield (kg ha-1) 20 5568.554 4687.524 10256.077 7500.574 1305.994

SPAD 20 13.678 48.622 62.300 52.872 3.958

AGB (104 kg ha-1) 20 8.177 3.590 11.767 7.373 2.744

Note: N, sample number; SD, standard deviation; Min, minimum; Max, maximum; The unit for yield and AGB is kg ha-1 and 104 kg ha-1, respectively. SPAD

is dimensionless.

doi:10.1371/journal.pone.0167679.t001
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The correlation coefficients were analyzed between crop variables and the spectral wave-

lengths by using the calibration set as shown in Fig 2. The Fig 2 illustrates that there was a sig-

nificantly positive and negative band region from 350–1400 nm for AGB and yield of winter

wheat, respectively. The SPAD was positively correlated with these wavelengths from 350 to

740 nm. A negatively correlation with the wavelength region of 740–1400 nm was observed.

For the SPAD and AGB variables, the correlation coefficient noticeably shifted in red edge

region (680–760 nm). The correlation coefficient for SPAD and AGB in 350–680 nm was high

and some similar peaks located at these wavelengths: 680, 760, 870, 940, 11230, 1230, and 1355

nm. The close correlation between SPAD and AGB resulted in the fact that the feature of cor-

relation coefficient was similar. Although the negative correlation coefficient was lower than

0.6 for grain yield, it also passed the significant test at the 0.05 level. Its correlation coefficient

in visible region was stable. However, obvious variance in the red edge and near infrared

regions, especially at these wavelengths: 730, 940, 1160, 1240, and 1360 nm was documented.

Considering the fact that the sensitive bands always hold a close correlation with crop vari-

ables, the correlation analysis would provide some valuable reference to compare or validate

the spectral bands extracted with the method of multivariate analysis.

Fig 1. Canopy reflectance of winter wheat under different experimental treatments. (a) described the

canopy reflectance for the variety of Jing 9549 at jointing stage in 2012 and 2013; (b) showed the canopy

reflectance for different varieties in 2013 (V1, V2, and V3 were the variety of Chang 4738, Jing 9549, and

Jinnong 190, respectively); (c) was the canopy reflectance for Jing 9549 under different nitrogen levels

(introduced in Exp. 1); (d) was the canopy reflectance for Jing 9549 at different growth and development

periods (T1, T2, T3, T4, T5, and T6 are green stage, jointing stage, booting stage, flowering stage, filling

stage, and maturity stage, respectively).

doi:10.1371/journal.pone.0167679.g001
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PLS analysis

A desirable model should have a high R2, low TC, and RMSE, as well as less number of vari-

ables. In current study, PLS models for three crop variables (grain yield, SPAD, and AGB)

were initiated under different number of factors; while only the most accurate models with the

parameters of TC, RMSE, and R2 were selected in Table 2. The data in Table 2 indicate that the

optimal factor numbers were 8, 5, and 2 for the PLS models of yield, SPAD, and AGB, respec-

tively. The calibrated and validated models for three crop variables had a moderated perfor-

mance (Table 2). Simultaneously, the B-coefficient and VIP parameter derived from PLS

analysis are shown in Fig 3. The Fig 3 presents that the peaks for B-coefficient and VIP were

similar. The wavelength that holds a high VIP always shows a large B-coefficient at the same

time. Based on the selective principle that the VIP exceeded 1 (0.8 for biomass as the VIP in

near infrared was thoroughly lower than 1), the absolute value of B-coefficient parameter was

Fig 2. Correlation analysis between growth status indicators, yield, and spectral reflectance of winter

wheat.

doi:10.1371/journal.pone.0167679.g002

Table 2. Extraction of optimal factor numbers for hyperspectral PLS models of yield, SPAD, and aboveground biomass (AGB).

Crop variables Calibrated model Validated model Optimal factor number

R2 TC RMSE R2 TC RMSE

Yield 0.6939 0.05007 771.5222 0.7376 0.043422 663.9267 8

SPAD 0.7159 0.015699 1.671999 0.736 0.046444 4.724085 5

AGB 0.7076 0.088983 1.28344 0.8851 0.090443 1.338688 2

Note: TC, theil coefficient; RMSE, root mean squared error; R2, determination coefficient.

doi:10.1371/journal.pone.0167679.t002
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higher at the same time. The sensitive band regions of yield, SPAD, and AGB variables are

selected and presented in Table 3. These bands demonstrated either a shift or a significant

peak.

Extraction of sensitive bands for SPAD, AGB, and grain yield based on

SMLR method

The sensitive band regions as the independent variable are categorized to SMLR analysis to

extract the important hyperspectral bands. The extracted sensitive bands of SPAD, AGB, and

grain yield are listed in Table 4. The performance of SLMR models for three variables is shown

in Fig 4. The distance from the sample position to the fitting lines in coordinate axis was calcu-

lated to show the effect of growth stage under same nitrogen treatment on calibrated model

(Table 5). Moreover, the SMLR models of crop variable were validated using the validation

Fig 3. Selection of sensitive spectral region for the yield, SPAD, and aboveground biomass (AGB) of winter wheat based on the B-coefficient

and VIP parameters.

doi:10.1371/journal.pone.0167679.g003

Table 3. Extraction of sensitive band region based on the B-coefficient and VIP parameter of PLS method.

Crop variables Range 1 (nm) Range 2 (nm) Range 3 (nm) Range 4 (nm) Range 5 (nm)

Yield 350–395 700–795 925–1055 1165–1260 -

SPAD 350–555 580–750 935 1075–1115 1335–1395

AGB 350–740 895 1155–1225 1285 1320–1365

doi:10.1371/journal.pone.0167679.t003
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parameters (R2 and RMSE) to further confirm the accuracy of selected sensitive bands with the

validation set conducted under complex eco-climate situation differing with other two experi-

ments. The Table 6 shows the performance of calibrated models and validated models for

three crop variables. The fitted effect between measured values and predicted values is illus-

trated in Fig 5. The Table 6 illustrates that the calibrated SMLR models based on the selected

wavelengths had a good performance as the R2, TC, and RMSE were 0.634, 0.055, and 843.392

for yield; 0.671, 0.017, and 1.798 for SPAD; and 0.760, 0.081, and 1.164 for AGB. These models

also performed an accurate and robust (a moderate) prediction by using the field validation set

(Fig 5). The parameters of R2, TC, RMSE were 0.714, 0.049 and 752.016 for yield; 0.787, 0.036,

and 3.795 for SPAD; and 0.863, 0.086, and 1.327 for AGB.

Discussion

In this study, a large number of samples with various representations were identified and

investigated to select the sensitive band related to crop variable including grain yield, SPAD,

and AGB. This is an essential step for developing a real-time spectral prediction of crop growth

status and grain yield. Furthermore, the correlation analysis, PLS analysis, and SMLR analysis

were applied to select and extract the sensitive band regions associated with crop growth status

and yield. The optimal factor number was determined with the validation parameters to estab-

lish the PLSR models. The sensitive band regions were selected with the B-coefficient and VIP

parameters derived from PLS analysis. Then, the selected band regions were identified as an

input to the SMLR analysis to extract the sensitive bands. The SMLR models based on the sen-

sitive bands were validated under field experiment. Generally, if the selected independent vari-

ables retained in predictive model contain the major information of dependent variables, the

Table 4. Extraction of sensitive band for yield, SPAD, and aboveground biomass (AGB) based on the

method of SMLR analysis.

Crop variables Selected sensitive bands (nm)

Yield 350, 410, 730, 1015, 1185, 1245

SPAD 355, 400, 515, 705, 935, 1090, 1365

AGB 470, 570, 895, 1170, 1285, 1355

doi:10.1371/journal.pone.0167679.t004

Fig 4. The SMLR models of yield, SPAD, and AGB using the calibration set. The dashed line and solid line was 1:1 line as a reference and fitted line

between the measured value and predicted value, respectively. The filling color of black, red, green, and blue represents the reviving stage, jointing stage,

heading stage, and filling stage, respectively.

doi:10.1371/journal.pone.0167679.g004
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approach of constructing model was in the right direction and the model of dependent variable

may be accurate. However, it is still imperative that the robustness and application of the pre-

dictive model of crop variable are needed to be further validated under complex conditions, e.

g., numerous varieties of winter wheat, inconsistent grow status of winter wheat, different fer-

tilization application, and heterogeneous eco-climate region [34]. That is why the Exp. 3 in

Wenxi County was implemented to confirm the accuracy of selected sensitive bands through

validating the application and robustness of SMLR models for crop variable.

In current study, the wavelengths of 350, 410, 730, 1015, 1185, and 1245; 355, 400, 515, 705,

935, 1090, and 1365; 470, 570, 895, 1170, 1285, and 1355 nm for yield, SPAD, and AGB of win-

ter wheat, respectively, were extracted as the most informative identification. It was noted that

the spectral bands from 350 to 700 nm were important for photosynthetic capacity, which

always affect the plant growth status and grain yield [40]. That was why the sensitive bands of

350, 410, and 730; 355, 400, 515, and 705; and 470 and 570, were associated with yield, SPAD,

and AGB, respectively. The wavelengths of 400, 410, and 470 nm belonged to the green region.

There were several reports proving the importance of the region in evaluating the plant growth

due to the significant correlation between the green region and the crop variables (Fig 2) [10,

41]. The spectral region of 680–760 nm was the red edge that was proved to be effective and

accurate in estimating chlorophyll content [42], total nitrogen [43], and yield [20]. Yacobi

et al. [44] presented that the 713 nm wavelength was optimal to estimate chlorophyll content.

Kira et al. [45] reported that the spectral band around 720 nm always remained high sensitive

with chlorophyll absorption and avoided the saturation phenomenon at moderate to high

chlorophyll content. Similar wavelength of 700 nm was reported to predict the SPAD in these

studies [36, 46]. It seems that the 705 nm wavelength was important for estimating SPAD in

the current study. The spectral region (760–1400 nm) was governed by canopy structure, leaf

cell structure, and water absorption. The character of leaf and canopy was significantly related

to AGB and the spectral region contained some important spectral information for AGB. Ever-

ard et al. [47] pointed out that the spectral range 880–1680 nm was more accurate than spectral

region from the 450 to 950 nm indicating that these bands were informative for AGB of winter

wheat. The sensitive bands of AGB were mainly documented in the spectral region in our

study. Weber et al. [40] identified that spectral reflectance of unknown physiological relevance

Table 5. The sample distance character of different growth stages under the same nitrogen treatment from the sample position to the fitting lines

in coordinate axis.

GS1 GS2 GS3 GS4

yield 312.0444 607.9427 467.4189 362.0641

SPAD 0.7147 1.126244 0.944861 0.866495

Biomass 0.594319 0.573267 0.569123 0.762692

Note: GS1, GS, GS3, and GS4 were the reviving, jointing, heading, and filling stage of winter wheat.

doi:10.1371/journal.pone.0167679.t005

Table 6. Validation parameters of SMLR models for yield, SPAD, and aboveground biomass (AGB) based on the extracted sensitive bands.

Crop variables Calibrated model Validated model Number of wavelengths

R2 TC RMSE R2 TC RMSE

Yield 0.634 0.055 843.392 0.714 0.049 752.016 6

SPAD 0.671 0.017 1.798 0.787 0.036 3.795 7

AGB 0.760 0.081 1.164 0.863 0.086 1.327 6

Note: R2, determination coefficient; RMSE, root mean squared error.

doi:10.1371/journal.pone.0167679.t006
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could be used to predict yield. The most informative bands of 1030, 1110, and 1260 nm were

determined to monitor yield of winter wheat.

To further validate the accuracy of sensitive bands for yield, SPAD, and AGB, we compared

these bands with the result of correlation analysis and PLS. If compared to wavelengths

selected by multivariate analysis (Table 4) with correlative analysis (Fig 2), the conclusion

could be made as the following. That is: most of the selected wavelengths was located in these

regions where there were high correlation coefficients (such as, 730 and 1185 nm for yield;

935, 1090 nm for SPAD; 570 nm for AGB), coefficient peaks (such as, 730, 1015, 1185, and

1245 for yield; 400, 515, 705, 935, 1090, and 1365 nm for SPAD; 895, 1170, 1285, and 1355 nm

for AGB), and/or a rapid shift of correlation coefficient (730 nm for yield and 705 nm for

SPAD). For multivariate method, except the wavelengths 410 nm for yield; 935 for SPAD; and

1285 and 1355 nm for AGB, the left wavelengths in Table 4 also locates in the region where the

VIP and B-coefficient were high. It is indicated that the correlation analysis and PLS analysis

are also an alternative approach to determine the important wavelength. Moreover, the SMLR

models based on these sensitive bands performed moderately in predicting the growth status

and grain yield in winter wheat field. Therefore, it is noted that the selected spectral bands

were sensitive and important with crop variables in our study.

The PLS method is widely used in spectral quantitative analysis [45, 40]. In this research,

the method was applied to determine the important spectral regions and reduce the hyperspec-

tral dimension. Moreover, the PLS models of grain yield, SPAD, and AGB were established

and achieved a good performance under the optimal number of latent factors. The SMLR

model based on the important wavelengths also performed moderately as more significant

wavelengths were retained into the model. However, compared with the important wavelength

regions selected with the PLS analysis, the number of significant wavelengths pertained in the

SMLR model was further reduced. It indicated that both methods of PLS (Table 2) and SMLR

(Table 6) could reduce the predictor variables. Considering the fact that SMLR models had a

moderate prediction, a sensitive wavelength has more potential application in practice. The

multivariate method is feasible in reducing the multi-collinearity problem, selecting the signifi-

cant wavelengths, and predicting the interest variables.

The calibrated models were established in our study. The significant wavelengths were

selected based on important growth stages of winter wheat for experiment 1 and 2, respec-

tively. Thus, different sampling times would definitely affect the accuracy of calibrated model.

Fig 5. The SMLR models of yield, SPAD, and AGB using the validation set. The dotted line and solid line was 1:1 line as a reference and fitted line

between the measured value and predicted value, respectively.

doi:10.1371/journal.pone.0167679.g005
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Our result demonstrated that these samples collected at the filling stage performed a better fit-

ting in the calibrated models of yield and SPAD; and the samples at the heading stage and joint-

ing stage were followed (Fig 4). It indicated that the filling stage might have an effect on the

calibrated models of yield and SPAD. For AGB, the best performance of samples was obtained

from the heading stage, and the jointing stage and filling stage were subsequently followed. The

heading stage might provide more information pertaining to AGB prediction. The sample dis-

tance character of different growth stages under the same nitrogen treatment from the sample

position to the fitting lines in coordinate axis could indirectly prove the above result (Table 5).

The spectral reflectance is very sensitive to the objective characters and external factors. It

was noted that in term of quantitative analysis of hyperspectrum, many factors, such as varie-

ties of winter wheat, planting density, plant morphology, plant health status, soil background,

spectral testing method, and testing conditions will ultimately affect the accuracy and applica-

tion of monitor models of crop variables. In order to broad adaptability of sensitive bands and

improve the robustness and applicability of spectral inversion models for crop variables, it is

necessary to increase crop varieties and sample data, expand research area under different eco-

logical climate and complex environmental factors, and introduce mathematical and multivar-

iate analysis [13]. The field experiments in this study investigated three wheat cultivars, six N

fertilization rates in two consecutive growing seasons, and different ecological environment

(including in Wenxi County in 2013). Compared with previous studies [48, 49], the predictive

accuracy of yield model for winter wheat could be classified as moderately reliable (R2 = 0.65)

and acceptable for cultivation of wheat production. This might be explained by the fact that

the spectral bands were reduced from 2151 to 211 and some important hyperspectral bands

could be out of phase. In addition, the less number of sample data and the different region

field reduced the predictive accuracy of models. Therefore, the selected sensitive band needs to

be further validated. The monitor model of cop variables also requires further optimization

under the various varieties of winter wheat, increased sample data, expanded region scope,

and increased mathematically multivariate analysis.

Conclusion

Previously, various studies have been conducted to select the sensitive bands, extract the spec-

tral characteristics, and construct vegetation index using single statistical method, which may

not overcome the over-fitting and co-linearity phenomenon of hyperspectral. Our current

study tried to overcome the difficulties in the process and explore the reasonable approaches

to solve the problems. These significant wavelengths 350, 410, 730, 1015, 1185, and 1245 nm

for yield; 355, 400, 515, 705, 935, 1090, and 1365 nm for SPAD; and 470, 570, 895, 1170, 1285,

and 1355 nm for AGB were determined by using the multivariate method. Moreover, SMLR

models based on the selected wavelengths could moderately predict the grain yield and evalu-

ate the growth status as the R2, TC, RMSE were 0.634, 0.005, and 843.392 for yield, 0.671,

0.017, and 1.798 for SPAD, and 0.760, 0.08, and 1.164 for AGB. It indicated that step-by-step

procedure developed with the multivariate methods was proved to be effective in determine

significant wavelengths and evaluate the growth status and yield of winter wheat. The findings

of this investigation may provide theoretical and practical reference in the wheat production

using hyperspectral remote sensing.
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