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Abstract: Carbon-nanofiber-based screen-printed electrodes modified with silver nanoparticles
(Ag-NP-SPCNFEs) were tested in a pioneering manner for the direct determination of As(V) at
low µg L−1 levels by means of differential pulse anodic stripping voltammetry. Screen-printed
electrodes were modified with two different types of Ag-NPs, nanoseeds (NS), and nanoprisms
(NPr) and characterized both microscopically and electrochemically. Furthermore, after optimizing
the direct voltammetric determination of As(V), the analytical performance of considered sensors
was compared for the direct determination of As(V). These results suggest that Ag-NS offer a better
analytical response compared to Ag-NPr, with a detection and quantification limit of 0.6 and 1.9 µg L−1,
respectively. The proposed methodology was validated using a spiked tap water sample with a
very high reproducibility and good agreement with inductively coupled plasma-mass spectrometry
(ICP-MS) measurements.

Keywords: arsenic determination; silver nanoparticles; anodic stripping voltammetry; screen-printed
electrodes; water analysis

1. Introduction

Water pollution is an important problem that affects both developing and developed countries as a
consequence of economic growth. In particular, contamination by metal ions causes significant
environmental and health side effects, which are exacerbated by their high persistence, non-
biodegradability, and ability to bioaccumulate [1]. Metal ions may enter the body through air,
food, water, or skin absorption and, once in the body, they not only compete with but also displace
essential minerals such as Zn, Mg, Ca, and Cu, interfering with organ system function [2,3]. Exposure
to As can cause a variety of adverse health effects including hyperkeratosis, gastrointestinal symptoms,
pulmonary disease, diabetes, cardiovascular problems, peripheral neuropathy, and cancer of the skin
and internal organs [4]. Moreover, inorganic arsenic intake over a long period of time can lead to
chronic arsenic poisoning (arsenicosis).

Arsenic, as a natural component of the earth’s crust, is widely allocated throughout the environment.
Arsenic trace levels are present in rock, soil, seawater, etc., but high concentrations of arsenic can be
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found in mine drainage, coal fly ash, and smelter wastes [5]. More specifically, arsenic is a confirmed
genotoxin, carcinogen, and globally the most significant chemical contaminant in drinking water [6].
Several arsenic species can be found in the environment, with four main different oxidation states (As−3,
As0, As+3, and As+5). These present different hazard levels, as inorganic arsenic compounds are usually
more toxic than organic arsenic compounds. In particular, soluble inorganic arsenic is highly toxic.
Among inorganic forms, arsenic can mainly be found as two oxyanions: trivalent arsenite (H3AsO3) in
the reducing environment and pentavalent arsenate (H2AsO4

−) under oxidizing conditions. Arsenite
compounds are reported to be more mobile, soluble, and toxic than arsenate [7–9].

Thus, people are exposed to elevated levels of inorganic arsenic through industrial processes,
drinking contaminated water, eating contaminated food or food prepared or irrigated using
contaminated water, and smoking tobacco. The World Health Organization (WHO) has fixed the
guideline value of arsenic in drinking water at 10 µg L−1 [10].

However, considering that the concentration of arsenic species in real water samples is very
low, sensitive detection methods are required to determine such levels of arsenic. Generally, these
methods are based on atomic absorption spectrometry (AAS) [11], inductively coupled plasma-mass
spectrometry (ICP-MS) [12], high-performance liquid chromatography with ICP-MS [13], and hydride
generation atomic fluorescence spectrometry (HG-AFS) [14]. These techniques are mostly suitable
for laboratory conditions but impractical for on-site analyses since they involve the use of complex
instrumentation, have high costs, and are time-consuming [15]. In this sense, electrochemical techniques
and particularly anodic stripping voltammetry (ASV) are more appropriate methodologies for the
on-site determination of arsenic due to their low cost, fast analysis, and ease of incorporation in portable
instrumentation. Furthermore, stripping techniques present low detection limits, high sensitivity, and
can be implemented for arsenic speciation [16].

This last aspect is particularly important since, as mentioned before, different arsenic species present
diverse toxicity. The direct ASV determination of As(III) is well-reported in the literature, whereas
As(V) determination is usually more problematic due to its lower electrochemical response, leading
to the quantification of As(V) by the difference between total arsenic and As(III) [17]. Consequently,
direct ASV determination of As(V) is of great interest, especially if we take into account the potential
and significant decrease of both the experimental time and the amount of reagents consumed (as no
reducing agents are needed). Furthermore, unlike As(III) determination, As(V) measurements can be
carried out without oxygen removal [17].

Most of the works dealing with the direct As(V) determination reported in the literature use
gold-based electrodes in a highly acidic medium. Nevertheless, the cost of gold makes these electrodes
highly expensive, which encourages the introduction of alternative metals with similar physical and
chemical properties but more cost-effective. In this sense, silver is a material with great proven
electrochemical features for metal ion determination [18]. In terms of silver-based electrodes, it is
important to consider both the silver source (wire, film, ink, nanomaterials) and the support in which
silver is contained. Regarding the substrate, nanotechnology has become a powerful tool to develop
new sensing devices [19,20]. In particular, intrinsic characteristics of electrochemical sensors can
be enhanced by modifying their surface with metal nanoparticles that confer better electrocatalytic
properties compared with the non-modified sensors [21]. On the other hand, in terms of support, more
classical bulk or film silver electrodes require tedious cleaning and polishing procedures to achieve
good reproducibility. Accordingly, screen-printing technology presents some noticeable advantages
such as its low-cost, disposable character, portability, and commercial availability [1].

Thus, in this work, a direct method for the voltammetric determination of As(V) is proposed based
on the use of carbon-nanofiber-based screen-printed electrodes (SPCNFEs) modified by drop-casting
with two different shaped silver nanoparticles (Ag-NPs) previously synthesized: nanoseeds (NS)
and nanoprisms (NPr) [21]. The resulting modified sensors were microscopically and analytically
characterized, and carbon-nanofiber-based screen-printed electrode modified with silver nanoseeds
(Ag-NS-SPCNFE), as the optimal carbon-nanofiber-based screen-printed electrode modified with silver
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nanoparticles (Ag-NP-SPCNFE), was applied to the direct determination of As(V) ion in water samples
by differential pulse anodic stripping voltammetry (DPASV).

2. Materials and Methods

2.1. Reagents

All the chemicals were of analytical reagent grade. Trisodium citrate, sodium polystyrene
sulfonic acid (SPSS), and silver nitrate were supplied by Sigma-Aldrich (Munich, Germany), sodium
borohydride from Panreac Applichem (Barcelona, Spain), and ascorbic acid from Scharlab (Barcelona,
Spain). A total of 1 mg L−1 of As(V) solution was prepared by sequential dilution from a 1000 mg L−1

ICP standard supplied by Sigma-Aldrich (Munich, Germany). A total of 0.01 mol L−1 hydrochloric
acid (pH 2.0) (Suprapur 30%, Merck, Munich, Germany) was used for pH control. All solutions
were prepared with ultrapure water (18.2 MΩ cm) obtained from a Milli-Q plus 185 system Millipore
(Millipore, Burlington, MA, USA).

Tap water samples were collected from the local water distribution network managed by Aigües
de Barcelona Company (Barcelona, Spain; https://www.aiguesdebarcelona.cat/), and mostly using
water coming from Llobregat and Ter Rivers.

2.2. Apparatus and Electrodes

DPASV measurements were performed in an Autolab PGSTAT204, attached to a Metrohm 663 VA
Stand, or in a Multi Autolab/M204 Modular Multi Potentiostat/Galvanostat including an electrochemical
impedance spectroscopy (EIS) unit, all from Metrohm (Herisau, Switzerland). The control of both
setups as well as the required data treatment were performed by a personal computer with NOVA 2.1
software package (Metrohm, Herisau, Switzerland).

SPCNFEs with a diameter of 4 mm, purchased from Metrohm DropSens (ref. 110CNF, Llanera,
Spain), were modified with Ag-NPs and used as working electrodes. Ag/AgCl/KCl 3 mol L−1 and a
platinum wire were the reference and the counter electrodes, respectively, both supplied by Metrohm
(Herisau, Switzerland). All voltammetric experiments were carried out in a glass cell without oxygen
removal and at room temperature (22 ± 1 ◦C).

A Crison Basic 20 pH-meter (Hach Lange Spain, L’Hospitalet de Llobregat, Spain) was used for
pH measurements.

Ag-NPs as well as the surface morphology of the SPCNFE electrodes were characterized using a
JEM-2010 transmission electron microscope (TEM) from JEOL (Tokyo, Japan), and a Gemini scanning
electron microscope (SEM) from ZEISS® (Jena, Germany). TEM and SEM images were used to
determine the size distribution of the obtained Ag-NPs, and the size distribution histograms were
calculated by using the Image-J version 1.51m software by National Institutes of Health (NIH, Bethesda,
MD, USA). An Agilent spectrophotometer model 8453 (Agilent Technologies, Waldbronn, Germany)
was used to record the UV-VIS spectra of the Ag-NPs containing solutions. Inductively coupled
plasma mass spectrometer model 7800 by Agilent Technologies (Santa Clara, CA, USA) was used for
ICP-MS measurements.

2.3. Synthesis of Ag Nanoparticles

The preparation of Ag-NPs was performed in two phases, following a seed mediated methodology
described in [22,23].

Silver nanoseed (Ag-NS) preparation: The Ag-NS were synthesized by mixing 5 mL of 2.5 mmol L−1

trisodium citrate, 0.25 mL of 500 mg L−1 SPSS, and 0.3 mL of 10 mmol L−1 aqueous sodium borohydride.
Finally, a solution of 5 mmol L−1 silver nitrate was continuously added to the previous solution at a
rate of 2 mL min−1 using a syringe pump from Kd Scientific, model KDS 510 (Holliston, MA, USA).

Silver nanoprism (Ag-NPr) preparation: The Ag-NPr were synthesized by adding 5 mL of Milli-Q
water and 75 µL of 10 mmol L−1 ascorbic acid to either 800 or 1600 µL of the previous seed solution.

https://www.aiguesdebarcelona.cat/
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Then, 3 mL of 0.5 mmol L−1 silver nitrate was continuously added to each aliquot at 1 mL min−1.
To stabilize Ag-NPr solutions, 0.5 mL of 25 mmol L−1 sodium citrate was added.

2.4. Electrode Modification

The SPCNFEs were modified with Ag-NS or Ag-NPr using the drop-casting method described
in [18,21]. Briefly, 40 µL of the solution of Ag-NS or Ag-NPr were dropped onto the working electrode
surface and dried in an oven at 50 ◦C for 30 minutes. This modification approach was previously
tested providing high repeatability (relative standard deviation, RSD, from 3.6% to 5.5% depending
on the Ag-NPs considered) and reproducibility (RSD from 5.2% to 9.3% depending on the Ag-NPs
considered) [18].

2.5. Electrochemical Measurements

Electrochemical impedance spectra were recorded in a solution containing 5 mmol L−1 K3[Fe(CN)6]
and 0.1 mol L−1 KCl. The frequency range was set between 10 Hz and 1000 kHz with an alternating
current (AC) amplitude of 10 mV.

The direct DPASV determination of As(V) was carried out in 0.01 mol L−1 of HCl (pH 2.0) by
applying a deposition potential (Ed) of −1.30 V (vs. Ag/AgCl) under stirring conditions during a
deposition time (td) of 120 s and scanning the potential from −1.3 to 0.0 V. A step potential of 5 mV,
a pulse time of 50 ms, and a pulse amplitude of 50 mV were applied.

Linear calibration plots for As(V) determination were carried out by increasing metal ion
concentrations in 0.01 mol L−1 HCl (pH 2.0).

Tap water samples were spiked with 20 µg L−1 of As(V). To perform the voltammetric
determination of As(V), samples were acidified with 0.01 mol L−1 of HCl (pH 2.0), resulting in
a final solution concentration of 10 µg L−1 of As(V). Four successive additions were made from
a standard solution of 1 mg L−1 of As(V) and DPASV measurements were recorded under the
above-mentioned electrochemical conditions.

2.6. Data Treatment

Peak areas were measured with NOVA 2.1 software, choosing a polynomial baseline that is
generated by manually clicking on three points on the plot (initial point of the baseline, highest height,
and final point of the baseline). Further calculations were made with EXCEL®.

3. Results and Discussion

3.1. Spectrophotometric and Microscopic Characterization

The Ag-NPs prepared by the seed mediated approach were first characterized by means of UV–VIS
(Figure 1A) and transmission electron microscopy (TEM) (Figure 1B), which allowed the deduction of
Ag-NPs shape and size. The different shapes and sizes observed for the three types of Ag-NPs are due
to the first fast crystallization of nucleation seeds (Ag-NS) and different aliquots of Ag-NS being later
used for further nucleation and growth in order to obtain larger nanocrystals (Ag-NPr) [24].

It can be seen in UV-VIS spectra that Ag-NS present a maximum absorption signal around 400 nm.
Consequently, the more of these Ag-NS are used as a nucleation source for the Ag-NPr, the more
similar the absorption spectra (see Figure 1A) and the larger the size expected (see size distribution
histograms in Figure 1D,F,H). Here, the prepared nanoparticles present homogeneous size distribution
as seen in TEM images (Figure 1B) and SEM micrographs (Figure 1C,E,G), with a calculated size
of 11.23 ± 0.24 nm for Ag-NS. Regarding the size of the Ag-NPr, the values are 14.25 ± 0.28 and
16.46 ± 0.19 nm for Ag-NPr obtained using 800 and 1600 µL of Ag-NS as the precursor, respectively.
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Figure 1. Light microscopy (LM) and TEM images of microtomed cuts of 2.0 wt% nitrogen-doped 
carbon nanotube/polyvinylidene fluoride (N-CNT/PVDF) nanocomposites with N-CNTs synthesized 
over different catalysts. LM and TEM images reveal the dispersion state at microscale and nanoscale, 
respectively. Figure S1 of Supporting materials shows more TEM images of the nanocomposites. 

Table 1. Agglomerate area ratio and relative transparency of thin cuts of 2.0 wt% N-CNT/PVDF 
nanocomposites with N-CNTs synthesized over different catalysts. 

Catalyst Fe Ni 
Agglomerate Area Ratio (%) 1.8 2.8 
Relative Transparency (%) 53 86 

The TEM examination clears discrepancies between the nanocomposites by inspecting nano-
dispersion state of N-CNTs (Figure 1). The nanocomposite holding (N-CNT)Ni presents inferior nano-
dispersion, where agglomerated areas and polymer-rich areas are quite segregated and evident. In 
addition, the dark black spots, which are catalyst particles, are noticeable, denoting the low carbon 
purity of (N-CNT)Ni. TEM images are in accord with LM images, both of which imply inferior 
dispersion of (N-CNT)Ni/PVDF nanocomposites compared to (N-CNT)Fe/PVDF nanocomposites. 

3.2.2. Broadband Electrical Conductivity of N-CNT/PVDF Nanocomposites. 

The broadband electrical conductivity is comprised of a frequency-dependent and a frequency-
independent part. The frequency-independent part derives from DC conductivity, movement of free 
charges in phase with the applied electric field. The frequency-dependent part originates from the 
reorientation of electric dipoles in each half cycle of the alternating field. Broadband electrical 
conductivity of insulative materials has an ascending trend with frequency (AC conductivity 
prevails), whereas that of conductive materials is frequency independent (DC conductivity 
dominates). In semi-conductive materials, there is a critical frequency below which DC current 
prevails, whereas, above that frequency, AC current is dominant [13,15,27]. Thus, broadband 
electrical conductivity can be employed as a sensitive parameter to examine the level of conductive 
network formation in conductive polymer nanocomposites. 

Figure 2 depicts the broadband electrical conductivity of the generated nanocomposites over a 
wide frequency range (100–105 Hz). The developed nanocomposites presented very different 
broadband electrical conductivities, implying the significant impact of the growth catalyst on the 
level of conductive network formation in N-CNT/PVDF nanocomposites. The nanocomposites (N-
CNT)Fe indicated an insulative behavior at 1.0 wt%, a semi-conductive behavior at 2.0 wt%, and a 
conductive behavior at 2.7 wt%. It was also observed that the Ni-based nanocomposites presented 
insulative behavior over the whole investigated concentration range, suggesting that no conductive 
network was formed in the Ni-based nanocomposites. 

Figure 1. (A) UV–VIS spectra of Ag-NS, Ag-NPr (800 µL), and Ag-NPr (1600 µL); (B) TEM micrographs
for Ag-NS and Ag-NPr (800 µL). SEM characterization and corresponding size distribution histograms
for the Ag-NS (C,D) and Ag-NPr obtained using 800 µL (E,F) and 1600 µL (G,H) of Ag-NS as a precursor.

The surface modification of SPCNFEs with Ag-NPs was assessed by scanning electron microscopy
(SEM). Compared to the unmodified carbon nanofiber surface in the bare electrode (Figure 2A), Ag-NPs
can be clearly spotted as white dots in both Ag-NS-SPCNFE (Figure 2B) and Ag-NPr-SPCNFE (800 µL)
(Figure 2C). Furthermore, it can be observed that all Ag-NPs were homogeneously distributed all over
the surface. Thus, the electrocatalytic enhancement of the screen-printed electrodes can be attributed
to this spatial distribution of the different shaped Ag-NPs.
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Figure 2. SEM micrographs for (A) Bare-carbon-nanofiber-based screen-printed electrodes (SPCNFEs)
and electrodes modified by drop-casting: (B) Ag-NS-SPCNFE and (C) Ag-NPr-SPCNFE (800 µL).

3.2. Electrochemical Characterization of Ag-NPs Modified SPCNFE

The effect of SPCNFE modification with Ag-NPs was initially evaluated by DPASV using Ag-NS
as a model nanoparticle. For this purpose, the experimental conditions including Ed and td were first
optimized in a 0.01 mol L−1 HCl solution containing 20 µg L−1 of As(V). The As(V) voltammetric
peak increased as the Ed varied from −1.1 to −1.3 V and decreased for further negative Ed (results not
shown). A td of 120 s was selected as a good compromise between peak area and analysis time. As can
be seen in Figure 3A, at the optimized measuring conditions, a well-defined stripping peak could be
observed for As(V) at ca. −1.0 V. Furthermore, the results shown in Figure 3A demonstrate that the
modification of the electrode with Ag-NPs results in an important increase in the electrode response,
which is crucial for the determination of the As(V) ion at low trace levels.

The modification of SPCNFE with Ag-NPs was also studied by EIS. Figure 3B shows the Nyquist
plots obtained for both bare-SPCNFEs and Ag-NS-SPCNFEs, which were fitted to a Randles circuit.
This is a basic equivalent circuit that considers the solution resistance (Rs), the charge transfer resistance
(RCT), the Warburg impedance (W), and a constant phase element (CPE), related to the non-idealities
in the electrode surface [25]. The RCT values calculated from the semicircle diameter showed a
significant decrease from 722 Ω in bare-SPCNFE to 589 Ω in Ag-NS-SPCNFE, indicating a higher
electrocatalytic response and further demonstrating the effective attachment of Ag-NPs to the working
electrode surface.
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Figure 3. (A) Differential pulse anodic stripping voltammetric (DPASV) measurements of bare-SPCNFE
and Ag-NS-SPCNFE sensors obtained for 50 and 25 µg L−1 of As(V) in 0.01 mol L−1 HCl pH 2,
respectively. (B) Nyquist diagram for bare-SPCNFE and Ag-NS-SPCNFE in 5 mmol L−1 K3[Fe(CN)6]
and 0.1 mol L−1 KCl with the corresponding equivalent circuit.

3.3. Analytical Performance of Ag-NPs Modified SPCNFE

The different synthesized silver nanoparticles (Ag-NS, Ag-NPr (800 µL), and Ag-NPr (1600 µL))
were used for the modification of the SPCNFE in order to determine which one gives better
analytical response for As(V) quantification. Thus, Ag-NS-SPCNFE, Ag-NPr-SPCNFE (800 µL),
and Ag-NPr-SPCNFE (1600 µL) were prepared to perform DPASV measurements.

Calibration curves by DPASV were obtained by increasing the concentration of As(V) in a range
from 1 to 25.1 µg L−1 and following the above optimized experimental conditions using a bare-SPCNFE
and the different prepared Ag-NP-SPCNFE. Figure 4 shows, as an example, the evolution of DPASV
signals of As(V) and its calibration plot (inset) using a Ag-NS-SPCNFE. Whereas a well-shaped and
defined stripping peak close to −1.00 V that increases linearly with the As(V) concentration was
obtained for all considered Ag-NP-SPCNFE sensors, the As(V) peak obtained using a bare-SPCNFE
decreased when increasing the concentration, maybe due to the own oxidation of the working electrode,
as it has no protective coating.
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Figure 4. DPASV voltammograms of As(V) and its calibration plot (top-right inset) in 0.01 mol L−1 HCl
pH 2 applying an Ed of −1.30 V and a td of 120 s using a Ag-NS-SPCNFE.

The limit of detection and quantification for DPV calibration curves performed using
Ag-NS-SPCNFE, Ag-NPr-SPCNFE (800 µL), and Ag-NPr-SPCNFE (1600 µL) were calculated using the
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Miller and Miller methodology [26]. The results of the calibration parameters such as detection limits
(LOD), linear ranges, sensitivities, and linearity are listed in Table 1. The limit of quantification (LOQ)
is considered as the lowest value of the linear range.

Table 1. Calibration data for the determination of As(V) in hydrochloric acid pH 2.0 applying an Ed of
−1.3 V and a td of 120 s.

Ag-NS-SPCNFE Ag-NPr-SPCNFE
(1600 µL)

Ag-NPr-SPCNFE
(800 µL)

Sensitivity (nA V µg−1 L) a 109 (1) 93 (3) 29 (2)
R2 0.999 0.996 0.983

Linear range (µg L−1) b 1.9–25.1 4.1–25.1 8.4–25.1
LOD (µg L−1) 0.6 1.2 2.5

a The standard deviations are expressed in parentheses. b The lowest value of the linear range corresponds to
the LOQ.

As shown in Table 1, good linear responses of peak area vs. As(V) concentration were achieved
using Ag-NS-SPCNFE, Ag-NPr-SPCNFE (800 µL), and Ag-NPr-SPCNFE (1600 µL). However, although
LODs achieved for As(V) were at µg L−1 levels for all considered Ag-NP-SPCNFEs, the LOD value
obtained using the Ag-NS-SPCNFE was much better than that provided by either Ag-NPr-SPCNFE
(800 µL) or Ag-NPr-SPCNFE (1600 µL). Regarding previous works, the LODs obtained for the
determination of As(V) using Ag-NS-SPCNFE are considerably lower in comparison to those reached
by ASV using boron-doped diamond electrodes, 12 µg L−1 [27], and by sequential injection/ASV on
gold-modified screen-printed carbon electrode, 2.3 µg L−1 [28]. However, it should be pointed out that
no works are reported in the literature about the use of Ag-NP-based-sensors for As(V) determination.
Moreover, Ag-NS-SPCNFE presents a much lower LOQ, leading consequently to a wider linear range
compared to the other two tested sensors. Nevertheless, it should be pointed out that the highest value
of the linear range is restricted to a lower concentration value (until 25.1 µg L−1) compared to those
reached by Punrat et al. (until 100 µg L−1) [28] and by Nagaoka et al. (until 200 µg L−1) [27].

Regarding sensitivities (nA V µg−1 L), they were calculated as the slope value of the calibration
curves of As(V) for the three considered Ag-NP-SPCNFEs, being Ag-NS-SPCNFE the most sensitive
Ag-NP-based-sensor with a corresponding sensitivity value of 109 nA V µg−1 L.

From the reported calibration data, it can be concluded that all the considered Ag-NP-SPCNFEs
could be fully suitable and a valuable option for the direct determination of As(V) at very low µg L−1

in environmental samples, with the addition of the particular characteristics of screen-printed
electrodes, and particularly the three-electrode configuration that allows an easy connection to portable
instrumentation making possible on-site analysis. However, Ag-NS-SPCNFE is the Ag-NP-based-sensor
that exhibits the best analytical performance (lower LODs, wider linear ranges, and higher sensitivities),
and therefore, it was selected as the optimal sensor for further determination of As(V) in water samples.

3.4. Application to the Analysis of a Real Sample: As(V) Spiked Tap Water

Ag-NS-SPCNFE suitability for the determination of As(V) in a real water sample was evaluated.
The determination of As(V) ions was carried out in a spiked tap water sample by the standard addition
calibration method. DPASV measurements using the above-mentioned conditions were performed,
including four successive additions of the As(V) standard. It should be pointed out that DPASV
measurements of non-spiked water samples did not present any As(V) signal.

Figure 5A shows representative voltammograms obtained for the analysis of the spiked tap water
using Ag-NS-SPCNFE. A well-shaped As(V) peak was acquired and, as shown in the calibration curve
(Figure 5B), a good correlation was achieved.
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For the analysis of the spiked tap water sample using Ag-NS-SPCNFE, three replicates were
considered. The result of the analysis was 10.04 µg L−1 (SD: 0.37 µg L−1). In order to test the accuracy
of the proposed method, the spiked water sample was also analyzed by ICP-MS (10.7 µg L−1 (SD:
0.2 µg L−1)) and from a two-tailed t-test (null hypothesis: XICP-MS = XDPASV), it can be concluded that
the results obtained from both techniques were statistically comparable with a confidence level of 99%.

These good results confirm the suitability of Ag-NS-SPCNFE for the direct determination of As(V)
in water samples. Consequently, the use of Ag-NP-based sensors, and particularly Ag-NS-SPCNFE,
is an excellent alternative to other sensors for the determination of As(V) at very low concentrations
(µg L−1).

4. Conclusions

In this work, a DPASV method for the direct determination of trace As(V) based on the
modification of SPCNFE with Ag-NPs has been proposed. Three different Ag-NPs with varying
sizes and shapes were synthesized, microscopically characterized, and applied to the modification
of SPCNFEs. Electrochemical characterization demonstrated that the modification with Ag-NPs
significantly enhances the voltammetric response toward As(V).

The analytical performance of all three modified electrodes was compared, concluding that
Ag-NS-SPCNFE, corresponding to spherical and smaller Ag-NPs, is the most suitable electrode to
determine As(V) at µg L−1 levels given its lower LOD, higher sensitivity, and wider linear range.
Regarding previous studies of As(V) direct determination, the LOD achieved in this investigation
was much lower compared to other LODs previously reported. Moreover, Ag-NS-SPCNFE has the
advantages of screen-printed electrodes, such as disposability, low cost, and the possibility to perform
on-site analyses. Additionally, the direct determination of As(V) signifies a notable improvement in
comparison to other proposed procedures in which As(V) is calculated as the difference between total
As and As(III).
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The feasibility of the DPASV method using Ag-NS-SPCNFE for As(V) determination was
demonstrated using spiked water samples, achieving comparable results to those obtained by ICP-MS
measurements with a good reproducibility deduced from the calculated standard deviation.
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