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ABSTRACT
In several parts of the world, the prevalence and severity of drought are predicted to increase, 
creating considerable pressure on global agricultural yield. Among all abiotic stresses, drought is 
anticipated to produce the most substantial impact on soil biota and plants, along with complex 
environmental impacts on other ecological systems. Being sessile, plants tend to be the least 
resilient to drought-induced osmotic stress, which reduces nutrient accessibility due to soil 
heterogeneity and limits nutrient access to the root system. Drought tolerance is a complex 
quantitative trait regulated by multiple genes, and it is one of the most challenging characteristics 
to study and classify. Fortunately, the clustered regularly interspaced short palindromic repeat 
(CRISPR) technology has paved the way as a new frontier in crop improvement, thereby revolu-
tionizing plant breeding. The application of CRISPER systems has proven groundbreaking across 
numerous biological fields, particularly in biomedicine and agriculture. The present review high-
lights the principle and optimization of CRISPR systems and their implementation for crop 
improvement, particularly in terms of drought tolerance, yield, and domestication. Furthermore, 
we address the ways in which innovative genome editing tools can help recognize and modify 
novel genes coffering drought tolerance. We anticipate the establishment of effective strategies of 
crop yield improvement in water-limited regions through collaborative efforts in the near future.
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Introduction

In 2017, at least 3% of the world’s land area was 
affected by extreme drought [1]. Approximately 
a fifth of the world’s population does not have 
sufficient food to survive normally, and nearly 
a billion people are hungry every year [1,2]. 
Drought decreases agricultural productivity, con-
tributing to food shortage, and it is therefore one 
of the major causes of undernourishment and 
hunger [2]. In the mid-twentieth century, drought 
was the key reason of the scarcity of world grain 
production relative to demand, causing the food 
security crisis [3]. Farmers suffer from economic 
losses when crops are damaged by drought. 
Ranchers must spend additional money on food 
and water for their livestock. Business that relies 
on agriculture, such as companies producing trac-
tors and food, experience losses when drought 

threatens crops or livestock. Severe drought 
reduces crop yield and production because of the 
scarcity of water and soil moisture to support plant 
growth. Under drought conditions, farmers reduce 
the area under crop cultivation and only plant 
drought-tolerant crops [4].

Impact of climate extremes on crop 
production

Agricultural food production is directly affected by 
climatic factors, such as rainfall and temperature. 
These factors regulate crop development and 
health, crop yield over time, and annual crop 
yield [5]. Environmental extremes are estimated 
to become more frequent due to climate change, 
which can adversely affect crop yield [7]. While 
the impacts of climate change on agriculture have 
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been reported at various regional scales, adaptive 
improvements to advance cropping practices for 
mitigating the effects of drought on plant yield 
have never been explored [7]. In addition, the 
impacts of weather extremes on the yield and 
growth of rainfed and irrigated plants warrant 
extensive research, given that groundwater, a vital 
resource for irrigation during drought, is slowly 
depleting. Severe drought decreases plant yield 
because less water and soil moisture are accessible 
for plant development. Under drought conditions, 
farmers deliberately reduce area under crop culti-
vation, and only plant drought-tolerant plants. 
Nevertheless, the spatiotemporal variability of the 
effects of drought on yield must be considered to 
mitigate and minimize possible negative impact on 
plant production [8].

Negative effects of drought stress on plant 
activity

Water scarcity elicits various crop responses at the 
physiological, molecular, biochemical, and mor-
phological levels, eventually interrupting crop pro-
ductively [9]. As shown in Figure 1, drought stress 
reduces plant production at various stages of 
growth. Indeed, reduced water supply decreases 
the germination and growth rate of crops [10]. 

During plant growth, drought affects plant 
water–interactions, which in turn disrupt the 
entire metabolism (at the molecular and physiolo-
gical level), depending on the magnitude and 
duration of stress [11,12]. In addition, water scar-
city alters plant processes, like suppression of 
photosynthesis [13,14] and reduction of crop pro-
ductivity [15,16] are the major consequences. 
Under water deficit, indirect or direct oxidative 
stress serves as one of the key drivers of plant 
response, resulting in the alteration of biochemical 
machinery and destruction of cell membrane 
integrity, which further lead to severe metabolic 
complaints ultimately affecting plant function 
[17,18].

Drought stress as a limiting factor for plant 
development

Drought is known as a limiting factor for several 
aspects of plant production. Germination, coleop-
tile length, and plant health are the key aspects of 
crop development [19]. Germination is a crucial 
step during development, and it is susceptible to 
drought. Notable changes in the seed germination 
of several crops, including wheat, sorghum, and 
maize, have been reported [20,21]. The noticeable 
signs of plants subject to drought stress at the early 

Figure 1. Drought stress significantly suppresses plant growth and development.

BIOENGINEERED 5815



stages of vegetative growth include the disturbance 
of flowering, reduction in plant height, and wilting 
of leaves [22]. Drought often limits nutrient 
absorption of crops because of insufficient soil 
humidity, thereby suppressing stem development. 
In Lathyrus sativus, shoot length was reduced 
under water scarcity [23]. As a limiting factor, 
drought affects a wide spectrum of plant physio-
logical processes, including growth and metabo-
lism. Timing, duration, degree, and rate of 
development are critical factors taken into account 
during the selection of drought-tolerant species. 
Further, drought adversely affects several plant 
biological processes, from the embryonic to repro-
ductive and maturation stages.

Plant drought tolerance mechanisms involve 
multiple biological processes at the level of cells, 
organs, and whole plant, which are activated at 
different plant developmental stages. For instance, 
plants reduce water loss through effective stomatal 
conductance and increase water uptake and trans-
fer through the development of a highly efficient 
and deep root system (Figure 1). Furthermore, 
application of crop development regulators; pre-
servation of membrane integrity; and use of appro-
priate plant genotypes, antioxidants, compatible 
solutes, stress-related proteins, and aquaporins 
support the development of drought-tolerant 
crops [24]. Moreover, plants with improved water 
use efficiency and enhanced antioxidant apparatus 
as well as those that can produce major osmolites 
and secondary metabolites are suitable as material 
to develop drought-tolerant crops. In addition, 
under water-limited conditions, compounds that 
can enhance drought tolerance of plants can be 
exogenously applied. Biotechnological approaches 
to produce drought-tolerant transgenic plants 
should also be considered, although their validity 
cannot precede the current field trials.

Molecular mechanisms underlying plant 
drought tolerance

Improving agronomic traits that offer plant toler-
ance/resistance to abiotic and biotic stresses to 
enhance their economic worth has long been 
a global concern. Knowledge of global warming 
and climate change underlines the need to incor-
porate some practical and safe strategies. In some 

countries, the sustainability of crop production 
during drought is a significant problem. Drought 
intensity varies both temporally and spatially. 
Plants have evolved sophisticated responses and 
developed numerous physiological and morpholo-
gical strategies to withstand stress. Specifically, 
plants face drought with differing degrees of adap-
tation, prevention, and escape [4,21]. The exploi-
tation of genetic traits that improve drought 
response while retaining high yield remains crucial 
for plant management. Transgenic and conven-
tional breeding methods could enhance the 
drought tolerance of wheat, soyabean, rice, and 
maize.

In the past, conventional breeding was the most 
productive way of growing plants, which encour-
aged their development in water-limited environ-
ments. However, these methods are labor- 
intestine, time-consuming, and expensive. Under 
stress conditions, molecular markers have played 
a pivotal role in characterizing the large variability 
in plant genetics [19]. In various crops, numerous 
quantitative trait loci (QTLs) conferring drought 
tolerance have been identified [25,26]. However, 
the accuracy and reliability of QTL identification 
remain problematic. In this light, genetic engineer-
ing has proven very successful in improving crops 
against abiotic and biotic stresses [27].

Innovative technologies that can expand the 
stress responses of plants and make them environ-
ment-ready are warranted. The introduction of 
genome editing tools has realized significant 
advances in plant breeding. Genome editing tools 
use sequence-definite nucleases to introduce spe-
cific known variations in the genome [28]. The 
CRISPR–Cas system of genome editing has been 
extensively acknowledged for its adaptability and 
ease of operation. This strategy uses a single guide 
RNA and complex Cas endonuclease that changes 
along the DNA strand to produce a double- 
stranded DNA breaks. Subsequently, these breaks 
are repaired by endogenic cell mending, leading to 
the expansion of novel mutations [29,30]. The 
CRISPR–Cas system has been professionally used 
for achieving resistance to multiple stresses, 
including heavy metals, salinity, drought, and sub-
mergence [31,32]. The present review emphases on 
the application of the CRISPR–Cas9 system to 
achieve drought tolerance in plants and discusses 
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the potential of this technology in the expansion of 
drought-tolerant plant varieties.

Inclusive molecular studies have interpreted cel-
lular pathways regulating plant response to 
drought [33,34]. Abscisic acid (ABA) plays crucial 
roles in regulating plant response to drought by 
controlling stomatal closure and gene expression 
to limit water loss via transpiration [11]. Basic 
leucine zipper (bZIP) transcription factor, called 
ABA-responsive element (ABRE)-binding proteins 
is essential for ABA signaling [33]. In soybean, 
rice, and Arabidopsis, AREB1 over-expression 
(ABF2) improved drought tolerance, while 
AREB1 loss-of-function increased drought sus-
ceptibility [35–39]. Furthermore, under drought, 
AREB1 controls a broad range of genes down-
stream of the ABA signaling pathway [39] and is 
involved in ABA-mediated antioxidant signaling, 
ABA biosynthesis, and osmotic stress response. 
Therefore, AREB1 is an attractive candidate to 
enhance plant response to drought [36,40–42].

Accessibility to genome sequences of many 
plants and advances in genome editing methodol-
ogies have opened new avenues of breeding for 
several desirable traits. Developments in genome 
editing tools, such as transcription activator-like 
effector nucleases (TALENs) and zinc-finger 
nucleases (ZFNs), have allowed molecular biolo-
gists to more specifically target any gene of inter-
est. Nevertheless, these approaches are costly and 
laborious, since they need complex phases invol-
ving protein engineering. Unlike first-generation 
genome editing approaches, the CRISPR–Cas9 sys-
tem requires easy operation and simple cloning 
procedures. The same Cas9 is tentatively available 
for use with various guide RNAs, targeting several 
sites in the genome. Following proof-of-concept 
demonstrations using a preliminary CRISPR– 
Cas9 unit in plants, numerous types of Cas9 cas-
settes (StCas9, SaCas9, and NmCas9) have been 
introduced to enhance target accuracy and reduce 
off-target cleavage. Furthermore, the availability of 
Cas9 enzymes from other bacteria has increased 
the accuracy and efficiency of gene editing [43,44]. 
The present review outlines the options open to 
agro-biotechnologists for crop enhancement using 
the established Cas9-based genome editing techni-
ques. Cas9 enzymes have been used to enhance 
abiotic and biotic stress tolerance/resistance 

[27,45]. Implementation of these strategies is 
expected to produce non-genetically modified 
(non-GMO) plants with the objective phenotype, 
which may improve yield under abiotic and biotic 
stresses [21].

CRISPR-based targeted genome editing for 
drought tolerance

Various abiotic stresses substantially reduce crop 
yield by suppressing plant growth and reducing 
plant productivity [46]. Due to the dynamic nat-
ure of drought stress, genomic adaptation has 
previously been shown to be the sole approach 
to achieve drought tolerance. Overexpression of 
many genes and transcription factors related to 
drought signaling promote the aggregation of 
signaling molecules and metabolites and 
improve crop drought tolerance [47]. 
Meanwhile, the expressions of sensitive (S) 
genes increase plant drought susceptibility via 
hormonal imbalance, low antioxidant activity, 
and reactive oxygen species (ROS) generation. 
Stress-related ring finger protein 1 (OsSRFP1), 
drought-induced SINA protein 1 (OsDIS1), and 
dry- and salt-tolerant protein 1 (OsDST) are 
negative regulators of drought tolerance, whose 
silencing increased antioxidant enzyme levels, 
reduced H2O2 concentrations, and enhanced 
drought tolerance in rice [47,48]. Natural 
drought tolerance can be realized via genome 
editing to target drought-sensitive genes or 
negative regulators of abiotic stress response. 
As the first proof-of-concept study, the 
CRISPR–Cas9 system was used to introduce 
novel alleles in Arabidopsis OPEN STOMATA 
2 (OST2)-encoding gene – a key plasma mem-
brane H+ ATPase crucial for stomatal function 
[11]. Plasma membrane H+ ATPases are 
involved in the generation of proton gradient 
to initiate stomatal conductance [42]. In the 
presence of dehydration, ABA binds to the 
C-terminus of the proton pump, suppressing 
H+ ATPase function and inducing stomatal clo-
sure. Importantly, two significant mutations at 
the ost2 locus obliterate stomatal response to 
ABA, contributing to the constitutive function-
ing of proton pumps and induction of necrotic 
lesions [42]. Using an efficient CRISPR–Cas 
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framework combining Cas9 and a truncated 
sgRNA (tru-sgRNA), mutations in transgenic 
crops could be identified with extraordinary effi-
cacy (>32%) and without off-target alteration. 
Assessment of stomatal response under ABA- 
arbitrated conditions showed that compared 
with the wild-type, the ost2-CRISPR mutant 
exhibited a substantially higher rate of stomatal 
closure coupled with a lower rate of transcrip-
tional water loss (Figure 2, Table 1). Therefore, 
CRISPR–Cas9-mediated mutations at the OST2 
locus enhanced drought tolerance by improving 
stomatal response. Most recently, the CRISPR– 
Cas9 system was used to produce mutant lines 
of the non-expresser tomato of pathogenesis- 
related 1 (NPR1) to validate the role of this 
gene in drought tolerance [49]. Although NPR1 
is a key stimulator of the plant defense system, 
its function in abiotic stress is negligible. 
However, in drought-responsive apple plants, 
MdNPR1 downregulation has been documented 
[50]. In rice, AtNPR1 overexpression resulted in 
a hypersensitive response to drought stress (Li 
et al. 51). In wild tomato, CRISPR–Cas9- 
mediated loss-of-function s1npr1 mutants exhib-
ited weaker drought tolerance, higher stomatal 
opening rate, higher malondialdehyde (MDA) 
content, greater electrolytic leakage, and higher 

H2O2 levels, and lower antioxidant enzyme 
levels. Moreover, down regulation of drought- 
responsive genes, including SIDREB, SIDHN, 
and SIGST, further confirmed the drought sus-
ceptibility of s1npr1 mutants (Table 1). 
Consequently, in tomatoes and other crops, 
S1NPR1 plays critical roles in regulating drought 
response, and multiple SlNPR1 variants can be 
produced using genome editing to confer broad- 
spectrum drought tolerance [49].

CRISPER–Cas9 and ABA regulation

Extensive molecular studies have revealed that ABA 
acts as the main drought response element in plants 
by affecting stomatal closure to inhibit water loss and 
regulating stress-related gene expression [11]. The 
bZIP unit (AREBs/ABFs) and binding domain 
(ABRE) of transcription factors, called ABA- 
sensitive factors, are the key components of ABA 
signaling [50]. AREB1 upregulation improved 
drought tolerance, while AREB1 knockout increased 
drought susceptibility. AREB1 regulates the expres-
sion of a wide range of genes throughout the ABA 
signaling pathway and serves as a key element of 
osmotic stress response, antioxidant signaling, and 
ABA biosynthesis [14,65]. Therefore, AREB1 may be 

Figure 2. CRISPR–Cas9 alleviates drought stress and promotes plant growth and development.
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used as an important target for improving plant 
drought tolerance.

In Arabidopsis, a modified CRISPR–Cas9 fra-
mework integrating sgRNA, catalytic domain of 
histone acetyltransferase (HAT) enzyme, and 
dead Cas9 (dCas9) was used to access the promo-
ter region of AREB1 [66]. The binding of 
Arabidopsis HAT catalytic domain led to acetyla-
tion of the central histone, enhancing the sensitiv-
ity of the AREB1 promoter region to the 
transcriptional region. Physiological and molecular 
analyses of mutants showed higher AREB1 expres-
sion, stomatal opening rate, and chlorophyll level 
under drought. In addition, AREB1 activated 
RD29A expression under water-scarce conditions. 
The transgenic CRISPR lines exhibited improved 

survival rate under drought stress. Collectively, 
these results indicate that the CRISPR–Cas system 
can be successfully used to induce epigenetic 
alterations for enhancing plant drought tolerance 
via the positive control of drought-responsive 
genes.

SNF1-associated protein kinase 2 (SnRK2) 
a plant-specific protein kinase family – serves as 
the central stimulator of ABA-dependent hyperos-
motic stress response and signaling [13]. SnRK2 
members are commonly involved in seed germina-
tion, hyper-osmotic stress response, ABA- 
mediated stomatal closure, ABA signaling, drought 
tolerance, and seedling development [67]. In fact, 
in Arabidopsis, AtSnRK2.8 exhibited a typical 
stress regulatory network to positively control of 

Table 1. Application of the CRISPR-based genome editing approach in plants for improvement of drought stress tolerance.
Species Target gene/site Transformation method/Strategy Target trait/Improved trait Reference

Arabidopsis Open stomata 2 
(OST2)

Agrobacterium-mediated transformation Drought stress tolerance by altering stomatal 
closing

[52]

Arabidopsis miR169a Agrobacterium-mediated transformation/ 
dual-sgRNA/Cas9-mediated targeted 
deletion to create null mutations

Targeting sensitive gene replacement by HDR [53]

Maize Auxin-regulated 
gene involved in 
organ size 
[ARGOS]

Biolistic mediated transformation/ CRISPR/ 
Cas9-mediated DNA repair in untranslated 
regions of target genes to produce over 
expression

Overexpression of ARGOS8 to reduce ethylene 
sensitivity to enhance flowering/ increase 
grain yield under drought stress

[32]

Arabidopsis Arabidopsis thaliana 
vacuolar H+- 
pyrophosphatase 
[AVP1]

Agrobacterium-mediated 
transformation/CRISPR/Cas9 
activation system to produce 
overexpression of target gene

Enhanced number of leaves and leaf area [54]

Arabidopsis ABA-responsive 
element- binding 
protein 1 (AREB1)

Agrobacterium-mediated 
transformation/CRISPR activation 
system to enhance the expression of 
target gene

Increased chlorophyll cornetts and faster  
stomatal opening

[55]

Tomato 
(Solanum 
lycopersicum)

Mitogen-activated 
protein kinases 3

A. tumeficiens/CRISPR cas9 system to 
knockout expression of Slmpak3 expression

Protecting cell membrane from oxidative 
damage

[70]

Rice SNF 1-related 
protein kinase 2

A. tumeficiens/CRISPR generated mutation in 
targeted genes

Inducing compatible solutes and decrease 
damage by ROS

[72]

Arabidopsis, 
Poplar

PtoMYB216 CRISPR Cas9 generated mutation of targeted 
gene

Regulates lignin deposition leading to flexible 
and collapsed xylem during wood formation

[56]

Arabidopsis UGT79B2, UGT79B3 CRISPR generated mutations Modulating anthocyanin accumulation [57]
Cassava MeKUPs CRISPR generated analysis of KUP genes Maintaining osmotic balance [58]
Cassava MeMAPKK Activates MAPKK genes Tissue development [59]
Cotton GhPIN1-3 

GhPIN2
CRISPR based gene targeting to control 

auxin distribution
Controls the cell growth and development [60]

Cotton GhRDL1 Characterizing promoter of a dehydration- 
responsive gene

GUS activity in trichomes also expression was 
observed in leaves, stems and floral tissues

[61]

Sugarcane ScNsLTP Targeting soluble proteins/nonspecific lipid 
transfer protein

Catalyzing phospholipids response [62]

Wheat TaDREB2 
TaERF3

CRISPR Cas9 genome editing in wheat 
protoplast for targeted genes 
manipulation

Maintained the expression of wheat 
dehydration responsive element binding 
protein 2 (TaDREB2) and wheat ethylene 
responsive factor 3 (TaERF3)

[63]

Papaya CpDreb2 CRISPR generated gene disruption Overexpression of targeted gene responsible 
for transmitting signals under water stress

[64]
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drought tolerance via the upregulation of stress- 
responsive genes [68]. Despite the lack of signifi-
cant differences in stomatal injury and survival 
between the wild type and snrk2.8 mutant, micro-
array analysis revealed that SnRK2 regulated the 
AREB–ABF axis and its targets. Similarly, in rice, 
members of subclass I and III of the SnRK2 family 
improved plant growth and abiotic stress 
response [67].

Effects of CRISPR on plant productivity

The noticeable signs of plants subject to drought at 
the early vegetative stages are reductio in plant 
height, wilting of leaves, and disruption of flowers 
and buds [69]. Severe drought often inhibits nutri-
ent absorption by plants. In tomato, the CRISPR– 
Cas9 method was used to suppress mitogen- 
activated tomato protein kinase 3 (slmapk3) for 
elucidating the regulatory cascade underlying 
SlMAPK3-mediated drought tolerance (Figure 2, 
Table 1). Under drought conditions, the slmapk3 
mutant lines showed more severe stem curling and 
leaf wilting than the wild type lines [70]. 
Moreover, the mutant plants showed substantially 
higher H2O2, proline, and MDA levels than the 
wildtype plants, suggesting that the mutant lines 
experienced more severe oxidative stress and 
membrane injury under drought. These findings 
in tomato highlight the role of SlMAPK3 in 
drought tolerance, offering insights into the 
SlMAPK3-regulated mechanism of drought toler-
ance [70]. Further research involving genetic engi-
neering to augment SIMAPK3 expression in 
tomato can improve yield and tolerance under 
drought conditions [71].

Similarly, under heat stress, CRISPR–Cas9- 
mediated knockout the tomato SLAGAMOUS- 
like 6 (SlAGL6) induced the formation of parthe-
nocarpic fruits. The CRISPR–Cas9 system was 
used to produce the loss-of-function mutant of 
stress/ABA-activated protein kinase 2 (SAPK2), 
the key mediator of ABA signaling, in rice. This 
SAPK2 rice mutant was more susceptible to oxida-
tive and drought stresses than the wild type, sug-
gesting that SAPK2 is essential for drought 
tolerance in rice and can serve as a candidate 
gene for future crop development [72]. Similarly, 
in maize, the transcription standard of ARGOS8-v2 

and ARGOS8-v1 was considerably higher than that 
of the wild type, and the ARGOS8 variant showed 
substantially improved grain production under 
drought conditions and zero yield loss under nor-
mal growth situations [32].

At DuPont Pioneer, [32], documented that the 
maize variants modified using CRISPR were more 
drought tolerant. The authors also demonstrated 
that the CRISPR–Cas9-mediated ARGOS8 var-
iants showed enhanced grain production under 
field conditions during the dry season. These find-
ings indicate that the CRISPR–Cas9 method can 
be successfully and effectively used to induce 
novel allelic modifications for developing 
drought-tolerant crop varieties. Consistently, 
a potent CRISPR–Cas9 framework using tru- 
gRNAs and Cas9 driven by the tissue-specific pro-
moter AtEF1 could successfully induce mutations 
of abiotic stress-sensitive genes (OST2/AHA1) 
with no off-target consequences [2,11]. In 
Arabidopsis, the novel OST2/AHA1 mutant alleles 
were created by streamlining the CRISPR–Cas9 
system with intense stomatal responses. These 
findings paved the way for the application of 
CRISPR–Cas9-mediated genetic engineering to 
improve crop production and multigenic stress 
resistance [71].

Identification of negative regulators of stress 
tolerance

Given the dynamic nature of drought conditions, 
successful use of genome editing to induce 
drought tolerance has previously been demon-
strated. Overexpression of specific transcription 
factors and genes involved in drought stress sig-
naling promotes the aggregation of signaling 
molecules and metabolites and improves drought 
tolerance of crops [47,73].

The binding of the Arabidopsis HAT catalytic 
domain triggered acetylation of the central his-
tone, thereby enhancing the sensitivity of the 
AREB1 promoter region to the transcriptional 
region. Physiological and molecular analyses of 
mutants revealed upregulation of the AREB1- 
and AREB1-regulated RD29A genes, rapid open-
ing of stomata, and increase in chlorophyll con-
centration under water scarcity. The transgenic 
CRISPR lines exhibited improved survival under 
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drought conditions. The drought tolerance gene 
OsDREB has been proposed as a target for the 
CRISPR–Cas9 system in rice [74]. Taken together, 
these reports indicate that the CRISPR–Cas 
method can successfully induce epigenetic altera-
tions to enhance drought tolerance via the positive 
control of drought-responsive genes.

Effects of CRISPR–Cas9 on ethylene 
responsive factors (ERFs) for drought stress 
tolerance

Among the numerous phytohormones involved in 
diverse physiological pathways underlying abiotic 
stress response, ethylene plays a key role in 
drought and heat response [30,75]. Ethylene is 
a gaseous hormone involved in signal transduc-
tion, playing vital roles in cell growth, seed germi-
nation, senescence, abscission, budding, fruit 
ripening, and stress response [76,]. Indeed, ethy-
lene serves key functions in the regulation of var-
ious plant growth mechanisms by mitigating 
severe damage. High salinity or drought under 
ABA suppression activates the expression of 
ERFs. Transgenic Arabidopsis plants showed 
increased tolerance of salinity, drought, and heat 
stress. The overexpression of ERF-like transcrip-
tion factors has been implicated in stress tolerance 
in various plants, such as tomato [18], tobacco, 
and Arabidopsis thaliana [66,68]. Abiotic stress- 
related genes regulating various underlying mole-
cular and cellular activities retain a biological 
stigma, and such genes can be effectively targeted 
with the CRISPR–Cas9 genome editing technique. 
To date, only a few studies have demonstrated the 
role of genetic engineering for abiotic stress in 
developing crops resilient to climate change. 
ERFs are transcription factors that play critical 
roles in plant signaling cascades, being involved 
in diverse stress-responsive mechanisms. ERFs are 
uniquely diverse plant transcription factors that 
have been explored in studies evaluating the pre-
cise mechanisms of stress response in crops [55].

In maize, novel variants of ARGOS8, a negative 
regulator of ethylene response, were produced 
using the CRISPR–Cas9 system, and this variant 
was more drought tolerant that the wild type. The 
CRISPR-edited lines showed increased grain yield 
under the field conditions during the dry season. 

In wheat protoplast, the CRISPR–Cas9 system was 
effective in the targeted alteration of the stress- 
responsive transcription factors wheat ethylene- 
responsive factor 3 (TaERF3) and wheat dehydra-
tion-responsive factor binding protein 2 
(TaDREB2) (Figure 2, Table 1). In rice, RNA 
interference-mediated knockout of OsERF109 
greatly increased drought tolerance [77]. 
Similarly, the CRISPR–Cas9 system targeting 
OsERF109, OsBIERF4, OsBIERF3, and OsBIERF1, 
which belong to the ERF (Ethylene responsive 
factors) family, could improve abiotic stress toler-
ance in rice. Therefore, genome editing techniques 
can be used to enhance tolerance of several abiotic 
stresses. CRISPR/Cpf1, an emerging base editor, 
appears to be highly effective and reliable in accel-
erating the development of abiotic stress-tolerant 
rice cultivars [18,32].

Multigenic stress tolerance in crops

Abiotic stress is one of the most serious limiting 
factors in global agriculture, and it is likely to 
escalate further in the face of climate change. 
Abiotic stress response a dynamic quantitative 
trait regulated by several genes and is therefore 
difficult to handle [50,78]. In this context, the 
CRISPR–Cas9 method relies on simple DNA/ 
RNA hybrids that confer sequence specificity and 
can modify almost any sequence in the genome to 
reveal its purpose [79, 79]. Thanks to its high 
efficiency, simple design and operation, and ability 
to simultaneously engineer multiple genomic loci, 
CRISPR–Cas9 is now preferred over other conven-
tional genome editing tools [80]. The CRISPR– 
Cas9 technology has two key benefits. First, 
many sgRNAs can function concurrently with the 
same Cas9 protein at various loci and second, the 
specificity for the target DNA can be rapidly mod-
ified by programming the sgRNA sequence [55]. 
Currently, CRISPR–Cas9 is widely used for plant 
genome editing targeted at particular genes. 
CRISPR-P is a novel web-based platform for the 
configuration of sgRNAs in over 20 plant species 
[81]. In addition, numerous vectors and toolkits 
have been established for CRISPR–Cas9-based 
plant genome editing [82]. The application of 
CRISPR–Cas9 for genetic modification, transcrip-
tional regulation, development of stress-resistant 
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crops, and elucidation of the molecular basis of 
multigenic stress response is supported by the 
accessibility of the above evidence [83]. The 
recently introduced type 2 CRISPR–Cas9 method 
has further advantages, and this versatile technique 
has enabled site-specific mutagenesis in a wide 
range of organisms, particularly model crops. 
Certain genes of the ERF family, which is asso-
ciated with fruit ripening and seed extrapolation, 
show favorable responses to heat, drought, and 
salinity stress. In rice, the CRISPR–Cas9 method 
targeted at three negative regulators abiotic stress, 
namely OsDERF1, OsERF922, and OsRMC, could 
produce stable lines with enhanced salinity, 
drought, and oxidative stress tolerance [74].

Enhancement of fruit consistency using 
CRISPR

In tomato fruit, the number of locules originating 
from flower carpels has the strongest effect on fruit 
size, explaining 50% of mean variation in fruit size. 
Locule volume is regulated by several QTLs [84], 
some of which have been identified. CRISPR–Cas9 
rapidly produced bigger tomato fruits by breaking 
the classic CLAVATA-WUSCHEL (CLV-WUS) 
stem cell circuit under stress conditions [85]. 
Eight sgRNAs were engineered to access the pro-
moter region of the CLV3 gene, and the corre-
sponding transgenic plants developed more fruits 
and tissues than the wild-type plants. In tomato, 
a known QTL associated with fruit size and locule 
number was reconstructed to produce large fruits 
with numerous locules [86]. For consumers, fruit 
texture and color are the key components to iden-
tify fresh tomatoes [87]. American and European 
consumers prefer red tomatoes, while Asia consu-
mers prefer pink tomatoes [88,89]. Yellow, pink, 
and purple tomatoes have been developed by tar-
geting anthocyanin 2 (ANT2), MYB transcription 
factor 12 (MYB12), and phytoene synthase 1 
(PSY1) [90–91]. Furthermore, modifying texture 
properties for long shelf life has long been an 
issue for scientists. Inhibition of a ripening inhi-
bitor or DNA demethylase 2 using CRISPR can 
produce incompletely ripe fruits with long shelf 
life [92,93]. Nevertheless, these fruits typically do 
not produce extreme color, resulting in bad taste 
and low nutritive values. It is important to procure 

fruits with a reasonable shelf life without impact-
ing other consistency traits. Two research groups 
reported effective fruit softening by silencing pecta 
lyase (PL) and alcobaca (ALC) without decreasing 
the organoleptic and nutritional content of toma-
toes [94,95], indicating that the CRISPR method 
may be an exemplary tool for improving fruit 
crops.

Major applications of CRISPER–Cas9 in crops 
and other fields

At present, CRISPR–Cas-based genome editing is 
extensively used in nearly all agronomically 
important crops, including cotton, maize, rice, 
wheat, soybean, and potato, as well as biofuel 
crops, including switchgrass. Sugar is an essential 
part of daily lives as well as biofuel production. 
Sugarcane and sugar beet are the only two crops 
that generate substantial levels of sugar. In rice, 
[96], used CRISPR to knock out GCS1, resulting in 
fertilization failure and pollen tube-dependent 
ovule enlargement morphology (POEM). 
Interestingly, the POEMed-like rice ovule (‘endo-
sperm-focused’) could develop to near-normal 
sized seed, contrary to previous observations in 
Arabidopsis in which the gcs1 ovules (‘embryo- 
focused’) were aborted relatively early. The 
POEMed-like rice ovules contained 10–20% 
sugar, with a very high sucrose concentration 
(98% of all sugars) [96]. Transcriptomic studies 
indicated that in osgcs1 ovules, starch biosynthetic 
genes, which convert sucrose to starch, were 
downregulated. Overall, [96], findings indicate 
that pollen tube content release is sufficient to 
cause sucrose unloading in rice ovules. Therefore, 
effective fertilization is required to initiate 
sucrose–starch conversion [96]. These observa-
tions may pave the way for the development of 
new sugar-producing crops suitable for cultivation 
in diverse climatic areas.

Foods with high amylose and resistant starch 
(RS) content can significantly enhance human 
health and reduce the risk of major noninfectious 
diseases. Wheat (Triticum aestivum L.) is an 
important staple food crop worldwide. 
Nevertheless, the grain RS content of modern 
wheat cultivars is low. [97] developed high- 
amylose wheat using CRISPR–Cas9-mediated 
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targeted mutagenesis of TaSBEIIa in the contem-
porary winter wheat cultivar ‘Zhengmai 7698� 
(ZM) and the spring wheat cultivar ‘Bobwhite’. 
The authors produced various transgene-free 
mutant lines of ZM and Bobwhite with partial or 
triple-null TasbeIIa alleles. Analysis of starch com-
position, structure, and characteristics revealed 
that the effects of partial or triple-null alleles 
were dose-dependent, with the triple-null lines 
exhibiting more significant effects on starch con-
tent, fine amylopectin structures, and physico-
chemical characteristics [98]. The flour made 
from the grains of the triple-null lines had con-
siderably higher levels of amylose, RS, protein, and 
soluble pentosan, all of which are beneficial to 
human health. Analysis of baking quality demon-
strated that the high-amylose flours may be uti-
lized as additives or to make cookies [98]. Overall, 
through targeted mutagenesis of TaSBEIIa using 
CRISPR–Cas9 in both winter and spring wheat 
cultivars, [97], successfully modified starch con-
tent, structure, and characteristics to produce 
transgene-free high-amylose wheat [99–101].

Camelina sativa has emerged as a promising 
low-input oilseed crop. Camelina oil must be 
improved for optimum fatty acid content, which 
can fulfill the demands for various uses. Camelina 
seed contains high amounts of C20-C24 very-long- 
chain fatty acids (VLCFAs), which are undesirable. 
[102], demonstrated that these VLCFAs can be 
efficiently reduced by deactivating fatty acid elon-
gase1 (FAE 1) in Camelina. Allohexaploid 
Camelina harbors three different alleles of the 
FAE1 genes. A mutation in the FAE1-B gene 
induced using ethyl methanesulfonate (EMS) 
resulted in 60% decrease in VLCFA content of 
the seed. Homozygous knockout mutants were 
successfully generated in a single generation by 
simultaneously targeting the three FAE1 alleles 
using the CRISPR technology with egg cell- 
specific Cas9 expression. VLCFA content in the 
mutants dropped to <2% of the total fatty acid 
content, compared with approximately 22% in 
the wild type; however, the levels of C18 unsatu-
rated fatty acids were enhanced. In terms of seed 
physiology and plant development, the fae1 
mutants were indistinguishable from the wild 
type. Further, FAE1 knockout increased oleic 
acid or α-linolenic acid content in Camelina oil, 

which are beneficial for industrial or food/feed 
purposes [102].

Certain fruits, such as tomato and peach, have 
long been a source of contention in terms of 
storage and shipping. When fruits are fully 
grown and have good flavor, they become soft 
and are difficult to store for a long time and 
transport over long distances. [95], employed 
CRISPR–Cas-based genome editing to achieve 
both ALC mutagenesis and replacement in toma-
toes. Similar to that in other plant species, CRISPR 
HDR-mediated gene substitution in tomato 
proved far more challenging than CRISPR–Cas- 
mediated knockout mutagenesis [95]. CRISPR- 
based genome editing enhanced the storage per-
formance and shelf life of tomato without affecting 
other agronomic parameters, such as plant growth 
and fruit firmness [95]. [103], developed tomato 
plants with altered fruit ripening using a CRISPR– 
Cas9-mediated knockout of tomato ripening- 
related lnRNA1459 [101].

As the initial stages of gene repair, current gen-
ome editing methods introduce one to two dou-
ble-stranded DNA breaks at target loci [77]. 
Although point mutations cause majority of the 
known genetic disorders, existing techniques to 
repair point mutations are ineffective, resulting in 
excess random insertions and deletions (indels) at 
the target loci due to cellular response to double- 
stranded DNA breaks [77].

The discovery of ‘base editing,’ a novel method 
of genome editing that allows for the direct and 
irreversible conversion of a target DNA base to 
another in a programmed manner without the 
need for the fragmentation of the double- 
stranded DNA backbone or the use of a donor 
template. [77], developed CRISPR–Cas9 fusions 
using cytidine deaminase, which can be pro-
grammed using a guide RNA do not induce dou-
ble-stranded DNA breaks while facilitating the 
direct conversion of cytidine to uridine, resulting 
in a C �T (or G � A) substitution. The resultant 
‘base editors’ convert all cytidine bases within 
a five-nucleotide window and can quickly repair 
a wide range of point mutations relevant to human 
disorders. Second- and third-generation base edi-
tors that fuse a uracil glycosylase inhibitor and use 
a Cas9 nickase targeting the non-edited strand 
could modify the cellular DNA repair response to 
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favor desired base-editing consequences in four 
transformed human and murine cell lines, result-
ing in permanent correction of 15–75% of total 
cellular DNA with minimal (typically 1%) indel 
formation. Therefore, base editing has widened 
the scope and efficiency of point mutation-based 
genome editing [98,104]. Most genetic variants 
that cause disease 1 are difficult to repair effec-
tively without generating additional bypro-
ducts [98].

Prime editing a dynamic and concise genome 
editing method that uses a catalytically impaired 
Cas9 endonuclease fused to an engineered reverse 
transcriptase program with a prime editing guide 
RNA (pegRNA), which both specifies the target 
site and encodes the desired edit to directly write 
new genetic information at a specified site in 
DNA. [105], conducted over 175 modifications in 
human cells, including targeted insertions, dele-
tions, and all 12 types of point mutations, without 
the introduction of double-strand DNA breaks or 
the use of donor DNA templates.

[105], used prime editing in human cells to 
correct the primary genetic causes of sickle cell 
disease (requiring a transversion in HBB) and 
Tay–Sachs disease (requiring a deletion in 
HEXA) as well as to install a protective transver-
sion in PRNP and precisely insert various tags 
and epitopes at the target loci. With different 
degrees of efficiency, prime editing was success-
ful in modifying the four human cell lines and 
primary post-mitotic mouse cortical neurons. 
Prime editing is more efficient and produces 
fewer byproducts than homology-directed repair, 
and it has complementary strengths and weak-
nesses compared to base editing. As such, prime 
editing generated considerably less off-target 
editing than Cas9 nuclease-based editing at 
a known Cas9 off-target site. Therefore, prime 
editing has significantly widened the scope and 
ability of genome editing and, in principle, has 
the potential to repair up to 89% of known 
genetic variations related to human disor-
ders [105].

Overall, since its introduction as a genome edit-
ing technology, CRISPR–Cas has garnered much 
attention from the scientific community and com-
mercial sector for treating human genetic disor-
ders. Over the past decade, significant progress has 

been made in the application of CRISPR–Cas gen-
ome editing technology in the clinical and precli-
nical contexts to cure human genetic 
abnormalities, screen and diagnose human disor-
ders, and conduct basic biomedical research.

MicroRNAs (miRNAs)

MicroRNAs (miRNAs) are a diverse family of endo-
genous, small RNA molecules that regulate the 
expression of genes involved in various developmen-
tal processes and signaling pathways [106, 6]. Recent 
studies have demonstrated that drought stress leads to 
aberrant expression of several miRNAs, implying that 
these molecules can be used as novel targets for 
genetic improvement of plant resistance to/tolerance 
of specific stresses. Furthermore, miRNAs respond to 
drought stress in miRNA-, stress-, tissue-, and geno-
type-dependent manners. Under drought stress, 
miRNAs function by modulating target genes within 
the miRNA–target gene network and affecting signal-
ing pathways and growth. Drought-induced miRNAs 
down regulate the negative regulator of drought tol-
erance, whereas drought-inhibited miRNAs promote 
the accumulation and function of positive regulators. 
Drought treatment induced miR168 and miR396 
expression in Arabidopsis [6, 107] and tobacco [108] 
but inhibited it in rice. Further, drought treatment 
down-regulated miR408 expression in rice, peach, 
and cotton [109] but up regulated it in Arabidopsis 
[107], Medicago, and barley [109]. Majority of the 
miRNA-based research was focused on identifying 
miRNAs that are sensitive to various stresses and 
analyzing the variations in their expression profiles 
throughout the treatment, primarily using deep 
sequencing and other expression analyses, such as 
quantitative real-time PCR studies. Deep sequencing 
was used to identify 17 drought-specific miRNAs in 
switchgrass, 4 of which are conserved and 13 are 
switchgrass-specific [110]. [111], discovered 21 
miRNA gene families in Populus trichocarpa, includ-
ing 48 miRNA sequences, only 11 of which are con-
served in P. trichocarpa and Arabidopsis. Additional 
functional and expression analyses are warranted in 
the future to elucidate common miRNA-mediated 
regulatory mechanisms underlying drought tolerance. 
The ideal approaches to identify the precise functions 
of different miRNAs in response to environmental 
stresses include the use of artificial miRNAs and 
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overexpression or knockout/down of the miRNAs 
and their targets.

Conclusion and future prospects

Drought, which negatively affects plant growth 
and production, is a critical form of environmental 
stress. Drought stress affects diverse biochemical 
aspects, in addition to morphological and physio-
logical parameters, which are essential for plant 
growth. In diverse climatic regions, soil water scar-
city and drought can lead to persistent low acces-
sibility of water to plants. In addition, uncertain 
and spontaneous climatic variations throughout 
the plant growth cycle can worsen the effects of 
water deficit. With rising water shortage and rapid 
climate change, the impacts of drought have 
become more severe. In this light, significant 
advances in genomic approaches have opened 
new windows for deciphering of mechanisms of 
plant response to drought stress. Specifically, 
CRISPR–Cas-mediated genome editing has proven 
a dynamic tool for rapid and high-throughput 
reconfiguration of endogenous genes. However, 
relative to the percentage of reviews on different 
plants, only a few studies have explored the appli-
cation of CRISPR–Cas-mediated genome editing 
to improve crop tolerance of drought stress 
(Figure 2, Table 1). The bottlenecks for genome- 
edited crops are the discovery of target genes, 
effective delivery of CRISPR machinery to the 
right cells and regeneration of various crops. 
Particular attention to drought stress response 
genes and drought stress-induced transcriptional 
networks is required to address the issue of target 
discovery. In addition, comparative genome-wide 
analysis will provide a solid foundation for further 
discovery of the potential target genes in crops.

Over the past decade, significant progress has 
been made in the discovery, modification, and 
application of CRISPR–Cas systems in gene func-
tional analyses, clinical research, and crop 
improvement studies. By targeting several agrono-
mically relevant gene regulators, CRISPR–Cas 
could dramatically improve plant tolerance to 
drought stress and enhance average crop produc-
tion. In plants, CRISPR–Cas-based genome editing 
closely depends on plant tissue culture-based gene 

transformation. However, modifying the plant 
growth medium and culture conditions, such as 
starvation and drought treatment, could substan-
tially enhanced the plant regeneration capability, 
and regenerated plants. In addition, comparative 
genome-wide assessments can provide a factual 
basis for the exploration of additional potential 
target genes in plants. As CRISPR–Cas-mediated 
plant genome editing still faces many challenges, 
deciphering regulatory mechanisms underlying 
drought stress tolerance in different plants using 
genomic strategies will aid the application of this 
system in various crops.

Research highlights

● Climate change impacts agriculture by affecting 
water distribution and temperature

● Genetic engineering can increase drought tol-
erance and reduce crop losses

● CRISPR–Cas9 has attracted attention as 
a potent tool to induce hereditary mutations

● Editing efficiency and target identification of 
plant CRISPR–Cas9 need improvement

● CRISPR–Cas9 may be fundamental method to 
ensure global food security under climate 
change
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