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Abstract

The strong coupling regime between confined light and organic molecules turned out

to be promising in modifying both the ground state and the excited states properties.

Under this peculiar condition, the electronic states of the molecule are mixed with

the quantum states of light. The dynamical processes occurring on such hybrid states

undergo several modifications accordingly. Hence, the dynamical description of

chemical reactivity in polaritonic systems needs to explicitly take into account the

photon degrees of freedom and nonadiabatic events. With the aim of describing pho-

tochemical polaritonic processes, in the present work, we extend the direct trajectory

surface hopping scheme to investigate photochemistry under strong coupling

between light and matter.
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1 | INTRODUCTION

The coherent interaction between light and matter in confined sys-

tems offers an alternative pathway to tailor optical and chemical prop-

erties of molecules. While the spectroscopy of atoms and molecules

in resonant cavities is well established, the possibility to manipulate

the molecular reactivity through quantum coupling with light has only

recently been addressed. By devising microcavities[1,2] and

nanocavities,[3,4] the experimental efforts[5,6] to bring molecules in the

strong coupling regime down to the single molecule level have driven

an increasing theoretical interest.[7–10] Yet, the modeling of such com-

plex systems experiences limitations both theoretical and

computational.

Understanding which approximations can hold for a correlated

nuclear–photonic–electronic system is indeed challenging.[11,12] Even

more, an important option is whether to couple the photonic degrees

of freedom to the nuclear ones or to the electronic ones.[8,13,14]

Within the first approach, the photonic degrees of freedom are

treated so as the nuclear ones, allowing to study the effect of the

electron–nuclei–photon coupling on adiabatic potential energy sur-

faces. Such approach provides insightful tools of analysis for

phenomena like Raman Scattering,[15,16] modified molecular proper-

ties,[14,17] and ground state reactivity.[18–20] Instead, the second

approach, in which electronic and photonic states are mixed, is suit-

able to describe the modified photochemical properties[8,21] and reac-

tivity,[22–24] provided that nonadiabatic couplings are taken into

account.

A full quantum approach has been developed by Rubio's group in

the DFT framework. The method is based on rewriting the DFT for-

mulation in terms of a current density functional which allows to

include the photonic degrees of freedom[10,25] (QEDFT). Later on, the

same group reformulated the Born–Oppenheimer approximation to

partially decouple the nuclear–photonic–electronic problem with the

so-called Cavity Born–Oppenheimer approximation.[13,14] Such works

opened a way to a full ab-initio investigation of strongly coupled

light–matter systems,[10,17,26] with successful applications in strong-

coupling modified properties of single and many molecules.

Aiming to investigate polaritonic photochemical reactions, the

complexity of the system can quickly become cumbersome. The cor-

rect computation of excited states is mandatory, together with the

treatment of the photonic degree of freedom.[27–29] Further complex-

ity to the problem is added by interfacing a propagation scheme for
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the nuclei[30] and by accounting for environmental effects. In addition,

the common problems encountered in photochemical simulations[31]

are directly transposed to the study of polaritonic photochemical

reactions.

A pioneering conceptual display of novel photochemical events in

the strong coupling regime is offered by the works of Mukamel and

collaborators[7,32,33] and Feist and collaborators[8,22,23] on model mol-

ecules. Such works collect a plethora of insights for a novel chemical

reactivity ranging from single-molecule strong coupling to collective

strong coupling effects. We have also recently shown how moving

beyond model treatments to investigate polaritonic chemistry can also

reveal noteworthy effects like enhanced photoisomerization quantum

yields.[34]

To simulate mixed light–molecule systems, a toolbox of strong-

coupling techniques for photochemistry has been developed in the

last three years.[24,35,36] Among them, we mention the multiscale MD

approach devised by Groenhof and collaborators, which allows to

investigate the collective polariton behavior in biological environ-

ments through a QM/MM approach.[35,37,38] For events occurring in

small ensembles of realistic molecules in cavities on a shorter time-

scale, the extension of the MCTDH technique to polaritonic sys-

tems[36,39] is also remarkable. In recent works,[24,34] we showed how

the Surface Hopping scheme in a semiempirical framework can be

used to describe the photochemistry of molecules in a strong coupling

environment with a high level of realism. A similar Surface Hopping

scheme has been used by Tretiak et al.,[40] which studied the stilbene

photoisomerization under strong coupling, employing a single refer-

ence quantum chemical approach for the electronic states. Compara-

tively, in our scheme, we also include cavity losses, and our

semiempirical multireference FOMO-CI scheme allows for a qualita-

tively correct description of potential energy surfaces and couplings,

which is also quantitatively accurate since we reparametrize the semi-

empirical Hamiltonian.

In the present contribution, we show in detail the theoretical

approximations and the implementation techniques of our approach to

polaritonic chemistry. To this aim, we show first how polaritonic states

are built on top of the semiempirical FOMO-CI[41–44] technique for the

computation of electronic states. Then, we derive the analytical gradients

for the strong coupling contribution to the CI energy via the Z-vec-

tor[45,46] algorithm. We also discuss the interface with the on-the-fly

Direct Trajectory Surface Hopping (DTSH), with emphasis on the method

we have adopted to include the effect of cavity losses on the dynamics.

We want to stress that the hereby presented gradients and Surface

Hopping interface have a general applicability to multiconfigurational

wavefunction methods. The choice of a semiempirical approach to solve

the electronic problem resides in the good compromise between effi-

ciency and accuracy.[31] We also mention that such approach has been

successfully applied to deal with the molecular complexity of polaritons

when all the degrees of freedom are taken into account,[24] and also in

the presence of an environment[34] inspired to a realistic setup.[5] We

also stress that, while our method carries the potential to treat a few

chromophores, the study of a large ensemble of molecular systems is

beyond the aim of the present work.

2 | METHODOLOGY

2.1 | Polaritonic wavefunction in a semiclassical
framework

To build polaritonic states, we consider a generalized correlated

photon–electron–nuclear system:

bHtot = bTe + bTn + bTph + bWe,e + bWe,n + bWn,n + bWe,ph + bWph,n + bWph,n,e ð1Þ

where the electronic degrees of freedom are described by the e sub-

script (r coordinates), the nuclear ones by the n subscript (R coordi-

nates), and the photon one by the ph subscript (q coordinates). The

total wavefunction of the correlated electron–photon–nuclei system

is Ψ(r, R, q). Two approaches to approximate the eigenstates and the

time-evolution of strongly coupled systems have been applied so far:

the first is to embed the photon degrees of freedom into the nuclear

wavefunction[14] while the second is to embed the photon into the

electronic wavefunction.[8]

Such two different approaches provide different insight on two

classes of processes. In fact, the molecular properties and the dynam-

ics in the Cavity Born–Oppenheimer approximation[13,17] are opti-

mally described by incorporating the photon in the nuclear

wavefunction (Ψn + ph, e). Instead, the processes involving nuclear

dynamics on polaritonic states, that is, photochemical processes, are

accurately described by considering hybrid electron–photon states

(polaritons, Ψn, e + ph).
[7,24,32,34,47] The Born–Huang factorizations of

the wavefunction in these cases respectively correspond to:

Ψn+ ph,e r,q,R,tð Þ=
X
k

χk R,q,tð Þϕel
k r;q,Rð Þ, ð2Þ

Ψn,e+ ph r,q,R,tð Þ=
X
k

χk R,tð Þϕe+ ph
k r,q;Rð Þ: ð3Þ

Equation (2) represents the case where the photon degrees of

freedom are considered slow. Hence, they are treated alike to the

nuclear degrees of freedom in the Cavity Born–Oppenheimer frame-

work.[13,17] Based on this assumption, the purely electronic

wavefunction and the related electronic potential energy surfaces

show a parametric dependence on both the nuclear and photonic

coordinates. This framework explicitly requires to compute the quan-

tum nuclear wavefunction to include the photon effects, hence it is

not properly interfaced with semiclassical methods developed treating

the whole nuclear dynamics as classical.

In the factorization presented in Equation (3), the photonic

degrees of freedom are considered fast and possibly resonant with

optical transitions. Within this framework, the parametric dependence

of the mixed electronic-photonic wavefunction with respect to the

nuclear degrees of freedom allows to describe the time evolution of a

polaritonic wavefunction with semiclassical trajectory-based methods.

In that case, the nuclei are moving according to a classical trajectory R

(t), and the polaritonic nonadiabatic couplings can be included as for
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the purely electronic case. In the semiclassical case, we define by anal-

ogy with Equation (3) the polaritonic wavefunction:

jΨpol r,q,R tð Þ,tð Þi=
X
A

CA tð Þ jA r,q;Rð Þi, ð4Þ

where jAi are the semiclassical analogous of the polaritonic states

ϕph+ e
k of Equation (3). We choose jAi to label such states to directly

refer to their adiabatic behavior, as they are the eigenstates of the

polaritonic Hamiltonian:

bHpol jAi= EA jAi, ð5Þ

with

bHpol = bHel + bHph + bHint: ð6Þ

Here, bHel is the standard electronic Hamiltonian and bHph is the

Hamiltonian of the quantized electromagnetic field (we consider here

a single mode for the field),

bHph =ℏωph
bb†bb+ 1

2

� �
ð7Þ

where bb†, bb are the creation and annihilation operators for the electro-

magnetic field. In principle, the approach considered in this work

could be extended in a straightforward way to consider several cavity

modes. However, it is uncommon that many modes can reach a cou-

pling strength large enough to require a strong coupling treatment,

not to mention that they may also be well separated in energy. As

interaction Hamiltonian Hint, we take the dipolar light–matter interac-

tion in the Coulomb gauge and long wavelength approximation:

bHint =ℰ1phλ �bμtr bb† +bb� �
: ð8Þ

In the light–matter interaction, we refer to ℰ1ph as the 1-photon

field strength, with the electromagnetic field polarization λ. bμtr is the

electronic transition dipole moment between the electronic states.

Notice that bHpol is parametrically dependent on the nuclear coordi-

nates through bHel and bHint. As we have numerically verified in previous

works,[24,34] for the case of strong coupling with optical frequencies, it

is enough to restrain to the transition dipole operator. In the next sec-

tion we focus term-by-term on the two individual subcomponents of

the polaritonic Hamiltonian, namely bHel and bHph.

2.2 | FOMO-CI wavefunction and uncoupled
states

The method for the computation of electronic states, that is, the

eigenstates of bHel , is based on floating occupation of molecular

orbitals (FOMO).[42,43] This variant relies on the optimization of a

single determinant wavefunction with fractional variational occupa-

tion of the molecular orbitals through a self-consistent field calcula-

tion (SCF). The single-determinant SCF calculation is formally closed-

shell. Here, the energy of the i-th orbital (φi) is the Fock eigenvalue εi

corresponding to that orbital, while the occupation number Oi of φi is

obtained integrating a function fi(ε) normally distributed along the

energy axis around εi:

bFφi = εiφi, ð9Þ

Oi =
ðεF
−∞

fi εð Þdε=
ðεF
−∞

ffiffiffi
2

pffiffiffi
π

p
σ
e−

ε−εið Þ2
2σ2 dε: ð10Þ

Here, σ is an arbitrary parameter and the Fermi energy εF is deter-

mined by imposing that the sum of the orbital occupation numbers Oi

equals the total number of electrons. The Fock operator bF is obtained

from the density (orbitals are considered as real functions in the pre-

sent work)

ρ r
!� �

=
X
i

Oiφ
2
i r

!� �
: ð11Þ

Through this procedure, the lower virtual orbitals can be popu-

lated without resorting to a MCSCF optimization of the wavefunction,

allowing to smoothly adapt the orbitals to the internal coordinate's

variations with just a single determinant. The electronic

wavefunctions are obtained performing a CI calculation on top of the

FOMO-SCF, resulting in a multiconfigurational FOMO-CI. This

approach can be taken as a replacement of the more accurate but

much more complex CASSCF procedure.

As electronic Hamiltonian bHel , we consider a semiempirical Hamil-

tonian, as this allows to treat relatively large chromophores, including

all the degrees of freedom in the simulation of polaritonic photochem-

istry, for timescales up to several picoseconds. In particular, for our

test case we used a reparametrized version of the AM1 semiempirical

Hamiltonian.[41] Notice that the standard semiempirical parameters

are normally determined to reproduce ground state properties, with a

SCF wavefunction. Therefore, to deal with excited states, a repar-

ametrization is often mandatory, as what has been done in Refer-

ence [41].

As we adopt a CI-type wavefunction, the (approximated)

eigenstates jni of bHel and the corresponding eigenenergies Un are

obtained by diagonalizing the electronic Hamiltonian matrix:

bHel j ni=Un j ni, ð12Þ

on the basis of a chosen set of NCI Slater's determinants {Φ}, so that

j ni=
XNCI

K

CK,n jΦKi ð13Þ

Similarly to the electronic states, the photon states are the

eigenstates jpi of bHph:
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bHph j pi= ℏωph p+
1
2

� �
j pi: ð14Þ

The meaning of p is a photon occupation state number, for the

single electromagnetic mode of frequency ωph considered here.

The product states between the electronic and photonic

eigenstates jn, pi are then the eigenstates of the light–matter non-

interacting Hamiltonian bHel + bHph . We shall address to them as

uncoupled states through all the present work. Such set of uncoupled

states jn, pi are the polaritonic equivalent of, for example, the spin-

diabatic states for the purely electronic case with spin-orbit

coupling.[48]

2.3 | Polaritonic states evolution and energies

The time evolution of the wavefunction is performed in terms of the

polaritonic adiabatic states jAi, which are obtained by diagonalization

of the matrix of bHpol (Equation (6)) on a selected subspace of

N× (pmax+1) uncoupled states {n, p}, where N≤NCI is the number

(usually small) of electronic states considered, and pmax is the maxi-

mum value of the photon occupation number. The set of adiabatic

states jAi is used to perform the time evolution as the surface hop-

ping approach is representation-dependent, and usually performs bet-

ter in the adiabatic basis. However, the set of uncoupled states jn, pi
is still useful, mainly in order to ease the interpretation of the results.

Within the described framework, the polaritonic wavefunction evo-

lves according to the “polaritonic TDSE” iℏ _Ψpol = bHpolΨpol, which gives

_CA tð Þ= −
X
B

i
ℏ
HAB + A

d
dt

���� ����B� 	� �
CB tð Þ ð15Þ

= −
X
B

i
ℏ
HAB +GAB� _R tð Þ

� �
CB tð Þ, ð16Þ

where HAB = A bHpol

��� ���BD E
and GAB is the derivative coupling vector

between the polaritonic states jAi and jBi, namely

GAB = A b=R

��� ���BD E
: ð17Þ

According to Equation (13), a polaritonic state can be written as

Aj i=
XN
n=1

Xpmax

p=0

DA
n,p n,pj i=

X
n,p

DA
n,p

XNCI

K

CK,n ΦK ,pj i, ð18Þ

and its energy is

EApol = E
A
el + E

A
ph + E

A
int, ð19Þ

where the contribution of the uncoupled part can be extracted by

exploiting Equations (14) and (18), resulting in:

EAel =
X
n

Un

X
p

DA
n,p

��� ���2 ð20Þ

EAph =ℏωph

X
n,p

p DA
n,p

��� ���2 + 1
2

 !
: ð21Þ

The interaction term EAint is given by

EAint =ℰ1ph

X
n6¼m

mh jλ�bμ Rð Þ nj iD A jm,nð Þ ð22Þ

where we used the shorthand

D A jm,nð Þ=
Xpmax−1

p=0

ffiffiffiffiffiffiffiffiffiffi
p+1

p
DA
n,pD

A
m,p+1 +D

A
n,p+1D

A
m,p

� �
: ð23Þ

Notice that D(A j m, n) = D(A j n, m).

When m < n the process described is the molecule exchanging the

photon of frequency ωph with the cavity. The rate of such exchange is

the Rabi splitting (Jaynes-Cummings Hamiltonian).[49,50] In this regime,

the emission rate and efficiency is greatly enhanced through the Purcell

effect[47,51] and the energy is coherently exchanged between matter

and cavity. Such energy contribution is the Rabi splitting. Instead, when

m > n, the so-called counter rotating terms account for the simultaneous

creation/annihilation of two off-resonant excitations within the cavity.

Such terms become non-negligible, together with the dipolar self-energy

of the molecule, in the ultrastrong coupling regime.[11,12]

From now on, we will use i, j, … to label CI-active molecular orbitals

(MO) and a, b for any kind of MO. A more appealing expression, from

the computational point of view, of the interaction energy EAint is

obtained by using the spinless electronic density matrix, suitably mod-

ified, of the polaritonic state jAi considered. In particular, we have

EAint =ℰ1ph

X
ij

ρintij Að Þμij, ð24Þ

where μij = ih jλ�bμ jj i and

ρintij Að Þ=
X
n6¼m

D A jm,nð ÞΔel
ij m,nð Þ: ð25Þ

Δel
ij m,nð Þ is the spinless transition density matrix between the

electronic states m and n, expanded on the molecular orbital basis.

The action of the bosonic creators and annihilators of Equation (8) is

embedded into the D(A jm, n) coefficients. Therefore, Δel
ij m,nð Þ is

purely electronic:

Δel
ij m,nð Þ= mh jba†i ba j nj i=

X
I,J

CI,m ΦIh jba†i ba j ΦJj iCJ,n ð26Þ

Within our method, we are able to compute the Polaritonic

Potential Energy Surfaces (PoPESs) up to an arbitrary occupation

number of the photonic mode involved in strong coupling.
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We shall now briefly discuss the dependence of the PoPESs on

the molecular transition dipole moments. Upon diagonalization, a

crossing of the uncoupled states PES is converted to a polaritonic

avoided crossing. The magnitude of the splitting (Rabi splitting) is pro-

portional to the transition dipole moment between the crossing

states, potentially reaching zero for vanishing transition dipole

moments (polaritonic conical intersection). The strong dependence of

the Rabi splitting on the transition dipole moment also embodies a

strong dependence on the nuclear geometry at which the crossing

between uncoupled states occurs, as the transition dipole moments

variation with nuclear geometry may be large. Note that the orienta-

tion of the molecule here plays the same role as the internal coordi-

nates, because it affects the projection of the transition dipole on the

field polarization vector.

While the polaritonic conical intersection and avoided crossings

have been reported in previous works,[8,24,39,52,53] here we stress that

they are an easy-to-predict feature only when limited to two level

strong coupling models, that is, Jaynes-Cummings like. Two-level models

imply a linear dependence of the Rabi splitting on the coupling constant

ℰ1ph. As the number of electronic states is extended by including upper

states (Figure 1a), the interaction between the polaritons originating the

avoided crossing or conical intersections becomes more involved. This

behavior is due to the interaction between the uncoupled states not

directly crossing, originated by the counter-rotating terms in the Hamil-

tonian. The sum of such interactions deeply affects the polaritonic

energy landscape by modifying both the splitting and the crossing

geometry, as shown in Figure 1a,b for the azobenzene molecule.

We stick to azobenzene as a test case, since the phenomenology

of polaritonic photochemistry has been investigated in recent

works.[24,34] In the present work, instead, we focus on discussing the

change of shape of the polaritonic avoided crossing regions, com-

puted along NNC for different values of ℰ1ph. For mode volumes

smaller than 20 nm3 (ℰ1ph > 0.003), the polaritonic crossing seam gets

displaced to up to 8� along the NNC coordinate while the Rabi split-

ting is not much affected, as shown in Figure 1. The curves here are

computed within a model space of uncoupled states composed by 5

electronic states and photon occupation number ranging from 0 to 3.

The polaritonic state energies are computed along the symmetric

NNC bending angles with fixed CNNC (180�) and optimizing all the

other degrees of freedom for the ground state energy, resulting in a

C2 symmetry. The photon frequency is set at 2.30 eV and the polari-

zation of the field is oriented along the longitudinal axis of the mole-

cule. Here, the high transition dipole moment between the state S0

and the S2, S3, and S4 states manifold is instrumental in modifying the

avoided jS0, 1i,jS1, 0i crossing landscape by effect of the interaction

between the state jS0, 1i and the jS2, 0i, jS3, 0i, and jS4, 0i manifold.

We examine the whole range of ℰ1ph going from 0.002 au

(corresponding to a mode volume of �40 nm3) to ℰ1ph = 0.010 au

(�1.6 nm3). While a mode volume of 40 nm3 is in line with typical

nanocavities,[5] the extreme limit of �1 nm3 has been accessed exper-

imentally via single-atom hotspots.[54,55] In all the conditions exam-

ined in this work, the mode volume is enough to fully embed the

molecule (the molecular volume being �0.25 nm3). A few works pio-

neer the interaction beyond the dipolar approximation for small mode

volumes for TERS experiments,[56,57] but not in connection with

polaritonic photochemistry. More practically, it is not clear at which

volumes and in which conditions the dipolar approximation ceases to

be valid in the framework of dynamical processes. Moving beyond the

dipolar treatment for polaritonic photochemistry carries the promise

to reveal new effects for strong coupling at submolecular level.

F IGURE 1 Polaritonic crossing seams for weak to ultrastrong values of ℰ1ph. (a) Polaritonic PESs along the NNC coordinate with CNNC fixed
at 175�, relaxing all the other degrees of freedom and including multiple states and counter-rotating terms. The field polarization λk is taken
parallel to the longitudinal axis of the molecule. Although values of ℰ1ph > 0.005 au (<7 nm3 mode volume) can actually be reached through
single-atom hotspots,[54,55] (b) a drastic effect on the PESs shape is observed also for intermediate values of ℰ1ph, ranging from 0.002 au (�46
nm3 mode volume) to 0.004 au (�12 nm3 mode volume), resulting in the seam shifting up to 3–4� along the NNC coordinate. In both panels, the
dotted-dashed lines label purely electronic states (no strong coupling) [Color figure can be viewed at wileyonlinelibrary.com]
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However, in the present case, we limit ourselves to the dipolar

approximation for the whole range of mode volumes investigated.

The polarization of the field is another important issue to deal

with when computing polaritonic states. Indeed, the anisotropy of the

transition dipole moment components with respect to the axes of the

molecule impacts the outcoming energy landscape as well. For trans-

azobenzene at nearly planar geometries, the largest component of the

transition dipole moments lies in the molecular plane. In particular, at

C2h geometries the S0 bμj jS1h i transition dipole vanishes. As a conse-

quence, by changing the polarization of the field from longitudinal (λk)

to perpendicular (λ⊥) to the plane of the molecule, the PoPESs change

from the ones in Figure 1a to the ones in Figure 2a. In the latter case,

the dependence of the splitting on the coupling strength is lost due to

a vanishing transition dipole moment when CNNC is 180�.

Although the uncoupled states used in the calculation are the

same as in Figure 1, almost all the lines corresponding to different

ℰ1ph are overlapped in Figure 2a. The transition dipole moments per-

pendicular to the plane of the molecule begin to rapidly grow when

twisting the molecule, that is, with a change along the CNNC coordi-

nate. Consequently, the polaritons are split again by a twisting of the

CNNC dihedral, resulting in a polaritonic conical intersection (Fig-

ure 2b) at CNNC 180� and NNC 132�. All these features provide a

clear evidence that the molecular complexity must be dealt with to

correctly describe the photochemical dynamics on polaritonic states.

2.4 | Analytical gradients for CI-expanded
polaritonic states

After showing the strong coupling contribution to the energy in the

previous section (Equation (24)), here we derive the analytical energy

gradient with respect to the nuclear coordinates Rα for a generic

FOMO-CI expanded polaritonic state. The present approach is based

on previous works,[43,58] where the Z-vector method has been applied.

In particular, here we adapt to the polaritonic case the “contracted”

strategy that was developed in a spin-orbit framework.[44] As in Refer-

ences [44, 58], only the active MOs are allowed to have floating occu-

pation numbers. The gradient of the energy can be partitioned in a

response term, containing the derivatives of CI and MO coefficients,

and a static term. The static contribution specific to the present case

is given by the derivative of the molecular dipole operator matrix ele-

ments in terms of atomic orbitals (AO). As for the response terms,

notice that the derivatives of the expansion coefficients DA
n,p of the

polaritonic adiabatic state jAi give a null contribution to
∂EApol
∂Rα

, since
∂EApol
∂DA

n,p
= 0 by construction. As a consequence, since EAph does not involve

geometry dependent quantities other than the DA coefficients (in the

long wavelength approximation), it does not contribute to the gradient

and will not be considered further here. At variance, the derivatives of

the electronic CI coefficients CI, n have to be considered.

We have then

∂EApol
∂Rα

=
∂EAel
∂Rα

+
∂EAint
∂Rα

: ð27Þ

The gradients for the electronic energies Un entering ∂EAel
∂Rα

are

known.[43,44,46,58] Hence, here we only show explicitly the evaluation

of ∂EAint
∂Rα

. By making use of Equation (24) one gets

∂EAint
∂Rα

=ℰ1ph

X
ij

∂ρintij Að Þ
∂Rα

μij + ρ
int
ij Að Þ ∂μij

∂Rα

" #
: ð28Þ

Let μij be the matrix element of the molecular dipole operator bμλ
in the MO basis, and c the transformation matrix from the AO to the

F IGURE 2 Polaritonic conical intersection for weak to ultrastrong values of ℰ1ph, with the field polarization perpendicular to the longitudinal
axis of the molecule. (a) Polaritonic states computed along the NNC coordinate in the same conditions as in Figure 1a. The polarization of the
field λ⊥ is perpendicular to the longitudinal axis of the molecule. Along this direction, the vanishing S0 ! S1 transition dipole moment at
azobenzene trans-planar geometries (CNNC�175 − 180�) causes (b) a polaritonic conical intersection to arise, independently of the coupling
strength [Color figure can be viewed at wileyonlinelibrary.com]
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MO set (c is real orthogonal in the semiempirical framework consid-

ered here). We have then μ = c†μAOc, where μAO is the matrix of bμλ in
the AO basis. Therefore, the derivatives of μ can be expressed as

∂μ
∂Rα

=Bαμ−μBα + c†
∂μAO
∂Rα

c with Bα =
∂c†

∂Rα
c, ð29Þ

which can be decomposed into a static part and a response

part,[43,44,58]

∂μ
∂Rα

����
static

= c†
∂μAO
∂Rα

c, ð30Þ

∂μ
∂Rα

����
resp

=Bαμ−μBα ð31Þ

The static term (Equation (30)) is easily evaluated as follows. Let

χασ R
!� �

be an AO belonging to nucleus α centered on R
!
α , with

r
!
rel = r

!−R
!

α . The dipole matrix elements μστ are then, in the semiem-

pirical framework

μ
!
στ = −e χασ r

!
rel

� �
r
!��� ���χβτ r

!
rel

� �D E
= −eδαβ δστR

!
α + f

!
στ

� �
ð32Þ

where −e is the electronic charge and the Kronecker delta δαβ is due

to the semiempirical NDDO approximation. Moreover, the term

f
!

στ = χασ r
!

rel

� �
r
!
rel

��� ���χβτ r
!

rel

� �D E
ð33Þ

is independent on the nuclear coordinates. Therefore, the derivative

of μ
!
στ with respect to R

!
α vanishes unless the two atomic orbitals σ

and τ are both centered on the nucleus α, and in that case it simply

evaluates to −e ∂R
!

α

∂R
!

α

. In an ab initio context, one would have to com-

pute also the derivative of the dipole matrix elements between atomic

orbitals centered on different atoms, which has a more involved

expression with respect to the term considered here. However, that

would not be expected to have a large impact on the computational

cost, which is mainly influenced by the response part of the gradient.

The contribution of the response term of Equation (31) to the

derivative of EAint (Equation (28)) can be recast in this way, following

Patchkovskii and Thiel[45,46]

ℰ1ph

X
ij

ρintij Að Þ ∂μij
∂Rα

�����
resp

=
X
i

X
a

Bα
ia +

∂εi
∂Rα

δia

� �
qintia , ð34Þ

where εi is the energy of MO i and

qintii = 0

qintia = 2ℰ1ph

X
j

ρintij Að Þμaj i 6¼ a: ð35Þ

As qintii =0, the term containing the derivative of the orbital energy

εi gives a null contribution to the sum of Equation (34). Such term has

been included to recover the same formalism of previous

works.[43,44,58]

We now turn to the derivative of ρintij Að Þ, which is a response term

(i.e., the CI response contribution to the polaritonic energy), evaluated

by taking the derivative of Δel
ij m,nð Þ. Such derivative is obtained by fol-

lowing the same procedure outlined for the MOs response terms

(Equation (31))

∂Δel
ij m,nð Þ
∂Rα

=
XNCI

k

dαmkΔ
el
ij k,nð Þ−Δel

ij m,kð Þdαkn
� �

ð36Þ

with

dαmn =
X
J

∂CJm

∂Rα
CJn ð37Þ

Notice that the sum in Equation (36) is extended to NCI rather

than to the number N of states selected: in principle, the evaluation of

the CI response contribution requires the full diagonalization of the CI

space considered. While this may be too demanding in an ab initio

context, normally it does not represent a problem in a semiempirical

framework, where NCI is usually small. The antisymmetric matrix dαnm ,

expressing the response of the CI coefficients, represents the CI con-

tribution to the derivative couplings. We have then

∂EAint
∂Rα

�����
CI

resp

�ℰ1ph

X
ij

∂ρintij Að Þ
∂Rα

μij

=
X
i≤ j

X
n6¼m

Gij A jm,nð Þ
XNCI

k

dαmkΔ
el
ij k,nð Þ+ dαnkΔel

ij m,kð Þ
� �

, ð38Þ

where

Gij A jm,nð Þ=ℰ1phD A jm,nð Þμij 2−δij

 �

: ð39Þ

According to Reference [44], we evaluate the derivative coupling

terms dαmn by exploiting the Hellmann–Feynman theorem

dαmn = Um−Unð Þ−1
X
IJ

CI,m
∂ ΦIh jbHel ΦJj i

∂Rα
CJ,n ð40Þ

=
X
ij

Δel
ij m,nð Þ

Um−Un

∂ε+ij
∂Rα

+
X
ijkl

Γel
ijkl m,nð Þ
Um−Un

∂ ijjklh i
∂Rα

: ð41Þ

for m 6¼ n, and dαnn =0. Here, Γel
ijkl m,nð Þ= m ba†i ba†jbalbak��� ���nD E

are the two-

electron density matrices and the terms ε+ij are defined in equation

(36) of Reference [44].

Inserting Equation (41) into (38), we obtain the following expres-

sion for the CI response term induced by the strong coupling

interaction:

∂EAint
∂Rα

�����
CI

resp

=
X
ij

∂ε+ij
∂Rα

Δint
ij Að Þ+

X
ijkl

∂ ijjklh i
∂Rα

Γint
ijkl Að Þ: ð42Þ

where
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Δint
ij Að Þ=

XNCI

k

X
m

m 6¼ k

Δel
ij m,kð Þ

Um−Uk
R A j k,mð Þ ð43Þ

Γint
ijkl Að Þ=

XNCI

k

X
m

m 6¼ k

Γel
ijkl m,kð Þ
Um−Uk

R A j k,mð Þ ð44Þ

R A j k,mð Þ=
X
i≤ j

X
n

n 6¼m

2Gij A jm,nð ÞΔsymm
ij k,nð Þ ð45Þ

Δsymm
ij k,nð Þ= Δel

ij k,nð Þ+Δel
ji k,nð Þ

2
ð46Þ

Here, Δsymm
ij k,nð Þ is the symmetric part of Δel

ij k,nð Þ . Notice that it

is symmetric with respect to both i, j and k, n indices, since

Δel
ij k,nð Þ=Δel

ji n,kð Þ.
To obtain the final expression for the gradient of EApol , we have

also to consider the contribution given by the derivative of the naked

electronic state energy Un (see Reference [58])

∂Un

∂Rα
=
∂E0
∂Rα

+
X
ij

Δel
ij nð Þ∂ε

+
ij

∂Rα
+
X
ijkl

Γel
ijkl
∂ ijjklh i
∂Rα

: ð47Þ

By putting all the terms together we arrive at

∂EApol
∂Rα

=
∂E0
∂Rα

+
X
ij

Δpol
ij Að Þ∂ε

+
ij

∂Rα
+
X
ijkl

Γpol
ijkl Að Þ∂ ijjklh i

∂Rα

+
X
ai

Bα
iaq

int
ia +ℰ1ph

X
ij

ρintij Að Þ
X
στ

cσi
∂μστ
∂Rα

cτj

ð48Þ

where we made use of the modified electronic density matrices

Δpol
ij Að Þ=

X
n

Δel
ij nð Þ

X
p

DA
n,p

��� ���2 +Δint
ij Að Þ ð49Þ

Γpol
ijkl Að Þ=

X
ijkl

Γel
ijkl nð Þ

X
p

DA
n,p

��� ���2 +Γint
ijkl Að Þ: ð50Þ

The evaluation of the gradient of EApol can proceed in the way out-

lined in Reference [58], using the modified density matrices Δpol
ij Að Þ

and Γpol
ijkl Að Þ. In particular, the response term is

∂EApol
∂Rα

�����
resp

=
X
i

X
a

Bα
ia +

∂εi
∂Rα

� �
qelia + q

int
ia


 �
, ð51Þ

where qel, defined as done in[58] (see also[44]), is explicitly reported

below for reader's convenience

qelii =Δ
pol
ii Að Þ−Oi−

1
2

X
jkl

βki ljkkkh i Δpol
lj Að Þ−δljOl

� �
ð52Þ

qelia =4
X
jkl

Γpol
ijkl Að Þ ajjklh i−

X
jk

Δpol
ij Að ÞOk kkkajh i− ð53Þ

X
jk

Δpol
jk Að ÞOi aikjkh i+

X
j

OiO j aikjjh i for i 6¼ að Þ

βki = fk εFð Þ fi εFð ÞP
j f j εFð Þ −δik

 !
ð54Þ

In the above equations, we used the shorthand hijkkli = 2hij| kli
− hik| jli, and fi is the Gaussian function defined in Equation (10).

Finally, for the static part, one has just to add the last term of Equa-

tion (48), representing the static dipole derivative (see above).

2.5 | Surface hopping

In the framework of Direct Trajectory Surface Hopping, the formula-

tion of strong coupling given in this work allows to include the

decoherence corrections[59] and environmental effects through the

QM/MM interface previously devised.[60–62] For the time evolution of

the polaritonic wavefunction, we adopt the local diabatization tech-

nique,[48,63] with a recently improved evaluation of transition probabil-

ities. Such probabilities are compliant with Tully's Fewest Switches

prescription and particularly effective when many states are involved

in nonadiabatic events,[64] as commonly happens in single-molecule

polaritonic systems (see Figure 1b).

As a test case, we examine the azobenzene strong coupling

dynamics with ωph = 2.7 eV and ℰ1ph = 0.004 au (�12 nm3) in the

absence of the cavity losses. The initial conditions are sampled on the

ground state via a 20 ps dynamics, thermostated at room temperature

(with a Bussi-Parrinello thermostat[65]). In particular, 230 starting

structures and velocities are extracted from the sampling dynamics,

and the system is initially vertically excited to the jR8i state, that is

mostly jS2, 2i state. Rather than the simulation of a realistic excitation

(the transition jS0, 0i ! j S2, 2i would require a multiphoton

pumping), this is a test case to investigate the effect of photon occu-

pation numbers greater than 1 (up to p = 3). In Figure 3a, we show the

behavior of the population of the photon states during the dynamics,

in the absence of cavity losses. The blue line with circle markers (right

y scale) shows the total photon number within the cavity, namelybb†bbD E
.

The full lines (left y scale) show the populations of each photon

state, that is,
P

n|Dn, p|
2, with p = 0, …, 3. While no cavity loss is explic-

itly included in the dynamics, still the total photon number in the sys-

tem decreases. Through strong coupling, a photon is continuously

exchanged between the molecule and the cavity. However, the elec-

tronic component keeps decaying via internal conversion, meaning

that when the photon is absorbed, its energy can be redistributed to

the nuclear degrees of freedom. While the total number of photons

decreases in the ongoing dynamics, the energy of the system is still
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conserved (Figure 3b). The initial conditions are chosen such that the

resonant region between the p = 3 states (namely S0, 3) and the p = 2

states jS1, 2i is interested, so both the subspaces jn, 3i and jn, 2i are
populated. This results into an average photon occupation number

greater than j2i, namely 2.23.

2.6 | Cavity losses

Aiming to provide a realistic model, we deal with the issue of lossy

cavities. The strong coupling regime for single molecules is usually

reached by exploiting a nanocavity setup of the system.[5,6,66,67] The

typical lifetime of nanocavities is few tens of femtoseconds. However,

we have recently shown that the overall photon lifetime of the system

is way longer than the individual cavity lifetime,[34] reaching a time

scale comparable to several ultrafast photochemical processes. This

effect is due to the transient passage of the wavepacket through

strongly coupled regions, so that the composition of the polaritonic

state keeps interchanging between electronic and photonic. As a con-

sequence of the mixing, the lifetime of states with the photon partially

absorbed is extended up to hundreds of fs, depending on the strong

coupling conditions. Within our model, we adapt a quantum jump

algorithm[68–71] already exploited in the Stochastic Schrödinger Equa-

tion (SSE) framework[72] to account for relaxation and dephasing

channels. Stochastic methods in the framework of SSE are also com-

monly exploited as an equivalent alternative to master equations in

treating cavity losses.[73–75] We then follow a standard implementa-

tion of this approach, similar to others already present in Quantum

Optics simulation packages like QuTip.[76]

The quantum jump is a natural choice as it fully exploits the tra-

jectory-based machinery of the surface hopping. Having to deal with

semiclassical trajectories, both the polaritonic wavefunction and the

“current state” (i.e., the adiabatic state on which PES the nuclei are

evolving) must be taken into account whenever a photon loss occurs.

We start with the expression of the polaritonic wavefunction in terms

of the uncoupled states basis:

Ψpol =
X
A

CA jAi=
X
n,p

dn,p j n,pi: ð55Þ

where dn,p =
P

AD
A
n,pCA . Only states with free photons can decay via

cavity losses, namely states with p≥1. We evaluate the photon loss

probability Pdec by taking the squared modulus of the uncoupled states

coefficients with p≥1 in the total wavefunction Ψpol, that is, dn, p≥1:

Pdec =
X
p≥1,n

dn,pj j2Δt
τ
: ð56Þ

Here, Δt is the integration time step and τ is the cavity lifetime,

namely the inverse of the cavity decay rate κ. We generate a uniform

random number within the interval [0, 1]. If the random number falls

in [Pdec, 1], the photon is retained and the cavity loss does not occur.

If not, the photon is lost. Upon photon loss, the photon occupation

number is lowered by 1 via application of the projector bP which

includes the photon annihilation operator bb:
bPΨpol = Iel�bb� �

Ψpol =
X
n

Xpmax

p=1

dn,p−1
ffiffiffi
p

p j n,p−1i: ð57Þ

F IGURE 3 Photon statistics and energy conservation. (a) Dynamics of the photons in the cavity during the internal relaxation of the strongly-
coupled azobenzene molecule, in absence of cavity losses. The dynamics is started from the jR8i state and runs for 1 ps, with ℰ1ph = 0.004 au
(�12 nm3 mode volume), ωph = 2.7 eV and longitudinal field polarization. The molecule is in gas phase.[24] The curves with full lines show the
dynamics of each p subspace, while the light blue line with circle markers (with the scale on the right) represents the total photon number within
the cavity. Error bars, represented as lighter bands, are also shown. Even in absence of cavity losses, the average photon number decreases during
the dynamics. While the photon is in its absorbed state, the energy stored within the molecule is redistributed via internal conversion to nuclear
kinetic energy. The overall process is still conserving the energy, as shown in panel (b) [Color figure can be viewed at wileyonlinelibrary.com]
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Here, the projector bP preserves the electronic coherence within

each p subspace, apart of course for p = 0 that is annihilated. The pho-

tonic annihilation operator bb is applied to mimic the loss of the photon

from the cavity, resulting in a manifold of states with photon number

lowered by one. The wavefunction is normalized after application

of P.

To reinitialize the dynamics after the photon loss has occurred,

we need both the wavefunction to propagate and a polaritonic sur-

face to resume the nuclear trajectory integration, jFi. The

wavefunction is simply a linear combination of polaritonic states jAi:

Ψ0
pol =

bPΨpol =
X
A

C0A jAi, ð58Þ

where the ' symbol denotes the quantities after the jump. As a

polaritonic energy surface to resume the nuclear trajectory propaga-

tion, we choose the polaritonic surface jFi that has the maximum

overlap with the polaritonic wavefunction after the jump:

j Fi= jAi jmax j<AjΨ0
pol > j

n o
: ð59Þ

If the quantum jump does not occur, the wavefunction is propa-

gated with the non-Hermitian Hamiltonian[68,72,77]:

bHeff = bHpol− iħ
κ

2
bb†bb: ð60Þ

For each timestep, this is accomplished by first propagating

according to Hpol, and then modifying Ψpol in the following way

Ψpol =
X
A

X
n,p

CADA
n,p 1−

κ

2
pΔt

� �
j n,pi: ð61Þ

The polaritonic wavefunction Ψpol is then renormalized. The prop-

agation between each attempted jump should be performed with the

non-Hermitian bHeff of Equation (60), leading to un-normalized

wavefunction. Anyway, in our algorithm, the jump is attempted at

each time step and so the wavefunction is always normalized, one

way or the other. A consequence of the photon loss is that the total

energy of the system is not conserved.

In Figure 4, we replicate the dynamics performed for the lossless

case (Figure 3) in presence of a cavity lifetime τ of 65 fs. The same

color scheme and notation is applied. While the relaxation dynamics is

of course quicker (Figure 4a) due to the presence of an extra relaxa-

tion channel (cavity loss), the decay dynamics is better described by a

biexponential function, rather than a simple exponential (Figure 4b).

The main reason is that photons can be exchanged back and forth

between the cavity and the molecule, via transitions jn, pi ! j n + 1,

p − 1i and vice versa, slowing down the cavity loss rate. This is espe-

cially important when p = 1, as there is no way to lose the photon

from a state jn0
, 0i with zero free photons in the cavity. In particular,

this happens for the system considered here, which shows transitions

back and forth from jS1, 0i to jS0, 1i. Here, the single photon

remaining appears to decay with a lifetime which is 20 fs longer than

the nominal decay time of the cavity. Notice that, if the single photon

remaining is adsorbed by the molecule due to strong coupling, the life-

time of the system is ascribable to that of the pure electronic states.

Conversely, when the photon is free within the cavity, the lifetime of

the system becomes that of the nominal cavity lifetime.

The consequence of the cavity losses becomes also evident in the

energy conservation plot (Figure 4c), where the initial part of the

dynamics is characterized by a quick drop of the total energy due to

the photon losses with no kinetic energy compensation. As a last

remark, we stress that the current implementation takes advantage of

dressing the chemical quantities for the strong coupling effect. Conse-

quently, it directly supports the interface with the TINKER package to

F IGURE 4 Cavity losses in strong coupling. Same conditions of Figure 3, with the same notation and color scheme. A cavity lifetime τ = 65 fs
is considered. (a) The overall population dynamics is definitely shorter in this case, with a transient population of the jn, 1i subspace. (b) Photon
number in the cavity at each time step. Remarkably, the kinetics is not simply dissipative. While p ≥ 1, the photon loss occurs at a faster rate than
the cavity lifetime (circle markers fit). After only one photon remains, the loss dynamics slows down, as the only photon remaining is partially
absorbed by the molecule and cannot be lost. (c) Breakdown of the energy conservation, due to cavity losses [Color figure can be viewed at
wileyonlinelibrary.com]
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perform QM/MM simulations with electrostatic embedding, as

described and applied in References [34, 61, 62].

3 | CONCLUSIONS

In the present work, we describe a scheme we have implemented to

perform direct nonadiabatic molecular dynamics simulations for semi-

classical molecules in strong coupling, based on classical nuclear tra-

jectories and on multiconfigurational wavefunctions. We build

polaritonic states and present the evaluation of analytical gradients

for polaritonic CI energies, extending the DTSH machinery to the

polaritonic systems. Among the DTSH[42,43,58] exploitable features,

we count the decoherence corrections,[59] the QM/MM interface with

electrostatic embedding[60,62] and the local diabatization scheme[48,63]

for wavefunction propagation. Cavity losses are included in the simu-

lations through quantum jumps, relying on the stochastic nature of

Surface Hopping. We choose the test case to highlight the complex

features of the potential energy surfaces arising when moving beyond

the one-dimensional 2-level molecular models. The results presented

for the test dynamics highlight the delicate interplay between radia-

tive and nonradiative emissions, both impacting the relaxation dynam-

ics of strongly coupled systems. Especially, we show that losses are

competitive with usual nonadiabatic events and that the outcoming

dynamics cannot be described as simply dissipative, the photon actu-

ally living longer than the nominal lifetime of the cavity. The content

of this work provides both formal and conceptual tools to approach

the polaritonic photochemical simulations within a semiclassical

ansatz, allowing to simulate complete photochemical reactions with a

trivially parallelizable technique.
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