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ABSTRACT

Allosteric regulation is one of the most direct and
efficient ways to fine-tune protein function; it is in-
duced by the binding of a ligand at an allosteric
site that is topographically distinct from an orthos-
teric site. The Allosteric Database (ASD, available on-
line at http://mdl.shsmu.edu.cn/ASD) was developed
ten years ago to provide comprehensive information
related to allosteric regulation. In recent years, al-
losteric regulation has received great attention in
biological research, bioengineering, and drug dis-
covery, leading to the emergence of entire allosteric
landscapes as allosteromes. To facilitate research
from the perspective of the allosterome, in ASD 2019,
novel features were curated as follows: (i) >10 000
potential allosteric sites of human proteins were de-
posited for allosteric drug discovery; (ii) 7 human al-
losterome maps, including protease and ion channel
maps, were built to reveal allosteric evolution within
families; (iii) 1312 somatic missense mutations at al-
losteric sites were collected from patient samples
from 33 cancer types and (iv) 1493 pharmacophores
extracted from allosteric sites were provided for mod-
ulator screening. Over the past ten years, the ASD
has become a central resource for studying allosteric
regulation and will play more important roles in both

target identification and allosteric drug discovery in
the future.

INTRODUCTION

The concept of allostery, or allosteric regulation, proposed
in the 1960s, describes the existence of indirect coupling be-
tween two topographically and spatially distinct types of
binding sites: allosteric and orthosteric sites (1,2). The bind-
ing of effectors (e.g. small molecules, ions, and DNA/RNA)
to an allosteric site enables a protein to propagate perturba-
tions from an allosteric site to an orthosteric site, ultimately
achieving exquisite control of the protein’s functional activ-
ities (3–7). Compared to the relatively conserved orthosteric
sites in homologous protein families, the targeting of struc-
turally less conserved allosteric sites by allosteric modula-
tors confers the advantages of increased specificity and re-
duced side effects (8–14). In this context, the identification
of allosteric modulators for a desired target is the subject of
intense drug discovery efforts (15–20).

Despite the pharmacological merits of allosteric mod-
ulators, their discovery has faced a long-standing conun-
drum because of the difficulty in identifying allosteric sites
via the experimental determination of allosteric protein-
modulator complexes (21). Remarkably, recent computa-
tional advances in the detection of allosteric sites have sig-
nificantly facilitated the identification of allosteric modula-
tors for related targets (22–29), including sirtuin 6 (SIRT6)
(15), signal transducer and activator of transcription 3
(STAT3) (30), glutathione peroxidase 4 (GPX4) (31) and
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cathepsin K (32). Based on the many computational al-
losteric approaches contributing to practical applications,
we have proposed that allosteric modulator discovery has
evolved from the realm of serendipity to structure-based
drug design (33). Therefore, it is necessary to comprehen-
sively annotate potential allosteric sites in known human
allosteric proteins with both computational predictions and
experimental determinations. These sites are useful for vir-
tual screening and subsequent medicinal chemistry opti-
mization of allosteric modulators.

As for orthosteric drugs, somatically acquired mutations
at allosteric sites, referred to as allosteric mutations, may
confer resistance to allosteric therapeutics (34–36). For ex-
ample, single point mutations (A337V, P465S, V468F, and
I502L) at the allosteric myristoyl binding site in the C-lobe
of BCR-ABL kinase cause insensitivity to the allosteric in-
hibitor ABL001 in chronic myeloid leukemia (37). Anal-
ogously, the gatekeeper V211D mutation in the allosteric
site of the N-lobe of MEK1 confers resistance to the al-
losteric inhibitor binimetinib in BRAF K601E-associated
colon cancer (38). As such, it is advisable to systematically
annotate known allosteric mutations from clinical samples.
A comprehensive understanding of allosteric mutations,
particularly clinically related variations, thus broadens the
scope of available drug targets.

We have created a large, comprehensive database, the
Allosteric Database (ASD), that has provided comprehen-
sive information focusing on allosteric regulation since 2009
(39–41). Over the past decade, it has been visited >63 000
times from >100 countries around the world. ASD has gar-
nered high acclaim from the scientific community (19,20,42)
and has become a valuable resource for versatile allosteric
applications. The fruitful results include the construction of
benchmarking datasets for high-quality allosteric sites (AS-
Bench (43)), the prediction of allosteric sites (e.g. Allosite
(44) /AllositePro (45), AlloPred (46), PARS(47), CavityPlus
(48), CryptoSite (49), pocketZebra (50), PocketDB (51),
ALLO (52), ExProSE (53)), the assessment of allosteric in-
teraction (Alloscore (54)), the exploration of allosteric com-
munication (e.g. MCPath (55), AlloSigMA (26)), the anal-
ysis of allosteric mutations and evolution (e.g. AlloDriver
(27), AlloMAPS (25), Trans-Omics (56)), and the screen-
ing of allosteric modulators (AlloFinder (30)). Such knowl-
edge has promoted an upsurge in allosteric research, lead-
ing to the emergence of the framework of the allosterome.
To further understand the landscape of the allosterome,
in ASD 2019, we provide new allosteric features, includ-
ing (i) the introduction of computational prediction of the
locations of potential allosteric sites for known human al-
losteric proteins, (ii) the addition of allosteric mutations at
allosteric sites of human proteins through large-scale ex-
ploration of somatic mutations in clinical samples across
33 cancer types, (iii) the construction of 7 new human al-
losterome maps and (iv) the development of allosteric site-
based pharmacophore models. In addition, allosteric data
such as experimentally determined allosteric proteins, sites,
and modulators as well as allosteric-related diseases and al-
losteric drugs in different phases of clinical trials have also
been updated and curated. Overall, the current ASD is use-
ful for achieving a comprehensive understanding of the al-
losterome, facilitating the investigation of allosteric regu-

Figure 1. Statistics for allosteric proteins in ASD 2019.

latory mechanisms and evolution and the discovery of al-
losteric drugs.

DATABASE GROWTH AND STATISTICS

New allosteric molecules and features, including structures,
affinities, sites, functions, related diseases and external links,
were collected using the methods described in our previous
publications (39–41). According to the statistical data for
ASD 2019 provided in Table 1, the known allosteric proteins
have experienced a rapid increase over the past three years.
Currently, 1949 allosteric proteins from various species are
archived in the ASD, representing an increase of more than
32% (476 new proteins) since the last version. The allosteric
phenomenon has been widely observed in 22 different pro-
tein categories defined by UniProt keyword ontology (57),
and the growth of the data on allosteric proteins has been
highly concentrated in the following categories: ion chan-
nels (from 93 to 154), GPCRs (from 114 to 169), kinases
(from 201 to 249), and transferases (kinases excluded, from
21 to 119), which play key roles in disease therapies and bi-
ological pathways (3,4). Findings of additional classes of
proteins have also confirmed the intrinsic properties of al-
lostery, such as 147 hydrolases (proteases and phosphatases
excluded), 126 oxidoreductases, 122 transcription factors,
120 transporters (ion channels excluded) and 87 lyases. The
allosteric proteins in ASD 2019 come from 274 different
species, and nearly 75% of the records belong to humans
(43%) and bacterial species (31%) (see Figure 1). Notably,
more than half of the 476 new proteins are from humans
(244), and the acceleration of human record accumulation
has contributed greatly to allosterome development. In ad-
dition to proteins, ASD 2019 contains 82070 allosteric mod-
ulators, composed of 31376 activators, 37471 inhibitors and
14622 regulators. Among the 10532 new curated modula-
tors, 94% (9891) are exogenous allosteric lead compounds
for human targets developed in the last three years, indi-
cating a significant acceleration of the progress of allosteric
drug discovery.

In addition to these allosteric molecules, the data on
their allosteric features and annotations are expanded in
ASD 2019, including an ∼19% increase in allosteric inter-
actions (from 75462 to 89554), an ∼32% increase in al-



D396 Nucleic Acids Research, 2020, Vol. 48, Database issue

Table 1. Data statistics for allosteric proteins and modulators in the updated ASD 2019

Data category ASD 2019 ASD 2016

Number of all proteinsa 1949 1473
Number of kinases 249 201
Number of transferases 185 144
Number of GPCRs 169 114
Number of ion channels 154 93
Number of hydrolases 147 117
Number of oxidoreductases 126 97
Number of transcription factors 122 94
Number of transporters 120 103
Number of proteases 103 78
Number of lyases 87 69
Number of other proteinsb 487 363
Number of all modulators 82 070 71 538
Number of protein-modulator interactions 89 554 75 462
Number of crystal/NMR protein structures 26 363 11 683
Number of protein-modulator complex structures 2542 1930
Number of potential allosteric sites 10 081 0
Number of allosterome maps 9 2
Number of allosteric mutations 1312 0
Statistics of allosteric drug dataset
Number of allosteric drugs 538 49
Number of allosteric drug targets 95 20
Number of allosteric target-drug interactions 638 56
Number of allosteric-related diseases 5983 3350

aIn the definition of the classifications for allosteric proteins in ASD 2019, several subtypes have been removed from the enzyme categories, including
transferases (kinases excluded), hydrolases (proteases and phosphatases excluded), transporters (ion channels excluded), and receptors (nuclear receptors
excluded).
bProtein categories including >50 proteins are displayed, while others are included in the ‘other proteins’.

losteric protein-modulator complexes (from 1930 to 2542),
an ∼79% increase in related diseases (from 3350 to 5983), a
126% increase in protein structures (from 11683 to 26363),
and a nearly 10-fold increase in allosteric chemicals in dif-
ferent phases of drug development (i.e. allosteric drugs,
from 49 to 538). These allosteric drugs are well organized in
the ‘ALLO-DRUG’ category under the FEATURES menu
and classified into five phases: preclinical (451), phase I
(23), phase II (36), phase III (9) and approved (19). Further
analysis revealed that the targets associated with allosteric
drugs include not only the traditional ion channels, GPCRs,
and kinases but also many new types of proteins, includ-
ing transporters, oxidoreductases, ligases, etc. These con-
sistently rich data illustrate the ongoing expansion of the
landscapes of the allosterome.

NEW FEATURES AND FUNCTIONS

To further investigate the landscapes of the allosterome,
novel allosteric features have been developed and orga-
nized in ASD 2019, including ‘ALLOSITE-POTENTIAL’
for potential allosteric sites in human proteins, ‘ALLOS-
TEROME’ for the evolution of allostery in a protein family,
‘ALLO-MUTATION’ for allosteric mutations in cancers,
and ‘ALLO-DRUG’ for allosteric modulators in the pre-
clinical and clinical phases. In addition to these data, two al-
losteric tools, ‘ALLO-PHARM’ and ‘ALLO-PATHWAY’,
are integrated into the ‘TOOLS’ menu of the ASD, provid-
ing computational protocols for screening allosteric mod-
ulators and detecting allosteric pathways from orthosteric
sites to allosteric sites. Figure 2 shows the workflow of the
major ASD components or their combinations applied to
allosteric drug design, target identification, mechanism re-

search and allosterome analysis. The details of each new fea-
ture are described below.

POTENTIAL ALLOSTERIC SITES

Allosteric sites tend to be under lower sequence-
conservation pressure and exhibit more structural diversity
than conserved orthosteric sites, endowing allosteric
modulators with the potential to achieve higher speci-
ficity, fewer side effects and lower toxicity (43–45,47,58).
However, the slow pace of experimental validation se-
riously hinders the disclosure of the entire allosterome;
allosteric sites have been identified in only a few proteins.
Therefore, a large-scale dataset containing the potential
allosteric sites of proteins is highly desirable and was
therefore built in the current release. In ASD 2019, 10081
potential allosteric sites predicted from 4013 human
proteins were constructed using our AllositePro method
(45) (see Supporting Information) and are available under
‘ALLOSITE-POTENTIAL’ in the ‘FEATURES’ menu.
These sites may be selectively shown through a combina-
tion of checkbox filters and protein subclass tree maps.
Clicking the selected human protein causes an interactive
page to open, and this page provides the details of poten-
tial allosteric sites, including protein information, a 3D
representation window, a site selection panel, and a grid
showing site properties. The proteins in the ALLOSITE-
POTENTIAL dataset account for 75% of human proteins
with PDB structures (59) and are widely distributed in all
protein categories. These potential allosteric sites could
provide an effective resource leading to the identification
of allosteric regulation throughout the human proteome
and be useful for allosteric drug discovery.
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Figure 2. The workflow of the ASD major components or their combinations used for allosteric target identification, allosteric mechanism research,
allostery-related drug design, and allosterome analysis. (i) The high-quality allosteric site benchmarking dataset (ASBench) derived from the ASD can be
used to develop computational allosteric site prediction methods such as Allosite and AllositePro. The real cases include the identification of the SIRT6
allosteric activators MDL-800 and MDL-801 and a novel CK2� allosteric site. The Allosite-Potential datasets constructed by AllositePro could also provide
an effective way for allosteric site identification throughout the human proteome. (ii) The allosteric mutation dataset in the ASD can be used to develop
methods to predict allosteric driver mutations. The real cases are the identification of the allosteric L1143F driver mutation in human protein tyrosine
phosphatase receptor type K (PTPRK) and the allosteric P360A driver mutation in human phosphodiesterase 10A (PDE10A). (iii) The allosterome maps
can be used for allosteric evolutionary analysis of an allosteric site (an allosteric modulator) within its protein family (known allosteric modulators). (iv) The
AlloFinder-based platform that integrates allosteric site prediction (AllositePro), allosteric interaction evaluation (Alloscore), and allosteric evolutionary
analysis (Allosterome) can be used to automatically screen for allosteric modulators for a given target. A real case is the identification of a STAT3 allosteric
inhibitor, K116. The new features in ASD 2019 are highlighted with red color.

ALLOSTEROME MAPS

Owing to remarkable advances in structural biology and
chemical biology in the past three years, an increasing num-
ber of allosteric sites have been determined by experimen-
tal crystallographic methods. These experimentally deter-
mined allosteric sites can be used to construct allosterome
maps of protein families to illuminate the evolution of al-
losteric regulation (7). In ASD 2019, seven new human al-
losterome maps, including ‘Ion Channel’, ‘Protease’, ‘Phos-
phatase’, ‘Nuclear Receptor’, ‘Transferase’, ‘Transporter’,
and ‘Hydrolase’ maps, were built to reveal the biological
evolution of allosteric sites in a family; the ‘GPCR’ and
‘Kinase’ allosterome maps were also thoroughly updated
by adding recently identified members (see Table 2). Dur-
ing the construction of the maps, all family annotations
were collected from UniProt (57), GPCRDB (60), the Nu-
clear Receptor Resource (61), the Enzyme database (62),
IUPHAR/BPS Pharmacology (63) and Wikipedia (https:
//en.wikipedia.org/), and the maps were constructed based
on the multiple sequence alignment and dendrogram meth-
ods described previously (41).

The allosterome maps are organized in a grid under the
‘ALLOSTEROME’ feature in the ASD (Figure 2 and Ta-
ble 2). Clicking on one map causes the details of the allos-
terome to be shown in a new tab, and the allosteric pro-

teins with modulators and complexes are well annotated
with white circle and red flag symbols, respectively. In nearly
all the maps (except the transporter map), the percent-
age of allosteric proteins with modulators reached >70%,
with particularly high percentages being achieved for the
‘GPCR’ (95%) and ‘Ion Channel’ allosteromes (84%). In
four maps, >10 allosteric proteins with allosteric complexes
are marked, including 30 kinases, 16 hydrolases, 13 pro-
teases and 12 GPCRs. For each family, these allosteric sites
actually cluster into different locations throughout the sub-
families. For example, 12 allosteric sites in human GPCRs
show 3 different locations according to structural superim-
position and 5 allosteric sites in ion channels are located in
4 different regions. The ‘ALLOSTEROME’ feature has sys-
tematically recorded allosteric protein accumulation from
decades of allosterome development and offers the possibil-
ity of predicting the locations of novel sites based on known
sites from the same family.

ALLOSTERIC MUTATIONS

Mutations around an allosteric site may trap a protein in
either an active or inactive conformation, and this struc-
tural disruption of uncontrolled proteins can perturb down-
stream signaling pathways and elicit multiple physiologi-
cal and pathological conditions, including cancer (7). The

https://en.wikipedia.org/
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Table 2. Summary and statistics of the allosterome module in ASD 2019

Number of human allosteric proteins

Allosterome categorya All Has modulators Has complexes

Protein kinase allosterome 113 85 30
GPCR allosterome 114 108 12
Ion channel allosterome 94 79 4
Hydrolase allosterome 66 52 16
Transferase allosterome 54 40 9
Transporter allosterome 53 34 7
Protease allosterome 45 34 13
Phosphatase allosterome 19 14 5
Nuclear receptor allosterome 17 12 4

aIn the definition of the classifications for allosteric proteins in ASD 2019, several subtypes have been removed from the enzyme categories, including
transferases (kinases excluded), hydrolases (proteases and phosphatases excluded) and transporters (ion channels excluded).

increasing number of clinical mutations discovered from
next-generation sequencing (NGS) data provides us with
an unprecedented opportunity to systematically examine al-
losteric regulation related to disease conditions and pro-
motes the development of small datasets and novel re-
sources in this new field (24–27). To help biologists and
chemists to easily explore allosteric mutations validated
from NGS samples, in ASD 2019, the high-quality ‘Allo-
Mutation’ dataset was established under the ‘FEATURES’
menu. Applying our previous workflow (24,27) to the most
recent data on allosteric complexes and NGS samples, 1312
somatic missense mutations located in the allosteric sites of
133 human proteins were extracted from >100 000 patient
samples from TCGA (64) and COSMIC (65) across 33 can-
cer types. Each allosteric mutation in a human protein from
one kind of TCGA cancer is defined as a mutation record.
The frequency of variants at allosteric sites for the allosteric
proteins in each cancer type is depicted as a heatmap in Fig-
ure 3. For instance, allosteric mutations in BRAF present
the highest frequency in THCA, SKCM and COAD sam-
ples, and allosteric mutations in PIK3CA have also been
identified in numerous kinds of cancers. This module could
be of great help for not only understanding the allosteric
mechanism but also identifying allosteric targets in preci-
sion medicine.

ALLOSTERIC TOOLS

To facilitate studies of allosteric mechanisms and drug
discovery, six specified allosteric computational tools are
integrated under the ‘TOOLS’ menu of the ASD. ‘Allo-
Pharm’ was built for allosteric target prediction by reverse
searching of query molecules against allosteric pharma-
cophore datasets generated from allosteric complexes and
ligand-free receptors. This structure-based pharmacophore
tool provides an ensemble of spatially distributed chemi-
cal features that are essential for specific target-ligand bind-
ing (see Supporting Information). In total, 1493 pharma-
cophore models were extracted from 1374 allosteric protein-
modulator complex structures, and 267 pharmacophore
models were generated from unique allosteric pockets in 226
proteins via a pocket-based method (66–68). These phar-
macophores of allosteric sites will be valuable for the high-
throughput virtual screening of allosteric modulators. ‘Allo-
Pathway’ is a tool for analyzing the allosteric communi-

cation pathway through revised dynamic network analysis
(see Supporting Information). The allosteric pathways pre-
dicted by this tool could support an understanding of the
roles of allostery in biological processes and signal trans-
duction networks. In addition, AlloDriver (27) for allosteric
mutagenesis prediction, AlloFinder (30) for the investiga-
tion of allosteric mechanisms, AllositePro (45) for allosteric
site identification, and AlloScore (54) for the evaluation of
allosteric interactions are integrated together in ASD 2019.
Collectively, all of the above methods are expected to ex-
pedite the discovery of allosteric drugs and research on al-
losteric mechanisms.

DISCUSSION AND CONCLUSION

The discovery and development of first-in-class drugs is
emerging as a focal point of the pharmaceutical industry
(69,70). The development of an efficient strategy for discov-
ering first-in-class drugs is therefore an area of intensive re-
search. Allosteric drugs that exhibit a unique mechanism of
action by targeting structurally diverse allosteric sites pro-
vide an innovative and promising opportunity for treating
human diseases (11,12).

However, allosteric drug discovery is fraught with obsta-
cles, and the greatest challenge is the effectiveness of us-
ing experimental methods to identify bona fide allosteric
sites for a therapeutic target. As a supplement to exper-
imental methods, computational predictions of allosteric
sites in proteins made using the ASD data can expedite
allosteric drug discovery. In particular, many of the com-
putational predictions have been validated by experimental
observations. For example, based on the Allosite-based al-
losteric site prediction (15), we recently discovered the first-
in-class cellularly active SIRT6 allosteric activators MDL-
800 and MDL-801 bound to the computationally predicted
allosteric site and performed further crystallographic de-
terminations. Through the AlloFinder-based platform (30)
that integrates allosteric site prediction (AllositePro, an up-
dated version of Allosite) (45), allosteric interacton evalu-
ation (Alloscore) (54), and allosteric evolutionary analysis
(Allosterome), we also recently identified a STAT3 allosteric
inhibitor, K116. These findings strongly support the notion
that computational allosteric methods have played an im-
portant role in structure-based drug design (23,33). In this
study, we predicted a total of 10 081 potential allosteric
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Figure 3. Heatmap displaying the frequency of mutations at the allosteric sites of human proteins in each cancer type. For each gene or each cancer type,
records with a total frequency >6 are displayed in this heatmap.

sites for 4013 human allosteric proteins using AllositePro
(45). This novel dataset of potential allosteric sites repre-
sents a breakthrough attributable to ASD 2019, because it
is a valuable resource providing an attractive starting point
for structure-based drug design at previously unexplored al-
losteric sites.

Allosteric mutations cause another challenge for al-
losteric drug discovery because of the notorious difficulty of
identifying the locations of these mutation sites in proteins,
as they may, for example, occur in allosteric ligand bind-
ing sites or allosteric communication pathways. The ‘Allo-
Mutation’ dataset in ASD 2019, consisting of 1312 somatic
missense mutations located in the allosteric sites of 133 hu-
man proteins, is useful for not only developing computa-
tional predictions of allosteric mutations but also uncover-
ing new clinical disease targets. Such is the case for Allo-
Driver, which was recently developed based on this dataset
(27). AlloDriver identified an L1143F driver mutation at
the allosteric site of human protein tyrosine phosphatase re-
ceptor type K (PTPRK) from samples obtained from head
and neck squamous cell carcinoma (HNSC) patients, which
may expand the potential of PTPRK as a therapeutic target
for HNSC (27). Additionally, the AlloMAPS database was
built based on the theoretical prediction of allosteric effects
of mutations on protein structure and function (25). Thus,
this novel ‘Allo-Mutation’ dataset represents another break-
through attributable to ASD 2019, because it is important
for the identification of clinically relevant allosteric driver
mutations that can expand the available therapeutic targets
as well as for the investigation of allosteric communication
pathways.

It has been suggested that allosteric sites are under lower
evolutionary pressure than orthosteric sites. Notably, we
have newly constructed human allosterome maps of seven
protein families in ASD 2019, in addition to the update of
two previous allosterome (GPCR and protein kinase) maps
in ASD 2016. This ‘ALLOSTEROME’ dataset in ASD 2019
represents a useful improvement, which can reveal the speci-
ficity of an allosteric site in its protein family as well as trace

the origin and evolution of allosteric regulation in protein
families. Moreover, this information can also aid in the de-
velopment of allosteric modulators that exploit differences
in allosteric sites to achieve improved selectivity.

In summary, we anticipate that the new features in ASD
2019 will become a useful tool for allosteric modulator
screening, allosteric mutation and evolutionary analysis,
and allosteric mechanism research.
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