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Abstract: The continuous flow reaction of various aryl or
heteroaryl bromides in toluene in the presence of THF
(1.0 equiv) with sec-BuLi (1.1 equiv) provided at 25 °C within
40 sec the corresponding aryllithiums which were acylated
with various functionalized N,N-dimethylamides including
easily enolizable amides at � 20 °C within 27 sec, producing
highly functionalized ketones in 48–90% yield (36 exam-
ples). This method was well suited for the preparation of α-
chiral ketones such as naproxene and ibuprofen derived
ketones with 99% ee. A one-pot stepwise bis-addition of
two different lithium organometallics to 1,1,3,3-tetrame-
thyurea (TMU) provided unsymmetrical ketones in 69–79%
yield (9 examples).

The acylation of organometallics with carbonyl derivatives
represents an excellent preparation of ketones which are of
high interest in medicinal, agrochemical and material
chemistry.[1] Although acid chlorides were often used as
acylation reagents,[1] alternative carboxyl derivatives such as 2-
thiopyridyl esters,[2] Weinreb amides,[3] 2-pyridylamides,[4] mor-
pholino-amides,[5] N-acylpyrroles[6] or N,N-dimethylamides[7]

have been used successfully in combination with appropriate
organometallics[8] or transition metal catalysts.[9]

The performance of organometallic reactions in continuous
flow has recently given a novel dimension to a range of these
synthetic methods.[10] The accurate control of residence times,
temperatures and concentrations greatly improved many

reactions involving organometallic intermediates.[11] Thus, Naga-
ki and Yoshida have recently reported the synthesis of
functionalized ketones from acid chlorides and lithium reagents
by extremely fast micro-mixing.[12] Although functionalized
ketones were prepared, this method required the use of water
sensitive acid chlorides as well as extremely fast mixing not
accessible on commercial flow apparatus.[12] The use of
ecologically and industrially friendly halide free acylation
reagents would be highly desirable. Hattan and Jamison have
described double additions to carbon dioxide for the prepara-
tion of various ketones (Scheme 1a).[13] Kappe has used mixed
anhydrides for a continuous flow synthesis of α-haloketones.[14]

The continuous flow mode has also allowed a convenient use
of esters as acylating agents.[15]

Herein, we report the use of readily available and conven-
ient N,N-dimethylamides of type 1[16,17] as convenient and
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Scheme 1. a) Previous work on acylations in continuous flow starting from
acyl chlorides and CO2. b) Acylations of aryl and heteroaryllithiums of type 2
prepared via Br/Li-exchange in continuous flow with N,N-dimethylamides of
type 1 affording ketones of type 3 and selective stepwise double acylation
with 1,1,3,3-tetramethylurea (4) leading to ketones of type 5.
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effective reagents for the acylation of various (hetero)
aryllithiums of type 2[17] in toluene using a continuous flow set-
up leading to various functionalized ketones of type 3 including
halogenomethyl ketones and α-chiral ketones (Scheme 1b).

We have shown that TMU (1,1,3,3-tetramethylurea, 4) allows
an efficient and selective synthesis of new unsymmetrical
ketones of type 5 via in situ generated arylated N,N-dimeth-
ylamides 6 and batch-prepared R2-Li species of type 7
(Scheme 1b).

Thus, in preliminary experiments, we have optimized the
preparation of aryllithiums of type 2. In order to achieve a fast
exchange with a stable aryllithium intermediate of type 2, we
have explored the metal-exchange and electrophilic quench of
1-bromo-4-methylthiobenzene (8a)[17] in both THF and toluene
at ambient temperatures. Therefore, we treated 8a with sec-
BuLi (1.1 equiv) in THF or toluene. We found that the Br/Li-
exchange was fast in THF leading to the aryllithium 2a, but that
this lithium organometallic was not stable at 25 °C as shown by
quenching experiments with 4-fluorobenzaldehyde (9), leading
to the expected alcohol 10 in only 24–27% yield; (Table 1,
entries 1–2). Switching to the common solvent toluene[18,19,20]

afforded the aryllithium species 2a in better yields, but the Br/
Li-exchange reaction was too sluggish and required up to 2 h
reaction time for completion (Table 1, entries 3–5). In balance,
we found that simply adding 1.0 equiv. of THF to the toluene
solution of 8a led to a fast Br/Li-exchange within 1 min at 25 °C
and produced, after quenching with 9, the alcohol 10 in 95%
calibrated GC-yield (Table 1, entry 6).

In contrast, using n-BuLi led to a slower Br/Li exchange of
8a incompatible with the stability of the generated metal
species. Longer storage time of 2a at 25 °C (10-30 min) afforded
lower yields of 10 showing the instability of 2a over time
(Table 1, entries 7 and 8). In counterpoint, performing this
reaction at this temperature in flow led to a quantitative
formation of 10, showing that a flow set-up using toluene in
the presence of 1.0 equiv. of THF was most advantageous
(entry 9). The low stability of aryllithiums at ambient temer-
atures justified this “on-demand” preparation in continuous

flow and enabled potential scale-ups. In preliminary reactions,
we observed that proton-quenching via amide enolization in
THF led to proto-desbrominated products (thioanisole). The
present solvent system (toluene containing 1.0 equiv. of THF)
also reduced this enolization side-reactions on amides bearing
acidic protons.[21,22]

By optimizing the concentration of 8a and sec-BuLi, the
residence times for the Br/Li-exchange as well as the acylation
temperature, a high GC-yield of the ketone 3aa was achieved.
Thus, performing the acylation reaction in continuous flow at
either 25 °C or 0 °C led only to 50–67% of the ketone 3aa
(Table 2, entries 1 and 2). However, lowering the reaction
temperature to � 20 °C or � 40 °C gave satisfactory yields (82-
84%; entries 3 and 4).

With these conditions in hand, using the aryl bromide 8a
(0.25 M in toluene containing 1.0 equiv. of THF) with a flow rate
of 5.0 mL/min and sec-BuLi (1.1 equiv, 1.35 M in n-hexane) with
a flow rate of 1.1 mL/min, we have quantitatively generated the
corresponding aryllithium 2a at 25 °C (t1= 40 sec). After
precooling the lithium species for 10 sec, the acylation step was
performed at � 20 °C (t2 = 27 sec) affording, via the formation of
the tetrahedral intermediate 11 and subsequent quenching
with sat. aq. NH4Cl, the desired ketone 3aa in 82% isolated
yield. A scale-up of this reaction in continuous flow was easily

Table 1. Optimization of the aryllithium generation in batch and flow.

entry set-up solvent time
[min]

Conversion of 8a
[GC-%]

Formation of 10
[GC-%]

1 batch THF 1 90 24
2 batch THF 30 93 27
3 batch toluene 1 18 8
4 batch toluene 30 75 49
5 batch toluene 120 94 57
6 batch toluene[a] 1 96 95
7 batch toluene[a] 10 98 85
8 batch toluene[a] 30 >99 60
9 flow toluene[a] 1 >99 99

[a] 1.0 equiv. of THF was added which corresponded to a ca. 50 :1 toluene:THF mixture.

Table 2. Optimization of the acylation temperature continuous flow.

entry T
[°C]

conversion of 8a
[GC-%]

product formation 3aa
[GC-%]

1 25 >99 50
2 0 >99 67
3 � 20 >99 82
4 � 40 >99 84
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achieved by simply prolonging the collecting time (from
0.5 min to 6.5 min) and led to a comparable yield (78%,
Scheme 2).

Various aryllithiums (2b-e) bearing MeO, Br or Cl as
substituents were quantitatively prepared by Br/Li-exchange
from the corresponding aryl bromides and their acylation with
1a afforded the expected ketones 3ab-ae in 75–85% isolated
yield. Also, heterocyclic lithium species were generated in this
way and the acylation with 1a produced the heterocyclic
ketones 3af and 3ag in 82–89% yield. A related functionalized
amide such as 2,2-diethoxy-N,N-dimethylacetamide (1b) be-
haved in the same way providing, after the reaction with fluoro-
substituted aryllithiums, the ketones 3bh–bj in 74–78% yield.
Also, various α-monofluoro-, difluoro- or monochloro-substi-
tuted amides 1c, 1d and 1e gave the expected ketones despite
the presence of readily enolizable protons at the α-position to
the amide group. The use of the non-polar solvent toluene
significantly reduced such enolization side-reactions as men-
tioned above.[21] Thus, the α-halogenated ketones 3cg–cj, 3da–
dl and 3ef were obtained in 48–78% yield. N,N-Dimethylamides
such as 1f, 1g and 1h, bearing remote oxygen- or nitrogen-
containing functional groups, provided aromatic and hetero-

cyclic ketones 3ff–fn, 3gk and 3ho in 63–81% isolated yield.
As a limitation, we have found that N,N-dimethyl-phenyl-
acetamide (1 i) gave in this procedure only average yields of the
desired aryl benzyl ketones 3 ia and 3 ik due to competitive
enolization and consequent proto-debromination of the start-
ing material (ca. 25% of enolization was noticed in the present
solvent system, whereas over 70% enolization was found in
pure THF). [1,1,1]-bicyclopentane carboxamide 1 j was also a
suitable substrate and the reaction with various lithiums of type
2 furnished the bicyclopent-1-yl ketones 3 jp and 3 jr in 59–70%
isolated yield.[23] Finally, the dialkyl ketone 3hs was prepared by
directly using n-BuLi as organolithium species via a 2-pump
system (Scheme 2).

Next, we turned our attention to the preparation of highly
functionalized benzophenone derivatives and heterocyclic
ketones (Scheme 3). Thus, the cyano group in N,N-dimethyl-4-
cyanobenzamide (6a)[17] was well tolerated leading to the
cyano-substituted benzophenones 12ae-an in 61–79% isolated
yield. Remarkably, by using N,N-dimethyl-4-iodobenzamide
(6b), no competitive I/Li-exchange was observed and the
desired iodo-substituted benzophenones 12bq and 12br were
obtained in 63–79% yield. Also, commercially available N,N-
diethylnicotinamide (6c) provided the heterocyclic ketone 12cr
in 58% yield after the usual sequence in continuous flow.

The preparation of racemizable α-chiral ketones was readily
achieved with this new acylation procedure (Scheme 4). This is
demonstrated in the case of naproxen and ibuprofen derived α-
chiral ketones. Those analogues of non-steroidal anti-inflamma-
tory drugs (NSAIDs) were of interest in the pursuit of antivirals[24]

and to tackle gastrointestinal side-effects such as ulceration.[25]

Thus, the readily available chiral N,N-dimethylamide of naprox-
en 13a (99% ee) was treated under standard continuous flow
conditions with various functionalized aryllithiums of type 2
leading to the desired chiral ketones 14ac-an in 65–88% yield

Scheme 2. A continuous flow acylation of various amides 1 with in situ
generated lithium organometallics 2 leading to polyfunctional ketones 3. [a]
The indicated yields refer to yields of isolated products.

Scheme 3. Preparation of functionalized benzophenones and heterocyclic
ketones in continuous flow by acylation of (hetero)aryllithiums of type 2
with ArCONMe2 6. [a] The indicated yields refer to yields of isolated
products.
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with complete retention of chirality (99% ee).[26] Also, the chiral
N,N-dimethylamide of ibuprofen 13b (99% ee) was acylated
with (hetero)aryllithiums to give the chiral ketones 14bh–bs in
75–89% isolated yield (98-99% ee).

Finally, we have extended this acylation in continuous flow
to a semi-batch telescoped procedure for the preparation of
unsymmetrical ketones of type 5 using TMU (4) as a C1-building
block (Scheme 5).[8a,27] Thus, the treatment of a mixture of ArBr
(8) and TMU (4) in toluene with sec-BuLi at � 20 °C for 50 sec in
continuous flow provided the tetrahedral intermediate 15
which was poured into a toluene solution of various organo-
lithiums R� Li (7, R = Bu, (Het)Ar or Bn). These organolithiums
were conveniently prepared via direct metalation, using sec-
BuLi and TMEDA (1.0 equiv) in toluene at � 20 °C (10-30 min) in
batch. Presumably, due to a high stability of the intermediate
15, the second addition was quite slow and took up to 12 h at
25 °C. After aqueous workup, the corresponding ketones 5a–5f

were obtained in 69–79% yield. Remarkably, no additional
equivalent of THF was needed to ensure a fast Br/Li-exchange,
showing that TMU played a similar activator role as THF for the
fast formation of the lithium species.[28]

In summary, we have reported a new convenient acylation
of organolithiums 2 with various enolizable and functionalized
N,N-dimethylamides 1 in continuous flow at � 20 °C. The
required aryllithiums (2) were also prepared in continuous flow
at 25 °C using a Br/Li-exchange mediated by sec-BuLi with
toluene as solvent in the presence of 1.0 equiv. of THF. This
acylation was scalable without further optimization and was
found to be suitable for the preparation for a broad range of
polyfunctional ketones, including α-chiral ketones of type 14
with excellent enantioselectivities. Furthermore, this method
was extended to a semi-batch telescoped preparation of
unsymmetrical ketones using TMU (4) as C1-building block.
Compared to previous acylation procedures, readily prepared
and stable N,N-dimethylamides[16] of moderate toxicity, tolerat-
ing many functionalities, were used. The solvent toluene in the
presence of 2 vol% THF minimized enolization side reactions
and allowed ambient reaction temperatures. Further applica-
tions are underway.
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