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OBJECTIVE—The reversible attachment of small ubiquitin-like
modifier (SUMO) proteins controls target localization and func-
tion. We examined an acute role for the SUMOylation pathway in
downstream events mediating insulin secretion.

RESEARCH DESIGN AND METHODS—We studied islets and
b-cells from mice and human donors, as well as INS-1 832/13
cells. Insulin secretion, intracellular Ca2+, and b-cell exocytosis
were monitored after manipulation of the SUMOylation machin-
ery. Granule localization was imaged by total internal reflection
fluorescence and electron microscopy; immunoprecipitation and
Western blotting were used to examine the soluble NSF attach-
ment receptor (SNARE) complex formation and SUMO1 interac-
tion with synaptotagmin VII.

RESULTS—SUMO1 impairs glucose-stimulated insulin secretion
by blunting the b-cell exocytotic response to Ca2+. The effect of
SUMO1 to impair insulin secretion and b-cell exocytosis is rapid
and does not require altered gene expression or insulin content,
is downstream of granule docking at the plasma membrane, and
is dependent on SUMO-conjugation because the deSUMOylating
enzyme, sentrin/SUMO-specific protease (SENP)-1, rescues exo-
cytosis. SUMO1 coimmunoprecipitates with the Ca2+ sensor
synaptotagmin VII, and this is transiently lost upon glucose stim-
ulation. SENP1 overexpression also disrupts the association of
SUMO1 with synaptotagmin VII and mimics the effect of glucose
to enhance exocytosis. Conversely, SENP1 knockdown impairs exo-
cytosis at stimulatory glucose levels and blunts glucose-dependent
insulin secretion from mouse and human islets.

CONCLUSIONS—SUMOylation acutely regulates insulin secre-
tion by the direct and reversible inhibition of b-cell exocytosis
in response to intracellular Ca2+ elevation. The SUMO protease,
SENP1, is required for glucose-dependent insulin secretion.
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S
mall ubiquitin-like modifier (SUMO) proteins be-
long to the family of ubiquitin-like peptides (1,2).
The attachment of SUMO, called SUMOylation,
modifies target localization or function and is

implicated in mitosis, DNA repair, nuclear import, and the
control of transcription factors, including pancreatic and
duodenal homeobox-1 and MafA, in pancreatic b-cells (3–8).
Recent evidence also suggests a role for SUMOylation in
signaling from the insulin granule back to the nucleus (6,9).
There are three known functional SUMO isoforms (SUMO1,
-2, and -3), which are conjugated to target proteins through

a well-established series of reactions (10). The final step in
this series involves the transfer of SUMO from the ubiquitin-
conjugating enzyme E2I (UBE2I, also called Ubc9) to a tar-
get lysine. The action of sentrin/SUMO-specific proteases
(SENPs) reverses this process.

SUMOylation also regulates membrane proteins, in-
cluding K+ channels (11–14), nonselective cation channels
(15), and kainate receptors (16), and is suggested to con-
trol Ca2+ influx at nerve terminals (17). Membrane proteins
are critical to insulin secretion from b-cells. After trans-
location from the cell interior, secretory granules are
docked to the plasma membrane by formation of a soluble
NSF attachment receptor (SNARE) protein complex in
conjunction with Munc18a (18–20). This complex interacts
closely with the voltage-dependent Ca2+ channels (21,22).
Ca2+ sensing at the site of exocytosis is mediated, at least
in part, by synaptotagmin VII (23,24). An interaction be-
tween the SUMOylation and exocytotic pathways, and the
impact of this interaction on glucose-dependent insulin
secretion, has not been explored.

In the present work, we find that SUMO1 impairs glucose-
stimulated insulin secretion but not insulin content or Ca2+

responses. Rather, SUMOylation directly inhibits the b-cell
exocytotic response to membrane depolarization or in-
fusion of Ca2+, an effect that is acute, not requiring altered
gene expression, and reversible by the SUMO protease
SENP1. This inhibitory effect is downstream of granule
docking at the plasma membrane. A role for SUMO1 in
downstream Ca2+-dependent exocytosis is further sug-
gested by its interaction with synaptotagmin VII. This as-
sociation is transiently lost upon glucose-stimulation but
returns within 30–60 min, correlating with glucose-
dependent exocytosis. Overexpression of SENP1 prevents
interaction of SUMO1 with synaptotagmin VII and augments
exocytosis at low glucose and after prolonged glucose
stimulation. Finally, knockdown of the deSUMOylating
enzyme inhibits b-cell exocytosis and glucose-dependent
insulin secretion from mouse and human islets. Thus,
SUMO1 impairs insulin exocytosis, possibly through a di-
rect interaction with the exocytotic machinery, and the
deSUMOylating enzyme SENP1 is required for glucose-
dependent insulin secretion.

RESEARCH DESIGN AND METHODS

Cells and cell culture. Human embryonic kidney (HEK)-293 cells were cul-
tured in DMEM with 10% FBS, 100 units/mL penicillin, and 100 mg/mL strep-
tomycin at 37°C and 5% CO2. INS-1 832/13 cells (a gift from Dr. Christopher
Newgard, Duke University) were cultured in RPMI-1640 containing 11.1 mmol/L
glucose and supplemented with 10% FBS, 10 mmol/L HEPES, 2 mmol/L
L-glutamine, 1 mmol/L sodium pyruvate, 50 mmol/L b-mercaptoethanol, and 100
units/mL penicillin/streptomycin at 37°C and 5% CO2. Islets from male C57/BL6
mice were isolated by collagenase digestion. Human islets from 32 healthy
donors (mean age 48.4 6 2.3 years) were provided by the clinical islet labora-
tory at the University of Alberta. Islets were dispersed to single cells by shaking
in Ca2+-free buffer and plated in 35-mm culture dishes. Mouse islets and cells
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were cultured in RPMI with L-glutamine, 10% FBS, and 100 units/mL penicillin/
streptomycin. Human islets and cells were cultured in low-glucose (1 g/L)
DMEM with L-glutamine, 110 mg/L sodium pyruvate, 10% FBS, and 100 units/mL
penicillin/streptomycin. All studies were approved by the animal care and use
committee and the human research ethics board at the University of Alberta.
Constructs, adenoviruses, and recombinant peptides. The human SUMO1-
YFP (25) in the pEYFP-C1 vector (Clontech, Palo Alto, CA) was a gift from Dr.
Heidi McBride (University of Ottawa). The human SUMO1, Ubc9, and SENP1
constructs were in the pCMV6-XL4 vector and were from Origene Technolo-
gies (Rockville, MD). The pIRES-EGFP vector (Clontech) or pcDNA3.1 were
used as controls. Recombinant human SUMO1 protein was from GeneTex
(San Antonio, TX); SENP1 and Ubc9 enzymes were from Enzo Life Sciences
(Plymouth Meeting, PA). Glutathione S-transferase (GST) was from Sigma-
Aldrich Canada (Oakville, Canada). Recombinant adenoviruses expressing
green fluorescent protein (GFP) (Ad-GFP), SUMO1 (Ad-SUMO1), or SENP1
(Ad-SENP1) were created using pAdtrackCMV and the AdEasy system (www.
coloncancer.org). Three separate SENP1-targeted small-hairpin RNA (shRNA)
constructs and a scrambled control were designed against identical human
and mouse sequences using Genscript siRNA target-finder software (Gen-
script, Piscataway, NJ). These were synthesized as hairpin oligos with BamHI
and HindIII restriction sites on the 59 and 39 ends and ligated into the
pRNATH1.1/shuttle vector. Knockdown was tested by quantitative real-time
PCR and Western blot, followed by the production of the recombinant ade-
novirus (Ad-shSENP1 and Ad-shScramble) in HEK-293 cells using the Adeno-X
Expression System 1 (Clontech).
Insulin secretion measurements. Insulin secretion measurements were
performed at 37°C in Krebs-Ringer buffer (KRB) (in mmol/L: 115 NaCl, 5 KCl,
24 NaHCO3, 2.5 CaCl2, 1 MgCl2, 10 HEPES; and 0.1% BSA, pH 7.4). Twenty-five
islets per group were preincubated for 2 h in 1 mmol/L glucose KRB then for
1 h in KRB at 1 mmol/L glucose followed by 1 h with 16.7 mmol/L glucose. INS-1
832/13 cells were cultured overnight in RPMI with 5 mmol/L glucose then
preincubated in KRB for 30 min followed by a 1-h incubation in KRB with 2.5
or 15 mmol/L glucose and acid/ethanol extraction for insulin content. Islet
perifusion was performed at 37°C using a Brandel SF-06 system (Gaithersburg,
MD) after a 2-h preincubation in KRB with 1 mmol/L glucose. Twenty-five
islets per lane were perifused (0.25 mL/min) with KRB. Glucose was increased
as indicated. Samples were stored at220°C and assayed for insulin via enzyme-
linked immunosorbent assay (Alpco, Salem, NH).
Immunoprecipitation and immunoblotting. INS-1 832/13 cells or human
islets, after treatment or transfection as indicated, were lysed in either SNARE
immunoprecipitation buffer (in mmol/L: 100 KCl, 1 EDTA, and 20 HEPES,
pH 7.4, with 1.5% Triton-X100 and protease inhibitor cocktail) (Fig. 2C), or
SUMO lysis buffer (in mmol/L: 100 NaCl, 40 KCl, 1 EDTA, and 20 HEPES, pH
7.4, with 10% glycerol, 1% Triton X-100, and 25 mmol/L N-ethylmaleimide and
protease inhibitor cocktail) (Fig. 5). For immunoprecipitation, 500 mg total cell
lysates were precleared with 20 mL of protein G-Sepharose or 30 mL protein A
agarose. Lysates were incubated with 5 mL rabbit antisynaptotagmin VII
(Synaptic Systems, Goettingen, Germany) and 100 mL protein G slurry (4°C
overnight), 5 mg immobilized anti–SUMO1-agarose (4°C overnight; Santa Cruz
Biotechnology, Santa Cruz, CA), or 4 mg protein A agarose cross-linked anti–
syntaxin-1A (40°C for 40 min; Synaptic Systems). Immunoprecipitates were
washed four times with PBS with 0.5% NP-40. These, or whole cell lysates,
were separated using SDS-PAGE, transferred to polyvinylidene difluoride
membranes (Millipore, Billerica, MA), probed with primary antibodies (Living
Colors AV JL-8 antibody, Clontech; anti-SUMO1, anti-Ubc9, anti–syntaxin-1A,
and anti–b-actin, Santa Cruz Biotechnology; antisyaptotagmin VII, Synaptic Sys-
tems; anti-Munc18a, Transduction Laboratory; anti–synaptosomal-associated
protein 25 (SNAP-25), Sternberger; anti-SENP1, AbCam; and anti–vesicle-
associated membrane protein 2 (VAMP2), a gift from Dr. Anson Lowe, Stanford
University), and detected with peroxidase-conjugated secondary antibodies
(Santa Cruz Biotechnology).
Total internal reflection fluorescence, electron microscopy, and Ca

2+

imaging. Total internal reflection fluorescence (TIRF) imaging was per-
formed as described (26) on INS-1 832/13 cells transfected with islet amyloid
polypeptide–mCherry that localizes to insulin granules together with a control
plasmid (pcDNA3.1) or SUMO1. Electron microscopy was performed (26) on
INS-1 832/13 cells infected with either Ad-GFP or Ad-SUMO1 and cultured for
48 h. For Ca2+ imaging, islets infected with either Ad-GFP or Ad-SUMO1 and
cultured for 48 h were incubated for 45 min with 3 mmol/L Fura-2-AM (Invitro-
gen, Carlsbad, CA) and 0.06% pluronic acid (Invitrogen) in an extracellular
calcium-imaging solution containing (in mmol/L) 130 NaCl, 5 KCl, 2 CaCl2,
1 MgCl2, 5 NaHCO3, and 10 HEPES (pH 7.4 with NaOH). Islets were then
imaged in fresh imaging solution with 0.5 mmol/L glucose and without Fura-
2-AM or pluronic acid at 37°C with constant bath perfusion. Glucose and KCl
were increased as indicated. Fluorescence recordings were obtained every 5 s.
Images were analyzed with Image Pro Plus version 6.2 (Media Cybernetics) or
Ratio Cam software (Metamorph).

Electrophysiology. We used the standard whole-cell technique with the sine
plus DC lockin function of an EPC10 amplifier (HEKA Electronics, Lambrecht/
Pfalz, Germany). Experiments were performed at 32–35°C. Bath solution
for depolarization trains contained (in mmol/L) 118 NaCl, 20 TEA, 5.6 KCl,
1.2 MgCl2 $ 6H2O, 2.6 CaCl2, 5 glucose, and 5 HEPES (pH 7.4 with NaOH).
The pipette solution for depolarization trains contained (in mmol/L) 125 Cs-
glutamate, 10 CsCl, 10 NaCl, 1 MgCl2 $ 6H2O, 0.05 EGTA, 5 HEPES, 0.1 cAMP,
and 3 MgATP (pH 7.15 with CsOH). When exocytosis was initiated by dialysis
of a Ca2+/EGTA buffer (200 nmol/L free Ca2+) the intracellular solution con-
tained (in mmol/L) 125 K-glutamate, 10 NaCl, 10 KCl, 1 MgCl2 $ 6H2O, 5 CaCl2,
10 EGTA, 5 HEPES, and 3 MgATP (pH 7.1 with KOH). The extracellular so-
lution contained (in mmol/L) 138 NaCl, 5.6 KCl, 1.2 MgCl2 $ 6H2O, 2.6 CaCl2,
5 glucose, and 5 HEPES (pH 7.4 with NaOH). Patch pipettes, pulled from
borosilicate glass and coated with Sylgard, had resistances of 3–4 MV when
filled with pipette solution. Whole-cell capacitance responses were normalized
to initial cell size and expressed as femtofarad per picofarad (fF/pF). Mouse
b-cells were identified by size and the presence of a voltage-gated Na+ current
that inactivates at approximately –90 mV (27), whereas human b-cells were
positively identified after the experiment by insulin immunostaining.
Data analysis. Data were analyzed using FitMaster version 2.32 (HEKA
Electronik) and SigmaPlot 10 (Systat Software, Point Richmond, CA) and
compared by multiple ANOVA and Student t test. Data are expressed as
means 6 SE, and P , 0.05 is considered significant.

RESULTS

SUMO1 inhibits downstream events in glucose-
stimulated insulin secretion. Overexpression of SUMO1
inhibits voltage-dependent K+ (Kv) currents and increases
action potential duration in rodent and human b-cells (13).
However, unlike the insulinotropic effect of Kv current
blockade (28,29), we find that overexpression of SUMO1
inhibited glucose-stimulated insulin secretion from mouse
islets (n = 3, P, 0.05) (Fig. 1A). This was not attributable to
reduced islet insulin content (data not shown) or impaired
intracellular Ca2+ responses to glucose (n = 6) (Fig. 1B),
suggesting that the inhibitory effect lies downstream of Ca2+

entry.
To examine whether acute SUMOylation affects the

downstream mechanism of insulin secretion, recombinant
proteins were dialyzed directly into mouse b-cells for ~4 min
via a patch-clamp pipette (Fig. 1C). Exocytosis was then
measured as the whole-cell capacitance response to a train
of membrane depolarizations (Fig. 1D–F). b-Cells dialyzed
with a control GST peptide (2 mg/mL) displayed robust exo-
cytosis (n = 41), whereas recombinant SUMO1 (2 mg/mL)
blunted the response by 85% (P , 0.001, n = 19). This re-
quired SUMO conjugation because it could be readily
reversed by codialysis of the SUMO protease SENP1
(6 mg/mL; n = 19).
SUMOylation increases granule docking and SNARE
complex formation. A lack of effect of SUMO1 on the
intracellular Ca2+ response, together with the acute in-
hibition of exocytosis by SUMO1, suggests a role in regu-
lating downstream events in insulin secretion. Similar to
mouse islets, glucose-stimulated insulin secretion also
was impaired in INS-1 832/13 cells overexpressing SUMO1
(Fig. 2A). Dense-core granules were clearly seen to be
morphologically docked at the plasma membrane by elec-
tron microscopy of cells overexpressing either GFP or
SUMO1 (Fig. 2B; representative of 33 and 31 images, re-
spectively). Indeed, membrane-associated secretory gran-
ule density, monitored by TIRF microscopy, was increased
by expression of SUMO1 (n = 79) compared with control
(n = 50, P , 0.01) (Fig. 2C). This was normalized by a 4-h
culture at 1 mmol/L glucose and increased again in SUMO1-
expressing (n = 67) versus control (n = 57, P , 0.05) cells
following a 15-min glucose stimulation (Fig. 2C).

Consistent with increased granule docking, Munc18a/
SNARE complex formation was increased in INS-1 832/13
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cells transfected with SUMO1 (Fig. 2D). This could be
partially reversed by coexpression of SENP1, whereas to-
tal SNARE protein levels were unchanged. Cells expres-
sing GFP alone showed the glucose-stimulated disassembly
of the complex consistent with the release of docked gran-
ules, but this was blunted after overexpression of SUMO1
(Fig. 2E). Some Munc18a may be pulled down with syn-
taxin-1A independent of the SNARE complex. However,
changes in Munc18a occurred in parallel with SNAP-25
and VAMP2, consistent with Munc18a participation in
a “SNAREpin” structure (30). Therefore, SUMO1 does not
impair insulin secretion by reducing insulin granule re-
cruitment and docking at the plasma membrane. Inhibition

of the secretory process by SUMO1 occurs downstream of
the docking event.
SUMOylation inhibits Ca

2+
-dependent exocytosis. We

examined whether Ca2+-dependent exocytosis, per se, is
impaired by SUMO1. We thus examined voltage-dependent
calcium channel (VDCC) function and capacitance re-
sponses in INS-1 832/13 cells overexpressing a conjugation-
competent SUMO1-YFP (25) alone or together with SENP1.
Upon depolarization of cells to 0 mV, the peak VDCC
current in control cells was 220.9 6 2.9 pA/pF (n = 30)
and after SUMO1-YFP expression was 231.3 6 4.6 pA/pF
(n = 16). This approached statistical significance (P =
0.054), although it should be noted that an increase in Ca2+

current cannot account for the inhibitory effect of SUMO1-
YFP on the exocytotic response.

Insulin granules are physically coupled to VDCCs (31),
and loss of this interaction can reduce insulin secretion and
b-cell exocytosis (32). To examine VDCC-granule coupling,
cells were subjected to depolarizations of increasing dura-
tion (Fig. 3A and B). Short pulses allow local Ca2+ signals,
whereas longer pulses mediate increases in bulk cytosolic
Ca2+ (21,33). Compared with GFP alone (n = 14), expres-
sion of SUMO1-YFP impaired the exocytotic response to
even the longest (~2.5 s) depolarization (inhibited by 76%;
n = 16, P , 0.01). This was rescued by coexpression of
SENP1 (n = 14). This suggests that decoupling of secretory
granules from VDCCs does not account for the impaired
exocytotic response. Indeed, exocytosis could not be res-
cued by the direct infusion of 200 nmol/L free Ca2+ and
remained impaired in cells expressing SUMO1-YFP (by 95%,
n = 15, P , 0.001) (Fig. 3C and D). Again, this was rescued
by coexpression of SENP1 (n = 15). The exocytotic re-
sponse of INS-1 832/13 cells also was impaired by over-
expression of the SUMOylating enzyme Ubc9 (by 90%, n = 7,
P , 0.001) rather than SUMO1 itself (Fig. 3E and F). Im-
portantly, this was rapidly rescued by intracellular dialysis
of SENP1 (6 mg/mL, n = 10). Taken together, these results
demonstrate that SUMOylation inhibits Ca2+-dependent
exocytosis distal to granule docking and Ca2+ entry.
SUMOylation inhibits exocytosis in human b-cells.We
next examined the effect of upregulating SUMOylation in
human b-cells positively identified by insulin immuno-
staining. Similar to the effect observed in the INS-1 832/13
cells, overexpression of SUMO1-YFP inhibited the exo-
cytotic response of human b-cells elicited both by infu-
sion of 200 nmol/L free Ca2+ (by 94%, n = 13 and 5 from
two donors, P , 0.05) (Fig. 4A and B) and by trains of
membrane depolarization (by 71%, n = 18 and 10 from
three donors, P , 0.001) (Fig. 4C and D). This could be
rescued by coexpression of SENP1 (n = 13 and 19, re-
spectively) (Fig. 4C and D). Overexpression of SUMO1-YFP
had a maximal inhibitory effect on human b-cell exocytosis
that was not further enhanced by coexpression of the SUMO-
conjugating enzyme Ubc9 (77% inhibition, n = 17). However,
Ubc9 alone was sufficient to inhibit exocytosis in human
b-cells (n = 25 and 11, P , 0.001) (Fig. 4E and F).
SUMO1 interacts dynamically with synaptotagmin VII.
Both INS-1 832/13 cells and human islets possess numer-
ous SUMOylated proteins (Fig. 5A). Because SUMOylation
prevents Ca2+-dependent exocytosis in b-cells at a point
distal to Munc18a/SNARE complex assembly, we postulated
that SUMO1 might interact with synaptotagmin VII, a likely
mediator of exocytotic Ca2+-sensing in b-cells (23,24) that
possesses a potential type II nonconsensus SUMOylation
site (34). We find that SUMO1 coimmunoprecipitates with
synaptotagmin VII, and vice versa, from INS-1 832/13 and

FIG. 1. SUMOylation impairs glucose-stimulated insulin secretion by
acute inhibition of b-cell exocytosis. A: Insulin secretion from isolated
mouse islets expressing either GFP alone (Ad-GFP, □) or SUMO1 (Ad-
SUMO1, ■). B: Intracellular Ca2+ responses to glucose and KCl in these
islets by ratiometric imaging of Fura-2-AM. The glucose-stimulated
increase in the Fura-2 ratio is shown at the bottom. C: Single-cell ex-
periments were performed on b-cells by whole-cell patch clamp, allowing
the direct and acute intracellular dialysis of a control peptide (GST),
SUMO1, or SENP1.D: Mouse b-cell exocytosis, measured as an increase in
capacitance (cell size) during a train of ten 500-ms depolarizations (top),
after ~4 min of dialysis with GST, SUMO1, or SUMO1 + SENP1.E: Average
capacitance response to each step-wise depolarization. F: The total ca-
pacitance response over the train of depolarizations. *P < 0.05; ***P <
0.001 vs. controls.
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human islets (Fig. 5C–H). SUMO1 was not pulled down
with synaptotagmin IX (data not shown), which also is
reported to contribute to the control of Ca2+-dependent
exocytosis in b-cells (35,36). The association with syn-
aptotagmin VII was SUMOylation dependent because it
could be enhanced by overexpression of Ubc9 or SUMO1
(Fig. 5D and H) and could be prevented by SENP1 (Fig.

5D). Furthermore, the endogenous SUMO1/synaptotagmin
VII interaction is transiently disrupted after glucose stimu-
lation (Fig. 5B–G) in both INS-1 832/13 cells (n = 3) and
human islets (n = 5 donors). This generally occurred at
15 min poststimulation (although in human islets this was
occasionally observed at 30 min as shown in Fig. 5G). Addi-
tionally, in one of five human donors the glucose-dependent

FIG. 2. SUMOylation does not impair secretory granule docking. A: Insulin secretion from INS-1 832/13 cells expressing either GFP alone (Ad-GFP,
□) or SUMO1 (Ad-SUMO1, ■). B: Representative electron micrographs of INS-1 832/13 cells expressing either GFP alone (Ad-GFP) or SUMO1
(Ad-SUMO1). Scale bar represents 1 mm. C: Membrane-localized secretory granules (labeled with IAPP-mCherry) imaged by TIRF microscopy of
INS-1 832/13 cells expressing SUMO1 or control vector. Representative images obtained under standard culture conditions (left). Average se-
cretory granule density at the plasma membrane (right) following standard overnight culture at 11.1 mmol/L glucose or 4-h culture at 1 mmol/L
glucose followed by acute (15 min) stimulation at 10 mmol/L glucose. D: Munc-18a/SNARE complex formation in INS-1 832/13 cells expressing
GFP, SUMO1, and/or SENP1, assessed by immunoprecipitation (IP) of syntaxin 1A (Syn-1A) and blotting for Munc-18a, Syn-1A, SNAP-25, and
VAMP2 under standard culture conditions. E: Same as D but after a 2-h incubation at 1 mmol/L glucose and following 15 min at 15 mmol/L glucose
(basal and stimulated). *P < 0.05; **P < 0.01.
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loss of this interaction was not observed; islets from this
donor displayed neither exocytosis nor glucose-stimulated
insulin secretion (data not shown).
(De)SUMOylation and glucose-dependent b-cell
exocytosis. Because glucose stimulation transiently dis-
rupts the SUMO1/synaptotagmin VII interaction, we con-
sidered whether the SUMOylation pathway is an important
determinant of the glucose dependence of b-cell exocy-
tosis. We examined whether SUMOylation acts to limit
Ca2+-dependent exocytosis at low glucose and after pro-
longed glucose stimulation, conditions where we observed
a strong SUMOylation-dependent interaction between SUMO1
and synaptotagmin VII. Preincubation of cells at 1 mmol/L
glucose for 4 h was followed by acute (15 min) exposure
to either 1 or 10 mmol/L glucose (Fig. 6A). The exocytotic
response of mouse b-cells at 1 mmol/L glucose was low
(Fig. 6B and C, ●) and was significantly enhanced in re-
sponse to 10 mmol/L glucose (Fig. 6B and C,○). At 1 mmol/L
glucose, the direct intracellular dialysis (6 mg/mL; mouse, n =
40, P , 0.001) or overexpression (human, n = 38 from six
donors, P, 0.01) of the deSUMOylating enzyme SENP1 was
sufficient to enhance exocytosis but had no further effect at
10 mmol/L glucose (n = 9 and 25) (Fig. 6B and C). In addi-
tion, overexpression of the SUMO-conjugating enzyme Ubc9
prevents the glucose-stimulated increase in the exocytotic
response of human b-cells (n = 21) (Fig. 6C).

In a separate set of experiments in human b-cells
expressing GFP or SENP1 by recombinant adenovirus (Ad-
GFP and Ad-SENP1), we examined exocytotic responses
at 1 mmol/L glucose and after stimulation with 15 mmol/L
glucose for 15 or 45 min (Fig. 7A). As above, little or no
exocytosis was seen GFP-expressing cells at 1 mmol/L
glucose (n = 7 from two donors) (Fig. 7B and C), and the
response was enhanced either by 15 min of glucose stim-
ulation (n = 7, P , 0.01) or expression of SENP1 (n = 7,
P , 0.01). SENP1 overexpression at 15 min of glucose
stimulation did not further increase the exocytotic response
(n = 8) (Fig. 7B and C). Interestingly, the exocytotic re-
sponse following a 45-min glucose stimulation, which cor-
relates with a return of the SUMO1/synaptotagmin VII
interaction (Fig. 5), was reduced compared with acute
stimulation (n = 13, P , 0.01). Under this condition, SENP1
was again able to enhance the exocytotic response (n = 13,
P , 0.05) (Fig. 7B and C).
SENP1 is required for glucose-stimulated exocytosis
and insulin secretion. To investigate whether SENP1 is
required in glucose- and depolarization-stimulated exo-
cytosis and insulin secretion, we used an shRNA strategy
to knock down this deSUMOylating enzyme. Our recombi-
nant adenovirus expressing SENP1 shRNA (Ad-shSENP1)
knocked down the endogenous enzyme (58.3 6 17.2%,
n = 3) measured by Western blot (Fig. 8A). The exocytotic

FIG. 3. SUMOylation impairs Ca
2+
-dependent exocytosis. A: Exocytotic capacitance responses to depolarizations of increasing duration (10, 320,

and 2560 ms shown) of INS-1 832/13 cells expressing GFP, SUMO1-YFP, or SUMO1-YFP + SENP1. B: Average capacitance responses from A plotted
vs. depolarization duration. C: The whole-cell capacitance response of INS-1 832/13 cells measured during direct application of 200 nmol/L free
Ca

2+
via the patch pipette. D: The average capacitance response of cells expressing GFP, SUMO1-YFP, or SUMO1-YFP + SENP1 at 200 s following

initiation of Ca
2+

infusion and normalized to initial cell size. E: Endogenous and overexpressed Ubc9 in INS-1 832/13 cells (left). Exocytotic
capacitance responses (right) in INS-1 832/13 cells expressing GFP or Ubc9 and dialyzed with either GST or SENP1. F: Average cumulative
capacitance responses over the series of 10 depolarizations. **P < 0.01; ***P < 0.001 vs. GFP.
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response of mouse b-cells was impaired by 65 and 95%, at
48 and 66 h, respectively, after infection with Ad-shSENP1
(n = 14–18, P , 0.001) (Fig. 8A). Similar results were ob-
served in human b-cells, where knockdown of SENP1
impaired exocytosis by 87% at 66 h (n = 17–26 from three
donors, P, 0.001) (Fig. 8B). The inhibitory effect of SENP1
knockdown could be rapidly rescued by intracellular di-
alysis with recombinant SENP1 (6 mg/mL) in both human
(n = 12) (Fig. 8C) and mouse (n = 8) (data not shown)
b-cells. Furthermore, SENP1 knockdown completely pre-
vented the ability of glucose to enhance mouse b-cell
exocytosis (n = 16, P , 0.001) (Fig. 8D) and blunted

glucose-stimulated insulin release from both mouse (n = 3)
(Fig. 8E) and human (n = 3 donors, P , 0.05) (Fig. 8F)
islets.

DISCUSSION

SUMOylation regulates transcription factor targeting and
function, including that of MafA and pancreatic and duo-
denal homeobox-1 in pancreatic b-cells (7,8). More recently,
extranuclear roles for SUMO have emerged, including
the regulation of mitochondrial and ion channel function
(11–15,25,37), which implicate SUMOylation in the acute

FIG. 4. SUMOylation inhibits exocytosis in human b-cells. A: The exocytotic response of single human b-cells to direct intracellular dialysis of 200
nmol/L free Ca

2+
measured as increased cell capacitance. B: The average capacitance response, at 200 s following Ca

2+
infusion and normalized to

initial cell size, in human b-cells expressing GFP, SUMO1, or SUMO1 + SENP1. C: Exocytosis elicited by a series of ten 500-ms depolarizations in
human b-cells expressing GFP, SUMO1, and SUMO1 + Ubc or SUMO1 + SENP1. D: Average capacitance responses to each depolarization (left) and
the total capacitance response over the train (right). E: Exocytotic responses of human b-cells expressing GFP or the SUMO-conjugating enzyme
Ubc9 alone. F: Average capacitance responses to each depolarization (left) and the total capacitance response over the train (right). ***P < 0.001
vs. GFP alone.
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control of cellular function without requiring altered gene
transcription. Here, we demonstrate that SUMOylation
acutely and reversibly controls glucose-dependent insulin
secretion in rodents and humans through the regulation
of Ca2+-dependent exocytosis downstream of secretory
granule docking at the plasma membrane. Furthermore, the
deSUMOylating enzyme SENP1 augments b-cell exocytosis
and is required for glucose-dependent insulin secretion.

Posttranslational SUMOylation is suggested to regulate
key plasma membrane proteins, including ion channels
(11–15) and receptors (16), although in one case this has
been questioned (38). We showed previously that over-
expression of SUMO1 in INS-1 and human b-cells in-
hibits voltage-dependent K+ (Kv) currents and modulates
excitability (13). However, in contrast with the expected
insulinotropic effect associated with Kv inhibition (28,39),

SUMO1 overexpression impaired glucose-stimulated in-
sulin secretion. It is possible that mitochondrial function
is impacted by SUMO1 (25,40). However, that SUMO1
primarily inhibits insulin secretion through a downstream
mechanism is suggested by 1) the lack of effect on in-
tracellular Ca2+ responses, 2) the inability of direct Ca2+ in-
fusion to stimulate exocytosis after SUMO1 overexpression,
and 3) the rapidity at which direct intracellular SUMO1 di-
alysis blocks exocytosis. Furthermore, although SUMOyla-
tion modulates transcription factor function in many cell
types, including b-cells (7,8), altered gene expression or
reduced insulin content is not required for the inhibitory
effect of SUMO1 on b-cell exocytosis. This is evidenced
again by the ability of acute SUMO1 infusion to inhibit
exocytosis, as well as the lack of effect of SUMO1 on
SNARE protein expression and preserved insulin content.

FIG. 5. SUMO1 associates with the exocytotic Ca
2+

sensor synaptotagmin VII in a glucose-dependent manner. A: SUMOylation profile of whole-cell
lysates from INS-1 832/13 cells and four human donors showing numerous SUMOylated proteins. B: INS-1 832/13 cells and human islets were
cultured overnight, preincubated at 1 mmol/L glucose for 4 h, and stimulated with 15 mmol/L glucose for varying times, as indicated. At some time
points (*) lysates were not always collected. C: Immunoprecipitation of synaptotagmin VII from INS-1 832/13 cells collected at time points fol-
lowing glucose-stimulation indicated in B, followed by blotting for SUMO1. Light-chain (Lc) or heavy chain (Hc) IgG is shown as a loading control.
D: Same as in C, collected at time = 0 and 15 min following glucose stimulation. The interaction between SUMO1 and synaptotagmin VII in INS-1
832/13 cells is increased by the SUMO-conjugating enzyme Ubc9 and lost upon expression of the SUMO protease SENP1, in comparison with cells
transfected with control vector. Ubc9 prevents, whereas SENP1 mimics, the glucose-dependent disruption of the interaction. E: Same as in C but
with human islets. F: Densitometry demonstrates a >50% reduction in SUMO1 coimmunoprecipitation at 15 min following glucose stimulation of
human islets. G: As in D but with SUMO1 immunoprecipitation followed by blotting for synaptotagmin VII. H: As in D, after infection with Ad-GFP
or Ad-SUMO1, demonstrating that increasing SUMO1 expression enhances the interaction with synaptotagmin VII. *P <0.05 vs. time = 0. (A high-
quality digital representation of this figure is available in the online issue.)
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SUMO1 exerts the majority of its effects via its covalent
and reversible conjugation to target proteins (41). SUMO
conjugation is indeed required for SUMO1 to inhibit b-cell
exocytosis because the SUMO protease, SENP1, rescues the
exocytotic response. A role for endogenous SUMOylation
in insulin exocytosis is demonstrated by manipulation of
the SUMO conjugation and protease machinery. Upregula-
tion of the SUMO ligase, Ubc9, or knockdown of the SUMO
protease, SENP1, inhibits b-cell exocytosis, both of which
are rescued by dialysis with SENP1. Thus, SUMOylation
acutely and reversibly inhibits exocytosis in human and
rodent b-cells.

The point at which SUMOylation inhibits b-cell exo-
cytosis lies downstream of insulin granule trafficking to
the plasma membrane and physical docking, as indicated
by our electron microscopy and TIRF studies and the
abundant Munc18a/SNARE complex assembly following
SUMO1 overexpression. The ubiquitin/proteosome pathway
is implicated in the regulation of b-cell voltage-dependent
Ca2+ channels (42), and SUMOylation is reported to mod-
ulate Ca2+ influx at presynaptic nerve terminals (17). How-
ever, SUMOylation impairs b-cell exocytosis at the point
of Ca2+ triggering of membrane fusion rather than Ca2+

entry or Ca2+ channel/granule coupling, which is most clearly
shown by an inability of direct Ca2+ application to elicit
exocytosis after SUMO1 upregulation. Consistent with an
effect on exocytotic Ca2+ sensing, we find that endogenous
SUMO1 interacts with synaptotagmin VII.

Synaptotagmin VII represents a major exocytotic Ca2+

sensor in b-cells (23,24). The SUMO1-positive band at
75 kDa pulled down with synaptotagmin VII is consistent
with synaptotagmin VII splice variants (SYTVIIa or -b)
expressed in b-cells (43) and corresponds to the synapto-
tagmin VII–positive band pulled down with a SUMO1 an-
tibody. Additional work is required to determine whether
synaptotagmin VII is SUMOylated directly, perhaps at its
predicted nonconsensus SUMOylation site, or whether
the coimmunoprecipitated protein is a SUMOylated bind-
ing partner. Certainly, the SUMO1/synaptotagmin VII inter-
action, whether direct or indirect, is SUMOylation dependent
because it is upregulated by Ubc9 and lost upon SENP1
overexpression.

FIG. 6. SUMOylation and deSUMOylation enzymes modulate glucose
enhancement of exocytosis in mouse and human b-cells. A: Cells were
preincubated at 1 mmol/L glucose for 4 h prior to a 15-min exposure to
either 1 or 10 mmol/L glucose, after which exocytosis was measured as
the whole-cell capacitance response to a series of membrane depolari-
zations (arrow). B: Exocytosis in mouse b-cells was blunted at 1 mmol/L
(●), and enhanced at 10 mmol/L (○) glucose in cells dialyzed with GST.
Dialysis of SENP1 peptide at 1 mmol/L glucose recapitulated the effect of
glucose stimulation (■), but had no further effect at 10 mmol/L glucose
(□). The total capacitance response under these conditions (right).
C: Same as in B but human b-cells by overexpression rather than acute
dialysis. Also, expression of the SUMO ligase, Ubc9, prevented glucose
enhancement of exocytosis in these cells (△). **P< 0.01; ***P< 0.001
vs. 1 mmol/L glucose control.

FIG. 7. SUMOylation limits exocytosis in human b-cells following pro-
longed glucose stimulation. A: Cells were preincubated at 1 mmol/L
glucose for 4 h prior to a 15-min exposure to either 1 or 15 mmol/L
glucose or a 45-min exposure to 15 mmol/L glucose, after which exo-
cytosis was measured (arrows). B: Exocytotic capacitance responses of
human b-cells expressing GFP (Ad-GFP) or SENP1 (Ad-SENP1) under
the indicated glucose conditions. C: The total capacitance response
under these conditions. *P < 0.05; **P < 0.01 vs. 1 mmol/L glucose
control or as indicated.
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The SUMO1/synaptotagmin VII interaction is transiently
lost upon glucose stimulation and returns within 30–60
min. Similarly, SUMOylation of MafA in b-cells increases
at low glucose (7). Although the mechanism(s) underly-
ing these effects remains to be elucidated, the present
data suggest a key role for (de)SUMOylation in glucose-
dependent insulin secretion. This is supported by our
findings that SENP1 disrupts the SUMO1/synaptotagmin VII
interaction and mimics the ability of glucose to enhance
exocytosis. Furthermore, SENP1 knockdown demonstrates
that this deSUMOylating enzyme is required for b-cell exo-
cytosis and glucose-stimulated insulin secretion, and up-
regulation of Ubc9, which prevents dissociation of SUMO1
from synaptotagmin VII, prevents glucose-dependent exo-
cytosis. Finally, we find that restoration of the SUMO1/
synaptotagmin VII interaction correlates with the suppres-
sion of exocytosis during longer glucose stimulations, and
robust exocytosis is restored by SENP1, demonstrating that
SUMOylation is a limiting factor under this condition. Al-
though it is tempting to speculate that the time course of
SUMOylation effects on exocytosis relates to secretory ca-
pacity during first- and/or second-phase insulin secretion, it
is clear that additional work is required to delineate the
exact temporal relationship between SUMOylation and in-
sulin secretion.

We conclude that the SUMOylation pathway plays an
important and acute role in glucose-dependent insulin se-
cretion in rodents and humans via the acute and dynamic
regulation of Ca2+-dependent exocytosis. At low glucose,
and following prolonged glucose stimulation, SUMOylation
acts as a “brake” to prevent the Ca2+-induced exocytotic
release of insulin. Conversely, the deSUMOylating enzyme,
SENP1, augments Ca2+-dependent exocytosis and is re-
quired for robust glucose-stimulated insulin secretion.
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