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A B S T R A C T

Objectives: Normal and acatalasemic mouse erythrocytes were used to clarify the relationship between oxidative
damage in H2O2-treated erythrocytes and catalase activity.
Design & Methods: Generation of hydrolysis-resistant erythrocytes and hemolysis were examined. The osmotic
fragility test, the negative charges and the number of membrane-flickering erythrocytes among the H2O2-treated
erythrocytes were investigated.
Results: Small amounts of hydrolysis-resistant mouse erythrocytes were generated by treatment with 0.1 mM
H2O2, and the amount of acatalasemic erythrocytes was larger than untreated controls. Hemolysis in the aca-
talasemic erythrocytes was observed 30 min after the addition of the H2O2. A drastic increase in hydrolysis-
resistant erythrocytes and a loss of membrane proteins in the acatalasemic erythrocytes were found as a result of
the addition of 1 mM H2O2. Hemolysis in normal erythrocytes was observed at 3 mM H2O2.
Conclusions: Catalase is a potent H2O2-scavenger even in acatalasemic mouse erythrocytes. It is concluded that
the drastic increase of hydrolysis-resistant erythrocytes is induced by a loss of membrane function and is as-
sociated with the low catalase activity in these cells.

1. Introduction

Hydrogen peroxide (H2O2), which is one of the reactive oxygen
species (ROS), induces oxidative stress in living organisms and is in-
volved in a variety of signaling pathways [1–4]. Antioxidants and an-
tioxidant enzymes in blood and cells remove H2O2 and minimize the
concentration to suppress the oxidative stress. The autoxidation of he-
moglobin in erythrocytes is generated by H2O2 in plasma or blood re-
moved by the erythrocytes. As the H2O2-scavenging activity of glu-
tathione peroxidase and peroxiredoxin 2 in erythrocytes is reportedly
low [5,6], it is deduced that the catalase [EC1.11.1.6] that is present in
erythrocytes is important in the defense against oxidative stress. In
1948, hereditary catalase deficiency, named “acatalasemia” was re-
ported by Takahara et al. [7,8]. People with acatalasemia suffer from
progressive oral gangrene and ulceration. The disease was later called
Takahara’s disease, and the authors suggested that the disease is in-
duced by infection with H2O2–generating bacteria. During the late
1940s and early 1950s (after the war), oral hygiene in Japan was poor
and the disease was present in approximately one half of the acatala-
semic cases tested [9–11]. However, the disease is rarely found in Japan
at present, with only a small number reported in China [12]. In 1961,

Aebi reported cases of acatalasemia in Switzerland [13], and in 1992
Goth reported cases in Hungary [14]. The residual catalase activity of
acatalasemic erythrocytes in Switzerland and Hungary was found to be
higher than in Japan, and there has been no report of Takahara’s dis-
ease. The gene frequency of acatalasemia in Japan, Switzerland and
Hungary is estimated to be 0.08/1000, 0.05/1000 and 0.04/1000, re-
spectively [11]. In 2000, Goth suggested that acatalasemia patients in
Hungary were at a higher risk for and an earlier manifestation of dia-
betes (10 years) [15]. Animal experiments indicated that low catalase
activity in blood is associated with mouse diabetes under oxidative
stress conditions [16]. The oxidative stress damaged oxidant-sensitive
beta cells in the pancreas and thereby induced diabetes, and the beta
cell damage was shown to be ameliorated by antioxidants [17–19].

In terms of Takahara’s disease in acatalasemic patients, it is sug-
gested that the disease is associated with the level of residual catalase
activity in erythrocytes, but the specific relationship between the dis-
ease and the residual activity level is unclear. Ogata et al. showed that
methemoglobin formation is higher in acatalasemic erythrocytes than
normal ones [20]. We reported that the H2O2 scavenging activity of
oxidized hemoglobin is as high as the residual catalase activity in
acatalasemic mouse erythrocytes [21–24]. When supra-physiological
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H2O2 was added to acatalasemic mouse erythrocytes, hemolysis (0.1
mM H2O2) and hydrolysis-resistant erythrocytes (1 mM) were observed
[25]. As hydrolysis-resistant erythrocytes cause impaired oxygen
transport and other circulatory disturbances, we suggest that these er-
ythrocytes are related to the disease. However, it was recently reported
that normal, acatalasemic-like human erythrocytes treated with sodium
azide were prepared, and hydrolysis-resistant erythrocytes were gen-
erated by a lower concentration of H2O2 than that needed for hemolysis
[26,27]. We examined oxidative damage in H2O2-treated mouse ery-
throcytes.

2. Materials and methods

2.1. Animals and chemicals

The acatalasemic (C3H/AnLCS
bCS

b) and normal (C3H/AnLCS
aCS

a)
mouse strains established by Feinstein et al. [28] were used in this
study. A genetic defect has been reported [29,30], and is no report of
Takahara’s disease in mice. Mice were maintained on a Laboratory diet
(the CE-2 diet, Clea Japan, Tokyo, Japan) and water ad libitum until
they were 12 weeks old. All of the animal procedures were carried out
in accordance with the Guide for the Care and Use of Laboratory Ani-
mals as published by the Japanese Association for Laboratory Animal
Science. All experiments were approved by the Ethics Review Com-
mittees for Animal Experimentation at Okayama University of Science.
Alcian blue 8GX, 30 % H2O2 and other reagents were purchased from
Wako Pure Chemical Industries (Osaka, Japan) and were of analytical
grade. H2O2 solution was diluted with physiological saline containing
10 mM potassium phosphate buffer (PBS, pH 7.4), and 100 mM H2O2

(stock solution) were prepared. The concentration of H2O2 was checked
using 0.01 M sodium thiosulfate solution. Catalase activity was mea-
sured according to a previously reported method [21,22]. Hemoglobin
content was determined by the method of Drabkin and Austin [31], and
the concentrations of hemoglobin indicated were calculated as a tet-
ramer. Alcian-blue 8GX 400 mg was dissolved in 100 ml of PBS, and the
mixture was centrifuged at 2000 X g for 10 min. The supernatant was
diluted 32 times with PBS, and the solution was used as the alcian blue
solution [32]. Neuraminidase (sialidase, EC 3.2.1.18) was purchased
from Nakalai Tesque (Kyoto, Japan) and diluted with PBS (pH 8.0).
SDS-PAGE was performed according to the method of Laemmli [33].

2.2. Preparation of packed erythrocytes

Mouse blood was collected by cardiac puncture, and heparin was
used as an anticoagulant. Erythrocytes were separated and washed
three times with PBS pH7.4 after centrifugation at 1600 X g for 10 min.
Packed erythrocytes were stored at 4 °C and used immediately.

2.3. Hydrolysis-resistant erythrocytes among the erythrocytes treated with
H2O2

The hydrolysis-resistant erythrocytes was examined as follows.
Packed erythrocytes (0.06 mL) were diluted with 2.94 ml of PBS or PBS
containing H2O2 (at a final concentration of 0.1, 1.0 or 5.0 mM), and
the mixture was incubated at 37 °C for 5 min. The incubation mixture
(0.06 mL) was diluted with 50 volumes of water. After centrifugation,
the absorbance of the supernatant at 540 nm was recorded. The amount
of hydrolysis-resistant erythrocytes was calculated using the absor-
bance (100 % hemolysis) obtained from the addition of water to the 2 %
suspension. A two percent erythrocyte suspension containing 5 mM
H2O2 and 50 μM α-tocopherol was prepared and tested as described
above.

2.4. Hemolysis of mouse erythrocytes induced by H2O2

Packed erythrocytes (0.06 mL) were diluted with 2.94 ml of PBS or

PBS containing H2O2, and the mixture incubated at 37 °C for 30 min.
After centrifugation, the absorbance of the supernatant at 540 nm was
recorded [25].

2.5. Osmotic fragility of H2O2-treated erythrocytes

The hemolysis of H2O2-treated erythrocytes was examined using
NaCl aqueous solution [34]. Packed erythrocytes were diluted to a 2 %
erythrocyte suspension (v/v) with PBS containing 0.0, 0.1, 1 or 5 mM
H2O2, and the mixture was reacted at 37 °C for 5 min. Each portion
(0.06 mL) was added to 2.94 ml of water or 0.40, 0.60, 0.70 and 0.90 %
NaCl in water, respectively, and the mixture was incubated at 37 °C for
30 min. After centrifugation (1,600 X g for 10 min), the absorbance of
the supernatant at 540 nm was recorded. Absorbance of 100 % hemo-
lysis was obtained from the addition of water to each erythrocyte sus-
pension treated with H2O2, and the NaCl concentration at 50 % he-
molysis was interpolated from the recorded values.

2.6. Preparation of 1 mM H2O2-treated erythrocytes

Packed erythrocytes (0.03 mL) were diluted with PBS containing a 1
mM H2O2 (1.47 mL) to 2 % erythrocyte ratio in suspension. The sus-
pension was incubated at 37 °C for 5 min, and the erythrocytes were
washed 3 times with PBS. After centrifugation, the packed erythrocytes
were used as 1 mM H2O2-treated erythrocytes.

2.7. Sialic acid release from mouse erythrocytes by sialidase treatment

As the negative charge of erythrocytes is associated with sialic acid
content, the sialic acid released by sialidase was measured [35].

Packed erythrocytes or 1 mM H2O2-treated erythrocytes (0.03 mL)
were diluted with 1.47 ml of PBS containing sialidase (1 unit/ mL).
Each suspension was incubated at 37 °C for 30 min. The supernatant
was separated by centrifugation and was stored at -80 °C until mea-
surement. The sialic acid determination was carried out using a spec-
trophotometric assay kit (BioVision Inc., USA) according to the manu-
facturer’s suggested procedure, and the absorbance at 570 nm was
recorded. The packed erythrocytes were used as sialidase-treated ery-
throcytes for the following experiment.

2.8. Effect of 1 mM H2O2 on alcian blue binding to erythrocytes and
sialidase-treated erythrocytes

The negative charge on the erythrocytes was evaluated using the
alcian blue binding method.

The packed erythrocytes or sialidase-treated erythrocytes were di-
luted with PBS (1.47 mL) or PBS containing 1 mM H2O2, and the
mixture was reacted at 37 °C for 5 min. After centrifugation, the ery-
throcytes were diluted with PBS to 1.0 × 105 erythrocytes / μL. Nine
volumes of alcian blue solution were added to each suspension. The
mixture was reacted at 37 °C for 30 min. After centrifugation (800 X g
for 10 min), absorbance of the supernatant at 650 nm was recorded to
determine the unbound alcian blue. Evaluation of the negative charge
was carried out using a reported method [36].

2.9. Membrane-flickering erythrocytes after H2O2 treatment

The vibrating erythrocytes were counted under microscopy [37].
Packed erythrocytes (0.03 mL) or 1 mM H2O2-treated erythrocytes

were diluted with 400 volumes of PBS, and all of the erythrocytes as
well as the flickering ones were counted with a Thoma blood counter.
The percentage of the flickering erythrocytes was calculated as (vi-
brating erythrocytes / total erythrocytes) X 100.
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2.10. SDS-PAGE Analysis of membrane proteins in H2O2-treated
erythrocytes

As SDS-PAGE of H2O2-treated mouse erythrocytes has been reported
in [25], SDS-PAGE of membrane proteins in the erythrocytes were ex-
amined.

Three ml of PBS or 0.1, 0.5, 1.0 and 5.0 mM H2O2 in PBS were
added to packed erythrocytes (0.06 mL). The mixture was incubated at
37 °C for 5 min. The mixture was centrifuged at 1,600 X g for 10 min.
Three ml of water were added to the packed erythrocytes, and the
mixture was centrifuged at 11,000 X g for 15 min. A sample buffer
containing 2-mercaptoethanol was added to the residue. The samples
were applied to a 7 % polyacrylamide gel and electrophoresis was
carried out. The proteins in the gels were stained with Coomassie
Brilliant Blue R-250.

The gel was blotted on a nitrocellulose membrane. Band 3 was
stained using the band 3 antibody (ab104998, Abcam Co., UK), goat
antibody to rabbit IgG (HRP activity) (ab97051) and 3, 3′, 5, 5′-tetra-
methylbenzidine-H2O2 solution (Ez West Blue, Atto Co., Tokyo, Japan).
Oxidized proteins were stained using a protein-carbonyls detection kit
(Cosmo Bio Co. Ltd., Tokyo) [38], goat antibody to rabbit IgG (111-036-
144 Jackson immune Res. Lab., Inc., PA, USA) and Ez West Blue.

2.11. Statistical analyses

Data were the mean± SE and analyzed using Student's t-test. A
difference of p< 0.05 was considered significant.

3. Results

Mouse catalase activity was examined in the presence of 70 μM
H2O2 at 25 °C, since the activity of the mutant catalase was deactivated
at 37 °C [22,23]. The activity in acatalasemic and normal erythrocytes
at 25 °C was 1.05± 0.07 and 7.27± 0.63 μmol/s/g of hemoglobin,
respectively. A two percent mouse erythrocyte suspension contained
64.5±9.9 μM hemoglobin.

3.1. Percentage of hydrolysis-resistant mouse erythrocytes

The hydrolysis-resistant erythrocytes treated with 0–5 mM H2O2

were examined. Spontaneous hydrolysis-resistant erythrocytes in
normal and acatalasemic erythrocytes were hardly detected. When er-
ythrocytes were treated at 0.1 mM H2O2, a small percentage of hy-
drolysis-resistant erythrocytes was observed (Table 1). The amount of
the resistant acatalasemic erythrocytes was higher than that in normal
erythrocytes. When erythrocytes were treated at 1 mM H2O2, the hy-
drolysis-resistant acatalasemic erythrocytes dramatically increased to
90.1 %, but the ratio in the normal erythrocytes was 15.0 %. The effect
in the hydrolysis-resistant acatalasemic erythrocytes induced by 5 mM
H2O2 was ameliorated by the addition of 50 μM α-tocopherol. This
suggests that the drastic increase in the hydrolysis-resistant ery-
throcytes is associated with changes in membrane function.

3.2. Hemolysis of mouse erythrocytes induced by H2O2

Acatalasemic mouse erythrocytes slowly exhibited hemolysis
(85±12 %) in the presence of 0.1 mM H2O2, and normal mouse ery-
throcytes did the same in 3 mM H2O2 (80± 5 %). This indicates that
concentration of H2O2, which causes hemolysis, is associated with
catalase activity.

3.3. Osmotic fragility of H2O2-treated erythrocytes

The osmotic fragility of H2O2-treated erythrocytes was examined to
study whether the hemolysis was associated with the membrane pro-
teins of the erythrocytes. The concentration of NaCl at 50 % hemolysis
of normal erythrocytes was the same as that of acatalasemic ery-
throcytes in the absence of H2O2 (Table 2). Hypotonic hemolysis of 0.1
mM H2O2-treated acatalasemic erythrocytes was observed, but in
normal erythrocytes it was observed at 5 mM H2O2. The hemolysis of
the acatalasemic erythrocytes at 0.1 mM H2O2 was ameliorated by the
addition of 50 μM α-tocopherol. These results suggest that hemolysis is
induced by membrane fluidity changes in the erythrocytes.

3.4. Sialic acid release from erythrocytes treated with sialidase

The sialic acid released by the administration of sialidase from 2 %
acatalasemic and normal mouse erythrocytes (n = 7) was low, being
0.02±0.02 and 0.01±0.01 mmol / L, respectively. Upon the ad-
ministration of 1 mM H2O2, the sialic acid released by sialidase from the
acatalasemic erythrocytes was 0.08± 0.02 mmol / L, which is sig-
nificantly higher than from the normal erythrocytes (0.04± 0.01 mmol
/ L). This suggests that 1 mM H2O2 induced greater damage in the
membrane on acatalasemic erythrocytes than normal erythrocytes.
However, as sialic acid residues on erythrocyte membrane are oxidized
or depolymerized by H2O2 [39], we examined the negative charge of
these erythrocytes as follows.

3.5. Alcian blue binding to erythrocytes and sialidase-treated erythrocytes

As the binding to erythrocytes of the cationic pigment alcian blue is
proportional to the negative charge on the erythrocytes, the effect of 1
mM H2O2 on the binding of the alcian blue to erythrocytes and siali-
dase-treated erythrocytes was examined. The binding to normal ery-
throcytes was almost the same as the binding to acatalasemic ery-
throcytes in the absence of H2O2 (Fig. 1A). However, the pigment
binding to 1 mM H2O2-treated acatalasemic mouse erythrocytes sig-
nificantly decreased (23 %) compared to that (4 %) in normal ery-
throcytes. Alcian blue binding to sialidase-treated erythrocytes is shown
in Fig. 1B. When the sialidase-treated erythrocytes were reacted with 1
mM H2O2, the binding to both types of mouse erythrocytes significantly
decreased. The decrease in binding to acatalasemic mouse erythrocytes
(30 %) was larger than that in normal erythrocytes (16 %).

These results confirmed that the addition of 1 mM H2O2 induces
potent damage on the membrane of acatalasemic erythrocytes.

Table 1
Hydrolysis-resistant erythrocytes (%) in H2O2-treated mouse erythrocytes.

H2O2 (mM) Vitamin E Normal mice (n≥4) Acatalasemic mice (n≥4)

0.0 – 1.5± 0.9 1.0± 0.5
0.1 – 3.3± 3.0 11.5± 2.7
1.0 – 15.0± 2.5 90.1± 6.2*
5.0 – 14.0± 4.5 94.3± 10.0*
5.0 + ND 19.0± 2.7**

ND is “not determined”. *p<0.01 compared to the value in normal mice.
**p<0.01 compared to the value in the absence of vitamin E.

Table 2
Sodium chloride concentration (%) at 50 % hemolysis.

H2O2 (mM) Vitamin E Normal mice (n≥5) Acatalasemic mice (n≥5)

0.0 – 0.65± 0.02 0.65± 0.01
0.1 – 0.67± 0.02 0.72± 0.01*
0.1 ＋ 0.66± 0.02 0.65± 0.02
1.0 – 0.67± 0.02 ND
5.0 – 0.71± 0.02* ND

ND is “not determined”. *p<0.01 compared to the value in the absence of
H2O2.
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3.6. Numbers of flickering erythrocytes after H2O2 treatment

Erythrocyte membrane flickering is maintained by membrane pro-
teins and an ATP mechanism [40,41]. When acatalasemic erythrocytes
were treated with 1 mM H2O2, the flickering significantly decreased
(62.2±6.2 %) compared to the control erythrocytes (Fig. 2). However,
in normal erythrocytes, there was no significant difference from the
control erythrocytes. The decrease in acatalasemic erythrocytes may be
due to suicidal erythrocyte death, eryptosis, induced by H2O2 [42].This
suggests that 1 mM H2O2 induces oxidation of hemoglobin, as well as
the inactivation of glycolytic enzymes and other, non-specific reactions
in acatalasemic erythrocytes.

3.7. SDS-PAGE Analysis of membrane proteins in H2O2-treated
erythrocytes

The SDS-PAGE of line 1 (control) indicates the membrane proteins,
band 1 (spectrin-α, 240 kDa), band 2 (spectrin-β, 220 kDa), band 2.1
(ankyrin, 210 kDa), band 3 (anion exchanger, 95 kDa), band 4.1 (80
kDa), band 4.2 (72 kDa) and band 5 (actin, 43 kDa) of mouse ery-
throcytes (Fig. 3A). The band 3 protein was confirmed using an

antibody. In acatalasemic erythrocytes, 0.1-0.5 mM H2O2 did not affect
the size or amount of the membrane proteins (Fig. 3A right, line 2, 3).
The membrane proteins (broad bands of 80–250 kDa) were faintly
stained with a protein-carbonyl immunohistochemical stain (Fig. 3B
right line 2, 3). In 1 mM H2O2-treated acatalasemic erythrocytes
(Fig. 3A right line 4), the membrane proteins mostly disappeared and a
new band of high molecular-weight aggregates (> 250 kDa) appeared.
This suggests that the membrane proteins were converted to water-in-
soluble aggregates by the H2O2. In contrast, the pattern of normal er-
ythrocytes was not affected by 0.1–1.0 mM H2O2, and a decrease in
membrane-proteins was observed only at 5 mM H2O2 (Fig. 3A left, line
1-5).

(A) Coomassie Brilliant Blue R-250 stain, (B) protein-carbonyl im-
munohistochemical stain. The left edge of the gel provides the mole-
cular size markers. Line 1 is from erythrocytes, line 2 is from 0.1 mM
H2O2 treated-erythrocytes, line 3 is from 0.5 mM H2O2, line 4 is from
1.0 mM H2O2, line 5 is from 5.0 mM H2O2.

4. Discussion

As erythrocytes are oxygen carriers, autoxidation of hemoglobin
generates endogenous H2O2 in these cells, and the concentration of
physiological H2O2 in plasma is reported to be 1–5 μM [2]. The residual
catalase and hemoglobin in acatalasemic mouse erythrocytes are potent
H2O2-scavengers in erythrocytes. Hydrolysis-resistant erythrocytes
were hardly observed under physiological conditions, although a faint
ESR signal (g = 2.005) of ferryl hemoglobin radicals, oxidized he-
moglobin, was detected in the acatalasemic erythrocytes [25]. This
suggests that endogenous H2O2 and the radicals were removed by cy-
tosolic catalase and other scavenging activities in the erythrocytes.
Small amounts of hydrolysis-resistant erythrocytes were detected after
the addition of 0.1 mM (supra-physiological) H2O2, and the amount in
the acatalasemic erythrocytes was larger than in the normal ones
(Table 1). This may be explained by the fact that 0.1 mM H2O2 oxidizes
cytosolic hemoglobin and generates hydrolysis-resistant erythrocytes, a
process which is associated with the membrane rigidity induced by
H2O2 via formation of membrane bound hemoglobin [26,27]. Ap-
proximately 30 min after 0.1 mM H2O2 addition, hemolysis was ob-
served in most of the acatalasemic erythrocytes, and this effect was
suppressed by the addition of α-tocopherol. The 0.1 mM H2O2-treated
acatalasemic erythrocytes exhibited osmotic fragility (Table 2). From
these results, it is concluded that hemolysis was induced by membrane
lipid peroxidation.

However, when the concentration of exogenous H2O2 was increased
to 1 mM, the hydrolysis-resistant erythrocytes were drastically in-
creased in the acatalasemic erythrocytes. The drastic increase was
prevented by α–tocopherol, and a decrease in the water-soluble mem-
brane proteins on SDS-PAGE was observed (Fig. 3).These results show
that 1 mM H2O2 induces a loss of membrane structure and function. The
decrease of alcian blue binding to erythrocytes along with the mem-
brane-flickering erythrocytes indicated membrane property change and
disturbed metabolism, and suggested eryptosis in the erythrocytes
[42,43]. From these results, 1 mM H2O2 freely reacts with cytosolic
hemoglobin to generate a high concentration of ferryl hemoglobin ra-
dicals and the aggregation reactions in turn cause the formation of
hydrolysis-resistant erythrocytes. The formation of high molecular-
weight aggregates in association with these changes may involve in
ischemic stroke [44].

As the drastic increase of hydrolysis-resistant erythrocytes induced
by supra-physiological H2O2 was associated with low catalase activity
in erythrocytes, we compared the residual catalase activity in mouse
acatalasemic erythrocytes with that in Japanese acatalasemic cases.
Based on the published report [45], the residual catalase activity of
Japanese acatalasemic erythrocytes was 0.13 % of the normal activity
(at 37 °C), while the mouse residual activity at 25 °C is estimated to be
2.6 % of the human catalase activity [22,23]. As the mouse residual

Fig. 1. Alcian blue binding to erythrocytes. (A) Control: erythrocytes were
treated with PBS. H2O2: erythrocytes were treated with 1 mM H2O2. (B)
Sialidase: erythrocytes were treated with sialidase; Sialidase + H2O2: sialidase-
treated erythrocytes were treated with 1 mM H2O2. The binding to erythrocytes
was monitored by the absorbance at 650 nm. The binding values were calcu-
lated from the absorbance compared to control alcian blue solution (100 %,
A650 nm = 0.067). The numbers in parentheses indicate the number of mice
used.

Fig. 2. Percentages of flickering erythrocytes in the presence of 1 mM H2O2.
* indicates P<0.01.
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catalase activity is twenty-times higher than the human activity, we
suggest that the mouse residual catalase in erythrocytes has a sufficient
capacity to scavenge the H2O2 induced by the infection of H2O2-gen-
erating bacteria, which will develop the onset of Takahara’s disease, but
the human residual catalase activity does not [8]. It may be important
to recommend that acatalasemic persons take α-tocopherol since it
ameliorates several oxidative stresses induced by H2O2 or alloxan ad-
ministration under acatalasemic conditions [17–19].
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