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The neuroendocrine mechanism regulates reproduction through the

hypothalamo-pituitary-gonadal (HPG) axis which is evolutionarily conserved in

vertebrates. The HPG axis is regulated by a variety of internal as well as external factors.

Serotonin, a monoamine neurotransmitter, is involved in a wide range of reproductive

functions. In mammals, serotonin regulates sexual behaviors, gonadotropin release and

gonadotropin-release hormone (GnRH) secretion. However, the serotonin system in

teleost may also play unique role in the control of reproduction as the mechanism of

reproductive control in teleosts is not always the same as in the mammalian models. In

fish, the serotonin system is also regulated by natural environmental factors as well as

chemical substances. In particular, selective serotonin reuptake inhibitors (SSRIs) are

commonly detected as pharmaceutical contaminants in the natural environment. Those

factors may influence fish reproductive functions via the serotonin system. This review

summarizes the functional significance of serotonin in the teleosts reproduction.
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Introduction

Reproduction is a biological process that results in the production of new individual. The nervous
and the endocrine system work together (neuroendocrine) to control vertebrate reproduction. The
neuroendocrine mechanism regulates reproduction through the hypothalamo-pituitary-gonadal
(HPG) axis which is evolutionarily conserved in vertebrates. The hypothalamus is the major
site responsible for the production of neuropeptide, gonadotropin-releasing hormone (GnRH) in
the brain of vertebrates. In vertebrates, reproductive and sexual functions are mainly controlled
by the pulsatile secretion of GnRH from the hypothalamus (Knobil, 1979; Pozor et al., 1991;
Dellovade et al., 1998; Bancroft, 2005). GnRH binds to its cognate receptors located on the pituitary
gonadotropes to regulate the synthesis and release of gonadotropins: luteinizing hormone (LH)
and follicle-stimulating hormone (FSH) (McCann and Ojeda, 1996; McCann et al., 2002). These
gonadotropins control gonadal development and maturation, and stimulating steroidogenesis and
spermatogenesis in male testes and folliculogenesis and oogenesis in female ovaries (Pierce and
Parsons, 1981; Orth, 1984; Bousfield et al., 1994). Furthermore, kisspeptin, the peptide product
of KISS1/Kiss1 gene and its cognate receptor (GPR54 = kisspeptin receptor) has been recognized
as a potent regulator of GnRH release in mammals (Tena-Sempere, 2006; Roseweir and Millar,
2009). Those reproductive neuroendocrine signaling pathways are evolutionarily highly conserved
in mammals and non-mammalian vertebrates. However, mechanism of reproductive control in
non-mammalian vertebrates is not always the same as in mammalian models (Zohar et al., 2010).
For example, in teleost fish, the pituitary gland is directly innervated by neurosecretory fibers and
lacka hypothalamo-pituitary portal system of themedian eminence (Peter et al., 1990).Many teleost
species possess at least two or three GnRH types (GnRH1, GnRH2, andGnRH3) (White et al., 1995)
or multiple GnRH neuronal populations in the brain (Parhar, 2002). Recent studies have revealed
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the presence of two types of kisspeptin encoding genes (kiss1 and
kiss2) and two forms of kisspeptin receptor genes (kissr1 and
kissr2) in teleosts (Lee et al., 2009; Akazome et al., 2010; Um
et al., 2010; Tena-Sempere et al., 2012; Gopurappilly et al., 2013).
Themultiplicity of neuroendocrine signaling pathways in teleosts
are probably due to a gene duplication event (Lethimonier et al.,
2004; Um et al., 2010), but several evidences have suggested
their unique roles and functional significance in the variety of
reproductive strategies in teleosts (Peter et al., 1990; White et al.,
1995; Parhar, 2002; Lethimonier et al., 2004; Um et al., 2010;
Zohar et al., 2010).

In vertebrates, the HPG axis is regulated by a variety of
internal and external factors. For example, one of the endogenous
key factors controlling reproductive processes are sex steroids
feedback mechanism exerted by the gonads to the hypothalamus
and pituitary (Fink, 1979). In addition to gonadal steroids,
several factors such as stress, nutrition, and neurotransmitters
are involved in the control of the HPG axis, in particular
modulation of gonadotropin release (Gallo, 1980; Genazzani
et al., 2000; Zohar et al., 2010). Neurotransmitters such as
monoamine, amino acids and peptides are involved in the
neuroendocrine control of reproduction (Gallo, 1980; Nock and
Feder, 1982). In mammals, serotonin (5-hydroxytryptamine), a
monoamine neurotransmitter is involved in a wide range of
reproductive functions such as GnRH secretion, gonadotropin
release, gonadal maturation and socio-sexual behaviors. On the
other hand, serotonin system can be modulated by reproductive
factors. In mammals, ovarian steroids such as progesterone
and estrogen regulates the content of serotonin in the brain
(Pecins-Thompson et al., 1996). In several mammalian species,
serotonergic neurons are colocalized with estrogen receptor
beta (Gundlah et al., 2001, 2005). These results indicate that
serotonin and reproductive endocrine signaling pathways are
closely associated. The functional interactions between serotonin
and reproductive functions have also been demonstrated in
teleosts (Somoza et al., 1988; Khan and Thomas, 1992). However,
the serotonin system in teleost may play a unique role in the
control of reproduction because of the variety of neuroendocrine
signaling. This review summarizes the functional significance of
serotonin in the teleosts reproduction.

Serotonin System in Teleost

Organization of Serotonin System
The organization of serotonin in the central nervous system
is evolutionarily well conserved in the vertebrates (Lillesaar,
2011). In the brain of teleosts, three major serotonergic
neural groups exist: (i) pretectal population, (ii) posterior
tuberculum/hypothalamic populations, and (iii) raphe
populations (Kah and Chambolle, 1983; Ekström and Van
Veen, 1984; Frankenhuis-van den Heuvel and Nieuwenhuys,
1984; Margolis-Kazan et al., 1985; Johnston et al., 1990;
Corio et al., 1991; Ekström et al., 1992; Batten et al., 1993;
RodrıìGuez-Gómez et al., 2000; Lillesaar, 2011). In addition,
serotonin-positive cells are also present in the pineal gland, area
postrema, medulla oblongata and spinal cord in the brain of
teleosts (Lillesaar, 2011). In teleost, serotonergic fibers from the

brain directly project to the pituitary (Kah and Chambolle, 1983;
Corio et al., 1991; Khan and Thomas, 1993; RodrıìGuez-Gómez
et al., 2000). In some teleosts species, serotonin-immunoreactive
cells also present in the pituitary (Kah and Chambolle, 1983;
Ekström and Van Veen, 1984; Margolis-Kazan et al., 1985;
RodrıìGuez-Gómez et al., 2000).

In mammals, serotonin is synthesized from the essential
amino acid, L-tryptophan with help of catalysis by two enzymes:
tryptophan hydroxylase (TPH) and amino acid decarboxylase
(Fitzpatrick, 1999), whereas knowledge about mechanism of the
control of brain serotonin synthesis in teleosts is still limited
(Höglund et al., 2005). However, teleosts fish also preserve
the molecules that are involved in homeostasis of serotonin
such as TPH, serotonin transporter (SERT), which reuptakes
serotonin into the presynaptic serotonergic nerve terminals to
recycle serotonin (Murphy et al., 1998), and monoamine oxidase
(MAO), the enzyme for degradation of serotonin (Bortolato et al.,
2010).

Most teleosts have two TPH genes (tph1 and tph2), two SERT
genes (slc6a4a and slc6a4b) but only one type of MAO gene
(mao) (Chen et al., 1994; Setini et al., 2005; Norton et al., 2008;
Rahman and Thomas, 2009). In some teleosts, such as zebrafish,
stickleback and medaka, there are three genes (tph1a, tph1b, and
tph2) encoding TPH (Lillesaar, 2011). In the brain of zebrafish,
tph1a is present in the posterior tuberculum and hypothalamus,
and also in the pineal organ, in amacrine cells of the retina, and
tph1b is transiently expressed in a preoptic cell cluster during
late embryonic stages (Bellipanni et al., 2002), and tph2 is mainly
expressed in serotonergic neurons of the raphe nuclei (superior
raphe and inferior raphe) (Lillesaar, 2011) (Figure 1). In some
teleosts, TPH is expressed in the pituitary (Boularand et al., 1998;
Rahman and Thomas, 2009), indicating that serotonin may be
locally produced in the pituitary. In the zebrafish, slc6a4a is
expressed in the superior raphe and pretectal diencephalic cluster,
and slc6a4b is seen only in the paraventricular organ and caudal
zone of periventricular hypothalamus (Wang et al., 2006; Norton
et al., 2008). In the serotonergic raphe nuclei, serotonergic
neurons in the superior raphe project to the forebrain and
midbrain, and the serotonergic cells in the inferior raphe project
to hindbrain-spinal cord region in the teleosts brain (Lillesaar,
2011).

Serotonin Receptors
In teleosts, serotonin receptors have been identified and
characterized in several species such as zebrafish, European
flounder (Platichthys flesus), Gulf toadfish (Opsanus beta), and
puffer fish (Yamaguchi and Brenner, 1997; Lu et al., 2007;
Best and Alderton, 2008; Mager et al., 2012). Additionally, in
silico analysis have predicted gene sequences encoding serotonin
receptors in several other species such as the tilapia (Oreochromis
niloticus), cichlid fish (Haplochromis burtoni), southern platyfish
(Xiphophorus maculatus), and rainbow trout (Oncorhynchus
mykiss). In the zebrafish, three serotonin receptors subtypes (5-
HT1, 5-HT2, and 5-HT7) have been identified, among which
three subgroups of 5-HT1 (5-HT1aa, 5-HT1ab, 5-HT1bd) and
two subgroups of 5-HT2 (5-HT2A and 5-HT2C) have been
identified (Norton et al., 2008; Schneider et al., 2012). In
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FIGURE 1 | Schematic drawing illustrating association between

serotonergic cell populations with GnRH and kisspeptin neurons in

the brain of teleosts. There are multiple serotonergic (5-HT) cell

populations that express either Tph1 (area shaded with yellow) or Tph2

(area shaded with green). 5-HT fibers may project to

gonadotropin-releasing hormone (GnRH1 and GnRH3) neurons (shown in

red) in the olfactory bulb (OB) and preoptic area (POA), while it is

unknown whether 5-HT fibers are directly associated with kisspeptin

(Kiss2) neurons (black) in the hypothalamus (HYP). 5-HT fibers and cells

are also present in the pituitary (PIT), which may associate with GnRH

and Kiss2 fibers in the pituitary. TEL, telencephalon; OT, optic tectum;

CEL, cerebellum; MO, medulla oblongata. The organization of

serotonergic projections were adopted from Lillesaar (2011) and Gaspar

and Lillesaar (2012).

the brain of zebrafish, 5-HTr1aa and 5-HTr1ab are mainly
expressed in the preoptic area and hypothalamus, and 5-HTr1bd
is expressed in the hypothalamus (Norton et al., 2008). In the
Gulf toadfish, 5-HT2A is widely expressed in the brain including
the telencephalon, midbrain, cerebellum, hindbrain and in the
pituitary (Mager et al., 2012). In the zebrafish, 5-HT2C is
expressed in the telencephalon, diencephalon, rhombencephalon,
and spinal cord (Schneider et al., 2012).

Serotonin receptors are also expressed in peripheral tissues
including gonadal tissues in teleosts. In the zebrafish, 5-HT2C
receptor gene is expressed in the ovary (Schneider et al., 2012). In
the toadfish, 5-HT2A is expressed in the ovary and testes (Mager
et al., 2012).

Serotonin in Teleost Reproduction

GnRH Release
Serotonin modulates fish reproductive function via multiple
pathways including through central (preoptic-hypothalamic
area and pituitary) and peripheral (gonads) actions. In the
hypothalamus, GnRH neurons play major role in the control
of vertebrate reproduction. Immunohistochemical study in
the Atlantic croaker have demonstrated close association of
serotonin fibers with olfactory bulbular and hypothalamic
GnRH neurons (Khan and Thomas, 1993). However, in the
Atlantic croaker, central administration of serotonin has no
effect on preoptic GnRH1 mRNA levels (Thomas et al., 2007),
indicating that serotonin may stimulate GnRH release but not
synthesis. Indeed, serotonin stimulates GnRH release from the
hypothalamus of the seabream and goldfish (Yu et al., 1991;
Senthilkumaran et al., 2001). In the zebrafish, expression of
serotonin receptors are seen in several brain regions containing
GnRH neurons (Norton et al., 2008), which suggests possible
co-expression of serotonin receptors in GnRH neurons as in
mammals (Bhattarai et al., 2013).

Kisspeptin, a ligand for G-protein coupled receptor GPR54,
has recently emerged as a key player for GnRH release (Tena-
Sempere, 2006; Gopurappilly et al., 2013). However, no report
has described the involvement of serotonin in the regulation of
the kisspeptin system in any vertebrates to date.

Gonadotropin Release
In Atlantic croaker increasing serotonin concentrations are
associated with levels of gonadotropin release from the pituitary
(Khan and Thomas, 1994). In several teleost species, serotonin
stimulates release of gonadotropin in vivo and in vitro (Somoza
et al., 1988; Somoza and Peter, 1991; Khan and Thomas,
1992). In vitro and in vivo studies in teleosts have shown the
involvement of 5-HT1 or 5-HT1 receptor subtypes in stimulating
gonadotropin secretion (Somoza and Peter, 1991; Khan and
Thomas, 1994; Wong et al., 1998). These studies suggest that
serotonin plays a prominent role in gonadotropin secretion in
teleosts as demonstrated in mammals.

In the Atlantic croaker, serotonin combination with GnRH
stimulates LH secretion (Wong et al., 1998). In the goldfish,
serotonin stimulates release of GnRH from the cultured brain
preoptic-anterior hypothalamic region and pituitary fragments
(Yu et al., 1991). However, a recent in vivo study in Prussian
carp (Carassius gibelio Bloch) demonstrated that serotonin alone
had no influence on the spontaneous LH release, but the additive
effects of serotonin was observed when GnRH analog was
co-administered (Sokolowska-Mikolajczyk et al., 2015). These
observations indicate functional interaction between serotonin
and GnRH system in teleosts. However, an in vitro study in the
red seabream demonstrated that serotonin stimulates the release
of GnRH from the hypothalamus but not from the pituitary
of immature fish (Senthilkumaran et al., 2001). Therefore, in
teleosts, the mode of action of serotonin on gonadotropin release
could be changed reproductive-stage dependently. Additionally,
serotonin is also known to modulate growth hormone (GH)
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release in goldfish (Somoza and Peter, 1991; Wong et al., 1998).
In the goldfish, GnRH-stimulated GH secretion is interfered by
serotonin with PKC and Ca2+ signaling pathways in pituitary
cells (Yu et al., 2008). Those signaling pathways could also be
involved in GnRH-primed gonadotropin secretion in teleosts.

Gonadal Maturation
In addition to its central action on the reproductive axis,
serotonin directly acts on gonads. In the Gulf killifish (Fundulus
grandis), 10 days of daily injection of serotonin precursor with
dopamine precursor increases gonadosomatic index in male
(Emata et al., 1985). An in vitro study in the Japanese medaka
(Oryzias latipes) has shown stimulatory effect of serotonin
on oocyte maturation in a dose-dependent manner, which is
modulated via stimulation of the synthesis of estrogen and
the maturation-inducing steroids (MIS: 17α,20β-dihydroxy-4-
pregnen-3-one) by the granulosa cells (Iwamatsu et al., 1993)
On the contrary, in the mummichog (Fundulus heteroclitus),
serotonin inhibits oocyte maturation, especially oocyte meiosis
(Cerdá et al., 1995, 1997, 1998).

Although the expression of serotonin receptors in the testis
has not been reported in teleosts, in freshwater catfish (Channa
punctatus Bloch), MAO activity has been noted in the testis
(Katti and Sathyanesan, 1986), and MOA activity and serotonin
contents in testis represents correlative changes with testicular
maturation (Joshi and Sathyanesan, 1980). These results suggest
that locally produced serotonin may participate in testicular
maturation.

Social and Reproductive Behaviors
The role of serotonin in social behavior has been well
demonstrated in fish (Winberg and Nilsson, 1993), while no
report has demonstrated the involvement of serotonin in sexual
behavior. As social status and reproductive activity are closely
related, alteration of serotonin during different social status
may directly influence reproductive activities. In teleosts fish,
serotonin plays primary inhibitory role in aggressive behavior
(Munro, 1986; Adams et al., 1996; Winberg et al., 2001; Perreault
et al., 2003). In the fighting fish Betta splendens, serotonin
decreases aggression via 5-HT1A receptors (Clotfelter et al.,
2007). On the contrary, higher levels of serotonin metabolite are
found in the brain of subordinate compared with dominant fish
(Winberg and Lepage, 1998; Lorenzi et al., 2009). In a cichlid fish
Astatotilapia burtoni, subordinate males have higher serotonergic
turnover and higher expression of two serotonin receptor genes
(5-HT1A and 2A) in the telencephalon (Loveland et al., 2014),
indicating a correlation between social status and the serotonin
system. In the Arctic charr (Salvelinus alpinus L.), higher brain
serotonergic levels and activity is socially induced in subordinates
(Winberg et al., 1991, 1992).

Modulation of Serotonin Activity

Gonadal Steroids
In teleosts, serotonin levels in the brain and pituitary are
modulated by reproductive cycles and gonadal steroids
(Subhedar et al., 1997; Hernandez-Rauda and Aldegunde,

2002b). In the tilapia, estrogen alters the brain serotonin content
during the early brain development stage, which is mediated by
decreasing TPH activity and increasing MAO activity (Tsai and
Wang, 1999). In the adult male marine yellow snapper (Lutjanus
argentiventris), serotonin levels in the telencephalon reach the
peak during the prespawning period, and are lowest during the
spawning period (Hernandez-Rauda and Aldegunde, 2002a).
Furthermore, blocking serotonin synthesis alters brain aromatase
activity during the critical period of sexual differentiation in
the tilapia (Tsai et al., 2000), suggesting possible involvement of
serotonin in brain sex determination.

Endocrine Disruptors
Endocrine disruptors such as polyaromatic hydrocarbons (PAHs)
and polychlorinated biphenyls (PCBs) canmodulate serotonergic
activity (Stephanou et al., 1998; Gesto et al., 2006; Clotfelter
et al., 2010; Rahman et al., 2011). Some of these endocrine
disruptors have a significant influence on fish reproductive
function through the serotonin system. For example, PAHs such
as naphthalene and benzo[α]pyrene disrupt the reproductive
axis in teleosts (Hose et al., 1981; Yarahmadi et al., 2013).
PCB inhibits serotonergic and TPH activity as well as disrupts
GnRH and gonadotropin secretion in the Atlantic croaker (Khan
and Thomas, 2000, 2006). Similarly, para-chlorophenylalanine
(PCPA) reduces hypothalamic serotonin levels and impairs
GnRH and LH secretion in the Atlantic croaker (Khan and
Thomas, 2001). These results suggest that the serotonin system
is one of the major targets for neuroendocrine disruption, which
may lead to inhibition of reproductive functions.

Environmental and Social Factors
In teleosts, the brain serotonergic activity displays diurnal or
seasonal variations (Khan and Joy, 1988; Senthilkumaran and
Joy, 1993), which may have significant effects on the reproductive
functions. In teleosts, serotonin concentrations in the brain are
higher in the morning than evening (Fingerman, 1976; Khan
and Joy, 1988). In the Channa punctatus, there are diurnal
variations in the serotonin content (Khan and Joy, 1988) as
well as MAO activity in the hypothalamus (Khan and Joy,
1987, 1988), suggesting diurnal variation of the hypothalamic
serotonin levels. Seasonal variation of hypothalamic serotonin
content has also been noted in the catfish, Heteropneustes fossilis
(Senthilkumaran and Joy, 1994). These seasonal changes in
serotonin levels could also be due to environmental factors
such as water temperature and photoperiod. In the tilapia, the
hypothalamic serotonin content is lower in fish exposed to
higher water temperature than those in lower temperature group
(Tsai and Wang, 1997). In contrast, expression of serotonin
receptors (5-HT1A and 1D) in the brain are increased by
low temperature in the tilapia during the sexual differentiation
(Wang and Tsai, 2006). In several fish species, photoperiods
alter hypothalamic serotonin content and turnover (Olcese et al.,
1980; Senthilkumaran and Joy, 1994), which can be modulated
by melatonin levels (Joy and Khan, 1991). In the goldfish,
pinealectomy and melatonin administration have a significant
effect on hypothalamic serotonin content and serotonergic
activity (Olcese et al., 1981). These results indicate environmental

Frontiers in Neuroscience | www.frontiersin.org 4 June 2015 | Volume 9 | Article 195

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Prasad et al. Role of 5-HT in fish reproduction

factors may influence reproductive functions via diurnal and
seasonal change of serotonin activity.

In the protogynous fish, Hawaiian saddleback wrasse
(Thalassoma duperrey), serotonin inhibits both initiation and
completion of sex reversal (Larson et al., 2003a). Furthermore,
in the same fish, serotonin levels in the brain are altered by
socially induced sex reversal, which could be associated with
territorial acquisition (Larson et al., 2003b). These results suggest
that serotonin is also regulated by social behaviors.

Selective Serotonin Reuptake Inhibitor (SSRI)
Selective serotonin reuptake inhibitors (SSRIs) are widely used as
antidepressants in the treatment of major depressive disorder and
anxiety disorders (Lesch, 2001; Homberg et al., 2010). SSRIs have
been detected as pharmaceutical contaminants in surface waters
and sewage effluents (Kreke and Dietrich, 2008; Oakes et al.,
2010) as well as in fish brain tissue (Schultz et al., 2010) owing
to their widespread and increasing rates of administration. SSRIs
block the presynaptic SERT and prevent the clearance of synaptic
serotonin, which causes an elevation of extracellular serotonin
concentrations (Tollefson and Rosenbaum, 1995). Chronic
exposure to SSRIs cause significant decrease of serotonin content
in the fish brain (Gaworecki and Klaine, 2008; Winder et al.,
2009; Bisesi et al., 2014), which can influence the neuroendocrine
control of reproductive function. Among the SSRIs, fluoxetine
(also known as PROZAC) has been widely used to investigate
the serotonergic modulation of the teleosts endocrine system
(Somoza and Peter, 1991; Kreke and Dietrich, 2008). In female
fish, fluoxetine treatment significantly reduces egg production
and ovarian levels of estrogen, and gene expression levels of
aromatase, FSH- and LH-receptors (Lister et al., 2009; Forsatkar
et al., 2014). Conversely, fluoxetine has stimulatory effects on
GnRH and LH release in some fish species (Somoza et al., 1988;
Yu et al., 1991).

SSRIs also have influence on not only endocrine system, but
also behaviors. In male fathead minnows (Pimephales promelas),
exposure to sertraline, a SSRI decreases shelter-seeking behavior,
suggesting that sertraline elicits an anxiolytic effect (Valenti
et al., 2012). In hybrid striped bass (Morone saxatilis × M.
chrysops), fluoxetine exposures decrease in ability of fish to
capture prey (Gaworecki and Klaine, 2008). In the bluehead
wrasse (Thalassoma bifasciatum), fluoxetine treatment decreases
territorial aggression. However, in male B. splendens, there was
no effect of chronic intramuscular injections of fluoxetine on
aggressive behavior (Clotfelter et al., 2007). These observations
suggest that environmental SSRIs may have significant
impact on reproductive capability of fish via behavioral
disruption.

A variety of influences of SSRIs on fish reproduction could
be due to different doses, administrations, duration of SSRI
treatments and physiological, reproductive status and sex of fish
treated and species differences (Sumpter et al., 2014). However, it
is still unclear how SSRIs act on the HPG axis via the serotonin
system. In addition, most antidepressant drugs are specifically
designed for humans (mammals), but not for fish. Therefore,
the effects of these drugs may not be specific in teleosts. In
fish, SSRIs are suggested to interact with and inhibit some P450

isozymes that are responsible for steroid metabolism (Kreke and
Dietrich, 2008), which might have effect on the reproductive
neuroendocrine control.

Summary

Serotonin is one of the classic neurotransmitter and the structure
of its related molecules such as TPH and SERT, and their
brain organization are highly conserved in mammalian and non-
mammalian vertebrates, suggesting functional conservation of
the role of serotonin system in vertebrate reproduction. Several
physiological studies have demonstrated the role of serotonin
in a variety of reproductive functions including the control
of GnRH release, LH release, gonadal maturation, and socio-
sexual behaviors in teleosts (Figure 2). However, the serotonin
system in teleost may also play unique role in the control
of reproduction as the mechanism of reproductive control
in teleosts is not always the same as in the mammalian
models (Xiong et al., 1994; Zohar et al., 2010). For example,

FIGURE 2 | Schematic model illustrating the serotonergic action on the

hypothalamus-pituitary-gonadal axis of teleosts. Serotonin (5-HT)

modulates the reproductive system at multiple levels: the hypothalamus (via

GnRH neurons), the pituitary (via gonadotrophs) and the gonads. 5-HT system

is modulated by several factors such as gonadal steroids, environmental

factors and social cues. In addition, central 5-HT system is also influenced by

chemical substances such as endocrine disrupters and selective serotonin

reuptake inhibitors (SSRIs), which exist in surface waters and sewage effluents

as contaminants. Exposure of fish to those chemical substances may have

significant impacts on reproductive functions.
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in some fish, there are serotoninergic cell populations in the
hypothalamus and in the pituitary, which indicates the presence
of multiple pathways of gonadotropin control by the serotonin
system. In fish, the serotonin system is also regulated by
natural environmental factors as well as chemical substances.
In particular, SSRIs are commonly detected as pharmaceutical
contaminants in the natural environment (Brooks et al., 2005;
Corcoran et al., 2010). Several research articles demonstrate
that acute and chronic exposure to SSRIs induces a variety
of change in physiological and behavioral parameters in fish.
However, environmental SSRIs could act on fish reproductive
system via multiple pathways, the detail mechanisms underlying
the effect of SSRIs on fish serotonin system and reproductive

neuroendocrine system need to be examined to evaluate
the potential influence of the SSRIs on fish reproductive
functions.
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