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Multicomponent mapping of boron chemotypes
furnishes selective enzyme inhibitors
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Heteroatom-rich organoboron compounds have attracted attention as modulators of enzyme

function. Driven by the unmet need to develop chemoselective access to boron chemotypes,

we report herein the synthesis of α- and β-aminocyano(MIDA)boronates from borylated

carbonyl compounds. Activity-based protein profiling of the resulting β-aminoboronic acids

furnishes selective and cell-active inhibitors of the (ox)lipid-metabolizing enzyme α/β-
hydrolase domain 3 (ABHD3). The most potent compound displays nanomolar in vitro and

in situ IC50 values and fully inhibits ABHD3 activity in human cells with no detectable cross-

reactivity against other serine hydrolases. These findings demonstrate that synthetic meth-

ods that enhance the heteroatom diversity of boron-containing molecules within a limited set

of scaffolds accelerate the discovery of chemical probes of human enzymes.
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Boron-containing molecules (BCMs) have found widespread
utility as mechanistic probes and therapeutic agents1–6. The
breakthrough discoveries of proteasome inhibitors borte-

zomib7, ixazomib8, and delanzomib9 opened doors for synthetic
and medicinal chemists to explore the potential of boron in
therapeutic intervention. Akin to all molecules designed to
interact with protein targets, the structures of bioactive BCMs
must contain a sizable proportion of heteroatoms, including
nitrogen, oxygen, halogens, and sulfur. In the past, the absence of
heteroatoms in BCMs has resulted in lack of selectivity amongst
related families of enzymes10. BCMs display a reversible-covalent
mode of inhibition with serine proteases5. Boron has a unique
ability to adopt a range of coordination modes upon interaction
with protein targets11. This stands in contrast to other electro-
philes such as epoxides, aziridines, and Michael acceptors, which
display a singular type of interaction with active site
nucleophiles12–14. Despite the versatility and recent successes of
BCM-driven medicinal chemistry, there are still few examples of
boron-containing therapeutic agents. This can be partially
explained by the fact that synthetic technologies to site-selectively
introduce boron into heteroatom-rich environments remain
underdeveloped. The thermodynamic preference of boron to
migrate from carbon to oxygen or nitrogen, further aggravated by
the low kinetic barrier for these transformations15,16, accounts for
the dearth of available methods.

The structures of the most celebrated boron-containing che-
motherapeutics currently on the market are based on the α-
aminoboronic acid motif. Inspired by the impact of β-amino
acids and β-peptides on contemporary science17,18, we questioned
the potential significance of homology in aminoboronic scaffolds
and turned to amphoteric boron-containing compounds as the
enabling building blocks. The goal of our work was to build upon
facile α-aminoboronic acid synthesis19,20 and the recently
demonstrated stability of β-aminoboronic acids21.

Herein, we set out to prepare molecular frameworks containing
boron and heteroatoms of biological significance in order to map
the vicinity of the electrophilic boron warhead. For the design of
small heteroatom-rich BCMs, we wanted to ensure that the
parent scaffolds featuring mainly hydrogens off the connecting
chain could be perturbed by the smallest possible carbon sub-
stituent capable of productive interactions with proteins. The
chemically robust nitrile functionality came to our attention.
Nitriles are not readily metabolized22–26 and feature a short triple
bond. The rod-like nitrile geometry provides a carbon-based
substituent with a minuscule steric demand: based on A-values,
the CN unit is eight times smaller than the methyl group27. This
enables nitriles to project into narrow clefts in proteins and
engage in productive polar interactions and/or hydrogen bonds in
sterically challenging environments28. To append nitrile groups
to the chain connecting boron and nitrogen, we employ borylated
iminium ions of the recently developed α-boryl aldehydes29–31
and acylboronates32. The synthetic utility of borylated iminium
ions is derived from the N-methyliminodiacetic acid (MIDA)
substituent on boron, which mitigates boron’s propensity to
undergo C–to–O and C–to–N migrations and enables cellular
permeability. Empowered with this strategy, we have identified
selective and cell-active inhibitors of the (ox)lipid-metabolizing
enzyme α/β-hydrolase domain 3 (ABHD3).

Results
Synthesis of the MIDA boronate library. We began our inves-
tigation with a model study shown in Fig. 1. Our recent studies of
borylated iminium ions21 opens doors to run a wide range of
multicomponent reactions with potential to expand the accessi-
bility of heteroatom-rich organoboron compounds. Condensation

of α-boryl aldehydes 1a–g with primary amines led to borylated
iminium ions 2a–g (Fig. 2a). Under reductive conditions, we were
able to access β-amino(MIDA)boronates 3 containing the
BCH2CH2N connectivity (Supplementary Methods)21, which
have been shown to play important roles in catalysis33. Building
on this observation, we were curious to evaluate the behavior of
borylated iminium ions in multicomponent reactions. The cya-
nide anion was chosen as the nucleophilic carbon-based com-
ponent due to its minuscule steric demand. Upon addition to
borylated iminium 2a, we were excited to see evidence of β-
aminocyano(MIDA)boronate 4 formation containing the
BCH2CH(CN)N motif (Fig. 2b). During the reaction optimiza-
tion, we initially hypothesized that benzoyl and acetyl cyanide
could act as nucleophilic sources of cyanide34. However, the
hydrolysis of the iminium ion was faster than the cyanide addi-
tion. We also tried using acetone cyanohydrin with catalytic
triethylamine35 and observed desired compound 4 as the major
product, but with poor conversion. We then identified tri-
methylsilyl cyanide as the most suitable reagent when used in the
presence of a Lewis acid35. Lowering the reaction temperature
resulted in poor solubility of α-boryl aldehyde 1a. The use of 3Å
molecular sieves to remove water had no influence on the reac-
tion. The reaction proceeded similarly in both acetonitrile and
dichloromethane. We chose to continue our studies with acet-
onitrile because it improved the solubility of α-boryl aldehyde 1a.

To be useful as chemical probes, β-aminocyano(MIDA)
boronates need to be stable in the free boronic acid form. We
anticipated that the nucleophilicity of the secondary nitrogen’s
lone pair might affect this stability. Indeed, this was the case when
we attempted to deprotect MIDA under various mildly acidic and
basic conditions. Therefore, we decided to attenuate the
nucleophilicity of the nitrogen’s lone pair by trapping it as an
amide. The β-aminocyano(MIDA)boronates were successfully
acylated using acid chlorides and highly electrophilic anhydrides
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in this work
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such as trifluoroacetic anhydride. Compound 4b did not react
due to its poor nucleophilicity. We were also able to synthesize
the β-aminocyano(MIDA)boronates and acylate them in one pot
to provide β-aminocyano(MIDA)boronates 4d–l in higher yields
compared to the two-step procedure (81% vs. 55%, respectively
for compound 4d). We also extended this chemistry to
acylboronate 5, to provide α-aminocyano(MIDA)boronate 7,
the B,N-framework that is one carbon chain shorter (Fig. 2c).
To further expand the heteroatom mapping set, we prepared
the BCO, BCS and BCN motifs (compounds 8–10) through
α-functionalization of alkyl(MIDA)boronates (Supplementary
Methods)20. A summary of each reaction scope is shown in Fig. 3.

MIDA boronate screening for serine hydrolase inhibition.
With the β-amino(MIDA)boronates and α- and β-aminocyano
(MIDA)boronates in hand, we proceeded to test them for inhi-
bitory activity against serine hydrolases (SHs). SHs represent a
large (> 200 member) enzyme family in mammals that plays
important roles in metabolizing bioactive proteins, peptides, and
metabolites36. BCMs are able to interact with the conserved serine
nucleophile of SHs through covalent reversible binding, rendering
the enzyme inactive5. We assessed boronate compounds against a
broad set of mammalian SHs by competitive activity-based pro-
tein profiling (ABPP) in mouse brain proteome37. All library
members were initially tested at 20 µM (30 min pre-incubation),
and SH inhibition evaluated using the broad-spectrum activity-
based probe fluorophosphonate-rhodamine (FP-Rh), where
reductions in FP-Rh labeling of one or more SHs in the brain
proteome was detected by sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS-PAGE) and in-gel fluorescence scanning.
Multiple members of the boronate library were found to inhibit a
low-abundance, ~40 kDa SH previously identified in previous
ABPP studies as ABHD338 (Fig. 4, Supplementary Fig. 1). Follow-
up ABPP of hit compounds screened in a concentration-

dependent manner against HEK 293T lysates recombinantly
expressing ABHD3 confirmed boronate inhibition of ABHD3 and
identified 4j as the most potent and selective ABHD3 inhibitor
(Supplementary Fig. 2), displaying an in vitro IC50 value of 0.14
µM [95% confidence interval (CI, 0.097–0.20 µM)] (Fig. 5a, c).
Compound 4j also inhibited ABHD3 in situ with a similar IC50

value [0.040 µM (CI, 0.026–0.060 µM)] (Fig. 5b, c). We also
examined the relationship between FP-Rh incubation time and
serine hydrolase engagement for 4j and related compounds, and
found that the inhibition profiles were unchanged even at very
short time points (5 min), indicating that we did not overlook
transient reversible inhibition events in our original 30 min assay
(Supplementary Fig. 3). Compound 4j was evaluated as the
racemate. It is likely that further improvements in potency will be
uncovered upon evaluation of the enantiomerically pure variants
of 4j. Studies aimed at the synthesis of enantiomerically pure β-
aminoboronic acids are currently underway.

Structure-activity relationship analysis of ABHD3 hits. All five
of the ABHD3 hits contain a phenyl amide, which denotes its
importance for the potency. Replacing the phenyl amide with a
methyl amide in compounds 4d–f or the trifluoromethyl amide in
4l resulted in no notable ABHD3 inhibition. Compound 4j
appears equipotent with compounds 4h and 4g against ABHD3,
but is more selective against ABHD10. This increased selectivity
observed for 4j may be a result of the highly electronegative
fluorine atom, which is known to have profound pharmacological
effects when installed in key positions39.

Boronate 4j is a selective ABHD3 inhibitor. ABHD3 is an
integral membrane enzyme that is enriched in brain tissue, where
it hydrolyzes medium chain and oxidatively modified phospho-
lipids40. Few inhibitors have been reported for ABHD3 and these
compounds lack selectivity across the SH class38. Our initial gel-
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based ABPP experiments suggested that 4j exhibited good
selectivity for ABHD3 (Fig. 4, Supplementary Fig. 2), but only a
limited number of SHs (~20) can be resolved by SDS-PAGE
analysis of tissue proteomes. We therefore next evaluated 4j using
higher-resolution, mass spectrometry (MS)-based ABPP meth-
ods41. We tested 4j at two concentrations –0.5 and 10 µM – in the

human colon cancer cell line SW620 prepared for quantitative
MS-based ABPP using stable isotope labeling with amino acids in
cell culture (SILAC)[42]. At both tested concentrations, 4j fully
blocked (95%+) ABHD3 activity without exhibiting any cross
reactivity with over 60 additional SHs quantified in SW620 cells
(Fig. 5d). Notably, 4j maintained high specificity for ABHD3 over
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all the closely related enzymes and enzyme isoforms within the
SW620 cell line; ABHD2, ABHD4, ABHD6, ABHD10–13,
ABHD12B, and ABHD16A. These data demonstrate that 4j is a
potent and selective ABHD3 inhibitor that meets the criterion for
in situ activity (sub-µM) put forth by the Structural Genomics
Consortium43. Compound 4j demonstrates that enhancement of
heteroatom diversity of BCMs in a limited set of scaffolds can
deliver potent and selective chemical probes. It is tempting to
suggest that further expansion of the aminoboronic series to the
corresponding γ-aminoboronic acids might lead to additional
surprises, allowing one to target other serine hydrolases.

Investigating mechanism of boronate inhibition of ABHD3.
We further characterized boronate inhibition of ABHD3 by
synthesizing a set of 4j analogues, where the presumed active/
important motifs were removed (Fig. 6a). We prepared an ana-
logue lacking the nitrile group – 11a – using our previously
reported reductive amination protocol21 (Supplementary Meth-
ods). We also synthesized the control without boron 11b using
the same method in Fig. 2b. From compound 4j, we were able to
access the boronic acid analogue 11c in acidic (10 equiv. HCl in
MeOH:MeCN [1:1]) and basic (3 equiv. KOH in MeCN:H2O
[1:1]) conditions. MeCN was necessary to improve solubility.
Although the basic conditions fully hydrolyzed 4j within 2 h,
there was also evidence of boric acid, which suggested that 4j was
undergoing protodeborylation. Under acidic conditions, the
hydrolysis proceeded cleanly and went to completion after 24 h.

Compound 11a showed substantially lower potency for
ABHD3 (Fig. 6b), underscoring the importance of the cyano
group for activity. In contrast, 11c, which lacked the MIDA
protecting group, maintained good ABHD3 inhibition (Fig. 6b),
while replacement of the entire MIDA-boronate warhead with an
isopropyl group (11b) completely ablated ABHD3 inhibition
(Fig. 6b). These results support a function for the boron group as
an electrophile required for covalent inhibition of ABHD3.
However, whether removal of the MIDA protecting group, which
might occur in lysates or cells, is required for inhibition of
ABHD3 is less clear. The MIDA compound 4j is slightly more
potent in vitro compared to the boronic acid counterpart 11c
(Fig. 6c), and this difference is further magnified in situ, where 4j
exhibited at least 10-fold superior potency (Fig. 6c). These data
could indicate that the intact MIDA boronate 4j is active as an
inhibitor of ABHD3, where the boost in cellular activity may
reflect enhanced cell permeability or stability of the MIDA-
protected over free boronate. Additionally, in contrast with
previously described MIDA-boronate inhibitors20, the MIDA-
boronate group of 4j is largely resistant to hydrolytic cleavage
under neutral conditions to the boronic acid (phosphate buffer
(pH= 7.4)) in the time frame of the ABPP experiments
(Supplementary Fig. 4).

Metabolomic profiling of 4j. The discovery that 4j is a potent,
selective, and cell-active inhibitor of ABHD3 prompted us to
investigate the effects of pharmacological inhibition of ABHD3 in
cells. ABHD3 has been shown to hydrolyze medium chain and
oxidatively truncated phosphatidylcholines (PCs)40, but whether
pharmacological inhibition of ABHD3 alters these (or other) lipid
metabolites in human cells remains unknown. We performed
untargeted metabolomics analysis44 of SW620 cells treated with
4j (2.5 µM, 4 h) using a quadrupole time-of-flight (Q-TOF) mass
spectrometer. Cells treated with 4j showed elevations in a specific
set of metabolites with m/z values predicted to match medium
chain PCs (Fig. 7a). We confirmed these changes for a repre-
sentative PC species (26:0) by targeted analysis using a triple
quadrupole (QQQ) mass spectrometer (positive ion mode,

monitoring the PC to phosphocholine transition), which mea-
sured an ~5-fold increase in 26:0 PC in cells treated with 4j
(Fig. 7b). We further established the identity of the fatty acyl
chains of the PC (26:0) species by targeted analysis in negative
mode, where we measured four different transitions corre-
sponding to saturated fatty acids with 10, 12, 14, and 16 carbons,
indicating that the 26:0 PC (26:0) was a mixture of two inde-
pendent, co-eluting species – PC (10:0–16:0) and PC (12:0–14:0).
The corresponding fold changes of the matched acyl species
indicated that both PCs were elevated by ABHD3 inhibition
(Fig. 7c). Taken together, these results indicate that acute phar-
macological inhibition of ABHD3 elevates medium-chain PCs in
human cells, a finding that is consistent with the metabolic
functions previously ascribed to ABHD3 by genetic studies in
mice40.

Using amphoteric boryl building blocks, we have found that
homologs of well-known α-aminoboronic acids drastically affect
inhibitor selectivity and allow for selective interrogation of
lipases. With the help of activity-based protein profiling, we have
discovered selective and cell-active inhibitors of the (ox)lipid-
metabolizing enzyme ABHD3, with boron as the active warhead.
More specifically, we have developed a versatile approach to
rapidly assemble boron-containing α-aminonitriles, which have
led to the medicinally relevant BCH2CH(CN)N, and BCR(CN)N
motifs. The departure from commonly used α-aminoboronic
acids allowed us to circumvent protease targets. The remarkable
selectivity of compound 4j among the lipases tested suggests that
heteroatom-rich MIDA boronates offer a promising source of
serine hydrolase inhibitors. Additionally, the disparity in cellular
activities between the MIDA and free boronic acid compounds
argues that the MIDA boronate class may exhibit improved cell
permeability and/or stability. Our work serves to further
exemplify that heteroatom-rich BCMs have the potential to be
selective chemical probes.
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Methods
Synthesis of β-aminocyano(MIDA)boronates 4d–4l. To a flame-dried, round
bottom flask equipped with a magnetic stir bar under nitrogen atmosphere was
added α-boryl aldehyde 1a (1.0 equiv.), copper (II) trifluoromethanesulfonic acid
(0.05 equiv.) and amine (2 equiv.) in MeCN (0.1 M). After 30 min of stirring,

trimethylsilyl cyanide (2.0 equiv.) was added and then the reaction was left to stir at
room temperature until completion. Another equivalent of amine and tri-
methylsilyl cyanide was added if the reaction did not go to completion overnight.
The reaction was monitored by TLC. Next, catalytic 4-dimethylaminopyridine and
N,N-diisopropylethylamine (5.0 equiv.) was added and the reaction was cooled to
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represent average values± S.E.M. values for quantified peptides per protein derived from two independent experiments
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0 °C. The corresponding acid chloride or anhydride (4.0 equiv.) was added to the
solution dropwise or in two separate increments every 2 h. The reaction was stirred
at room temperature for 4 h until completion. The solvent was removed by in
vacuo and then extracted with ethyl acetate (×3) and brine. The organic layer was
collected and then acidified to pH 1 using 0.1 M HCl. The aqueous layer was
removed and then saturated NaHCO3 was added to the organic layer until it
reached pH 8–9. The organic layer was dried over Na2SO4, filtered, concentrated in
vacuo and purified by flash chromatography or CombiFlash using hexanes:acetone
to afford pure product.

Preparation of metabolomics samples. SW620 cells were seeded at 3 million cells
per plate (10 cm) in RPMI media supplemented with Fetal Bovine Serum (10%),
penicillin (100 U/mL), streptomycin (100 µg/mL) and L-glutamine (2 mM). 2 days
later the cells were washed with PBS (3×) and incubated with serum free RPMI
containing either inhibitor (2.5 µM), or DMSO, for 4 h. Cells were then washed
with PBS (3×), lysed by adding cold methanol (1 mL) directly to the plate, har-
vested using a cell scraper, and transferred to a 2 dram vial containing cold CHCl3
(2 mL) and PBS (1 mL). After centrifugation, the bottom, organic layer was col-
lected, and formic acid (50 µL) and additional CHCl3 (2 mL) was added. The
solution was vortexed vigorously, followed by centrifugation, and the organic layer
was again collected and combined with the first extraction. Solvent was removed
under a stream of nitrogen, and samples were stored at −80 °C prior to use.

Untargeted metabolomics analysis. Discovery Metabolite Profiling (DMP) was
performed as previously described45. Briefly, metabolomes were resuspended in 2:1
CHCl3/MeOH and 30 µl was injected onto an Agilent 6520 series quadrupole-time-
of-flight (Q-TOF) MS. LC separation was achieved using a Gemini reverse-phase
C18 column (5 µm, 4.6 mm × 50 mm, Phenomonex). Mobile Phase A consisted of
H2O/MeOH (95:5) and Mobile Phase B of IPA/MeOH/H2O (60:35:5) with addi-
tional formic acid (0.1%) or saturated aqueous ammonium hydroxide (0.1%) in
positive and negative modes, respectively. The LC method consisted of 0.1 ml/min
0% buffer B for 5 min, a 0.4 ml/min linear gradient over 40 min to 100% buffer B,
0.5 ml/min 100% buffer B for 10 min, and 0.4 ml/min equilibration with 0% buffer
B for 5 min, for an overall run time of 60 min. MS analysis was performed with an
ESI source in scanning mode from m/z= 150 – 1200.

The capillary voltage was set to 4.0 kV and the fragmentor voltage was set to
100 V. The drying gas temperature was 350 °C, the drying gas flow rate was 11 l/
min, and the nebulizer pressure was 35 psi. Analysis of the LC-MS data was
performed using XCMS (https://xcmsonline.scripps.edu/).

Targeted MRM measurements of phospholipid and lysophospholipid species.
Metabolomic profiling experiments were performed in positive mode as previously
described40 using an Agilent 6460 series Triple Quad (QQQ) using the same LC
separation and buffers as described above. A full list of targeted PCs,

lysophosphatidylcholines, phosphatidylethanolamines, and lysopho-
sphatidylethanolamines, can be found in Long et al.40. All metabolites were frag-
mented with a collision energy of 30 V.

Data availability. The data that support the findings of this study are presented
within the article and its Supplementary Information file and from the corre-
sponding author upon reasonable request. All constructs originally described in
this study can be obtained and used without limitations for non-commercial
purposes on request from the corresponding author.
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