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Abstract

The kidney exchange programs bring new insights in the field of organ transplantation. They

make the previously not allowed surgery of incompatible patient-donor pairs easier to be

performed on a large scale. Mathematically, the kidney exchange is an optimization problem

for the number of possible exchanges among the incompatible pairs in a given pool. Also,

the optimization modeling should consider the expected quality-adjusted life of transplant

candidates and the shortage of computational and operational hospital resources. In this

article, we introduce a bio-inspired stochastic-based Ant Lion Optimization, ALO, algorithm

to the kidney exchange space to maximize the number of feasible cycles and chains among

the pool pairs. Ant Lion Optimizer-based program achieves comparable kidney exchange

results to the deterministic-based approaches like integer programming. Also, ALO outper-

forms other stochastic-based methods such as Genetic Algorithm in terms of the efficient

usage of computational resources and the quantity of resulting exchanges. Ant Lion Optimi-

zation algorithm can be adopted easily for on-line exchanges and the integration of weights

for hard-to-match patients, which will improve the future decisions of kidney exchange pro-

grams. A reference implementation for ALO algorithm for kidney exchanges is written in

MATLAB and is GPL licensed. It is available as free open-source software from: https://

github.com/SaraEl-Metwally/ALO_algorithm_for_Kidney_Exchanges.

Introduction

The number of terminal-stage renal patients has significantly risen around the world. In this

final stage of disease, kidneys fail to meet patient’s life needs, it may eventually lead to a com-

plete kidney failure. The only available treatment for those patients is a kidney transplant oper-

ation [1]. There are two sources for kidneys transplantation. The first way is through deceased

donors. However, this way can not satisfy the increasing number of kidney patients, by the

end of 2016, there is a waiting list of more than 96,000 patients who need a kidney transplant

operation in United States [2]. The other kidney transplantation way is through willing living

donors. Recently, the number of kidney transplantation through willing living donors has
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increased [1]. Transplanting kidneys from living donors have higher rate of success than

deceased donors [3].

It is common that a willing donor is ready to donate his kidney, but his blood and tissue

types are not compatible with the patient (incompatible donor-patient pair) [4]. Having a set

of incompatible pairs, there is a possibility that a donor of a pair i is compatible with the patient

of a pair j and vice versa. This case achieves mutual benefits among donor-patient pairs. There-

fore, the goal of a kidney exchange program, also called Kidney paired donation(KPD), is to

maximize the number of possible matches among the incompatible pairs in a given kidney

exchange pool. [3], and hence enhancing the success of kidney transplantation through living

donors.

Generally, KPD could be applied in static or dynamic environment [4]. In static environ-

ment, KPD attempts to find possible matches that are found in the current pool, i.e., providing

local solutions without taking future events in consideration. In dynamic environment, pool

size periodically changes, existing pairs can leave because patient passes away or he successfully

receives a kidney (cured), or new pairs can arrive. KPD attempts to match as many pairs by

taking into account future events. In this case, KPD first searches for a match for hard-to-

match pairs (i.e., patients with a rare blood type) and postpones easy-to-match pairs to the

next round, which will increase the number of kidney transplantation and save more lives.

Solving a kidney exchange problem efficiently is still an active area of research. A standard

tree search algorithm is used as one of the early starting solution to this problem and has a

memory space limitation when the size of the patient-donor pairs is increased [5]. Other

researchers in this field attempt to solve this problem by formalizing the kidney exchange as an

optimization problem. Integer programming approach is used to find the optimal matches

among incompatible pairs. The goal of the optimization process is to maximize the number

(quantity) or utility (quality) of transplants. In [1, 5–9], Integer programming is used to solve

some variants of kidney exchanges with/without chains and make a bound on the pool size or

the number of constraints in the matching process. Also, kidney exchange problem can be

viewed as a travelling salesperson problem and can be solved using a recursive integer pro-

gramming formulation [10].

Despite the advantages introduced by the variant techniques that rely on integer program-

ming approach, no stochastic-based algorithm is introduced and used to solve the kidney

exchange problem efficiently. This opens a race to solve this problem using different types of

heuristics. In [11], authors present a novel model for enhancing matching in the dynamic envi-

ronment of networked markets. The proposed model has a set of parameters to learn. Inspired

by this model, a new trend of kidney exchange algorithms based on stochastic approaches is

introduced [4]. This approach employs a learning strategy for optimal solution searching. The

methods in [4, 12] used genetic algorithm (GA) with different represented solutions. GA is uti-

lized to search for the best matches in a given KPD pool. The proposed methods achieve rea-

sonable results in terms of the number of resulting transplants compared to the best known

methods. However, the computational running time needed to provide these solutions is sig-

nificantly long, which is impractical to real life situations. Also, due to the large search space,

classical GA searching strategy surfers from the local optimal solution, which in turn affects

the overall performance. Moreover, the adopted methods are not flexible to be applied in the

dynamic environment [4].

In the view of these limitations, this paper presents a novel stochastic based method for

kidney exchanges. Ant Lion Optimization (ALO) algorithm is proposed to optimally find the

possible matches in a kidney exchange pool. ALO is a recent met-heuristic algorithm that is

computationally less expensive than other methods. It provides an improving search strategy

in terms of exploration, exploitation, and convergence [13]. A post-processing stage follows
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the Ant lion optimization algorithm is also introduced to enhance the utility of the resulting

exchanges. Moreover, the proposed method can be easily adopted in the dynamic kidney

exchanges.

The rest of this paper is organized as follows: a background information about the kidney

donation programs, and a brief introduction of the general ant lion optimization algorithm are

given in Section 1. The proposed ant lion optimization for kidney exchanges is introduced in

Section 2. Experimental results are presented in Section 3. Finally, Section 4 concludes this

paper with a brief discussion of our produced results.

1 Background

1.1 Kidney paired donations

Kidney transplantation is the only hope for curing patients with terminal-stage renal disease.

The increasing number of waiting patients on the scheduled list for transplantation and stag-

nant rate of kidney donations could break this hope of saving more lives. Some patients have

relatives that are willing to donate their kidney but they have incompatible blood or tissue

types. These patients constitute donor-patient couples and create a pool of pairs that are able

to exchange their kidneys based on their compatibility, allowing what is called recently kidney

paired donation program [14].

When this program was first executed, the hospitals arranged the exchange locally among

their patients. With the increasing number of patients, the kidney shortage, and the availability

of databases and registries, the organization of kidney exchange programs are globally trans-

formed and controlled by national and international centers. The National Kidney Registry

(NKR) [15], the Alliance for Paired Donation (APD) [16, 17], and the United Network for

Organ Sharing (UNOS) [18] are among the emerging organizations for kidney exchange pro-

grams on a large scale in the USA. Other emerging centers are reported from several counties

such as UK [19], Canada [20], and Australia [21].

One of the major goals of KPD programs is allowing more kidney exchange to take place

while improving the efficiency of kidney matching by searching for a better match in less wait-

ing and dialysis time (i.e., the kidney donation from a living person lasts longer than the kid-

ney from a deceased one and the long waiting list causes that some patients are died and

others are becoming too ill for surgery).

The two important factors that play a key role on a kidney matching decisions are ABO

blood types and Human Leukocyte Antigen tissue type, HLA. There are four blood types a

patient could have, A, B, AB, or O. The matching compatibility rules between the patients and

donors according to their blood types are described in Table 1. Donors with blood type O, a

general donor, can donate to any patients while patients with type AB, general recipient, can

receive a kidney from any donors. HLA tissue type consists of six proteins that are required to

match between the donors and patients to successfully transplant a kidney. Moreover, there is

a possibility of the positive cross match between the patient and the donor but the patient’s

Table 1. Compatibility rules based on ABO blood type.

Donor/Patient A B AB O

A ✓ ✓

B ✓ ✓

AB ✓

O ✓ ✓ ✓ ✓

https://doi.org/10.1371/journal.pone.0196707.t001
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body has antibodies that target the donor’s HLA, which precludes the kidney transplantation

[22].

The number of donor-patient pairs in a given pool shapes the complexity of kidney

exchange problem. The simple 2-way or 2-cycle exchange is represented by alternating

directed cycle of two incompatible donor-patient pairs where the donor of the first incompati-

ble pair gives a kidney to the patient of the second incompatible pair and vise versa. (Fig 1 illus-

trates 2-way or 2-cycle exchange). The size of exchange cycle can be scaled up to three or more

by including more donor-patient pairs in the exchange pool. Also, the pool can be considered

as a dynamic i.e., on-line, if the donor-patient pairs are appeared and expired over a time, oth-

erwise it is static or off-line [23, 24].

The long exchange cycle, k-cycle, where k� 3 allows more options for kidney exchange

and consequently better optimization for solving the kidney matching problem. When the

number of pairs in an exchange pool is not fixed to a number n, i.e., k = n, the problem is con-

sidered as an assignment problem with a polynomial solving time [5]. In the reality, the num-

ber of pairs in the pool and consequently the length of an exchange cycle should be bounded

for the two reasons. First, all operations involved in a cycle must be performed simultaneously

to guarantee the commitment of kidney exchange process between the incompatible pairs.

This will introduce additional overhead on the hospitals with limited resources. Second,

the long exchange cycle might have unpredictable events that cause the cancellation of the

exchange process. For example, the patient death or the new incompatibility issues that are

appeared between the pairs on the last minute can preclude the exchange. The kidney match-

ing problem with two-cycle can be solved optimally in a polynomial time using Edmonds max-

imum cardinality matching algorithm while the large scale k-cycle is difficult to solve and

considered as NP-complete problem [25].

The kidney exchange problem is formulated as a directed graph with the nodes being the

exchange pairs in the pool. The directed edges encode the constrains of the compatibility

Fig 1. Two-cycle exchange. PA
1

blood type is incompatible with his donor DB
1
, the incompatibility is represented by

dotted lines. The two incompatible pairs can swap their kidneys as illustrated by solid lines.

https://doi.org/10.1371/journal.pone.0196707.g001
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matches among the pairs (Fig 2 shows a directed graph of three-cycle exchange). The goal of

any kidney exchange program is to find a tour in the graph that includes every edge exactly

once and provides mutual benefits. This type of tour is called a feasible tour or a feasible cycle.

There are some variants of kidney exchange problem formulation such as initiating the

exchange by a donor who is not associated with any patient and is willing to donate a kidney,

i.e., altruistic donor. The exchange starts with an altruistic donor is called a chain or non-

directed exchange. The altruistic donor donates a kidney to a patient of one pairs in the kidney

exchange pool and the associated patient’s donor will exchange a kidney with the first compati-

ble patient on the deceased donors waiting list. Never-Ending Altruistic Donor, NEAD, is a

variant of altruistic kidney exchange where the recipient’s donor is not associated with any

waiting list but donates a kidney to a compatible patient. The patient’s incompatible donor

continues this cascading chain by donating a kidney in the same way and so on (theoretically,

this cascading chain never ends) [26] (Fig 3 illustrates an example of NEAD). Another variant

of a kidney exchange problem is including of compatible pairs and multiple donors, which will

increase the possibility of finding more cycles and chains with many incompatible pairs in the

kidney exchange pool [5, 27].

Fig 2. A directed graph representation of three-cycle exchange. The solid arcs represent the potential swaps, i.e. the

two pairs (PAB
1

,DB
1
) and (PB

2
,DA

2
) can exchange their kidneys.

https://doi.org/10.1371/journal.pone.0196707.g002

Fig 3. A NEAD exchange graph. A chain starts with an altruistic donor and ends with a bridge donor assigned to the

first compatible patient on the next round.

https://doi.org/10.1371/journal.pone.0196707.g003
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1.2 Ant Lion Optimization algorithm

Inspired by the rich nature of biological phenomena, scientists mathematically introduce

novel algorithms for modeling the real world optimization problems [28]. These bio-inspired

algorithms adopt stochastic procedures to overcome the limitations of traditional techniques

for solving the optimization problems [29, 30]. Recently, a new bio-inspired algorithm,

namely, Ant Lion Optimization (ALO) is introduced by modeling the nature chasing behavior

of ant lions to catch its prey, usually ants [13].

Ant lions move in circular paths to drill cone-shaped holes in the sand to catch their prey.

They hide at the bottom of the holes waiting for hunting insects as illustrated in Fig 4. The big-

ger holes have higher probabilities for catching a prey and are usually created by a fitter elite

ant lion. Once an insect is caught, Ant lions pull it under the soil by throwing the sand towards

the outer edge of the hole using its big jaw, which prevents the insect from escaping. Then, ant

lions consume the prey, throw the leftovers outside the hole, rebuild the hole, and get ready for

the next hunt. The fitness of ant lions and the quality of created holes are improving during

each hunt [13].

The ants in ALO algorithm represent the possible random solutions for a given problem in

the search space and the ant lions drill holes in the ground to catch and consume ants. The

hunting ability of ant lion is encoded in the objective function and is optimized according to

the interaction between ants and ant lions. There are some rules to consider when modeling

the optimization problem using the nature of hunting behavior of ant lions. The ants in ALO

generate random walks in the search space, which are affected by the dimensions of all ants

and the ant lions created holes. The cone-shaped holes sizes are proportional to the fitness of

each ant lion, i.e. the fitter ant lions can build bigger holes and hence have a higher possibility

to catch a prey. The ants can be consumed by any ant lion or the elite one and the range of

their random walks is decreased adaptively when the ant lion slides the ants towards the bot-

tom of the hole. Consequently, the consuming ant lions become fitter than ants, take their

positions, and rebuild the hole for improving their chance for catching other ants [13, 31–33].

In terms of clinical application of ALO in the kidney exchange space, the ants represent the

possible kidney exchanges in a given pool. Maximizing the hunting ability of ant lion mimics

increasing the number of matches among the pairs according to the defined optimization

Fig 4. A hunting behavior of Ant lions.

https://doi.org/10.1371/journal.pone.0196707.g004
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function. ALO optimally explores the search space and lead to better optimized solutions and

convergence rates [33].

The ants and hidden ant lions are located in the same search space and their positions dur-

ing the optimization process are stored in Mant and Mantlion matrices.

Mant ¼

A1;1 A1;2 � � � A1;d

A2;1 A2;2 � � � A2;d

..

. ..
. . .

. ..
.

An;1 An;2 � � � An;d

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

ð1Þ

Mantlion ¼

AL1;1 AL1;2 � � � AL1;d

AL2;1 AL2;2 � � � AL2;d

..

. ..
. . .

. ..
.

ALn;1 ALn;2 � � � ALn;d

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

ð2Þ

The n and d denote the ant’s /ant lion’s number and their dimension respectively. Ai,j and

ALi,j represent the value of jth dimension of ith ant/ant lion respectively. The ant’s dimension

encodes the number of variables in the optimization problem that affect the current problem

solution, i.e. current ant. Each row in Mant represents a solution to a given optimization prob-

lem according to d decision variables. The ants/ant lions are evaluated using objective function

f and their evaluation values are stored in MOA and MOAL matrices [13, 31–33].

MOA ¼

f ðA1;1;A1;2; � � � ;A1;dÞ

f ðA2;1;A2;2; � � � ;A2;dÞ

� � � ; � � � ; � � � ; � � �

f ðAn;1;An;2; � � � ;An;dÞ

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð3Þ

MOAL ¼

f ðAL1;1;AL1;2; � � � ;AL1;dÞ

f ðAL2;1;AL2;2; � � � ;AL2;dÞ

� � � ; � � � ; � � � ; � � �

f ðALn;1;ALn;2; � � � ;ALn;dÞ

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð4Þ

Modeling any optimization problem using ALO algorithm requires defining the following

operations:

• Building ant lion traps: each ant is assumed to be caught by one ant lion. The selection of an

ant lion is based on its hunting ability that is encoded in the objective function. The fitter ant

lions can build bigger holes and have higher ability to catch a prey. A Roulette wheel method

gives high chances for the fitter ant lions to be selected for catching ants.
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• Generating ants’ random walks: naturally, ants move in random paths searching for their

food. Therefore, their movements in the ith dimension of a d-dimensional space, Xn
i , is mod-

elled using random cumulative sum function defined by Eq (5):

Xn
i ¼ 0; cumsumð2rðn1Þ � 1Þ; cumsumð2rðn2Þ � 1Þ; . . . cumsumð2rðnNÞ � 1Þ½ � ð5Þ

where: n denotes the current iteration, N represents the total number of iterations, cumsum

returns the cumulative sum, and r(n) is a random function returns value ‘1’ if a randomly

generated number is greater than ‘0.5’ and returns ‘0’ otherwise.

Xn
i encodes the changes (movements) that happen to the current solution (ant) by including

the ith decision variable (dimension) in the optimization problem.

In order to bound ant’s movements inside the search space, values are normalized using a

min-max normalization function defined by Eq (6):

Xn
i ¼
ðXn

i � aiÞ � ðdi � cni Þ
ðbn

i � aiÞ
þ ci ð6Þ

where: ai and bi denote the minimum and maximum random walk of the ith variable, respec-

tively, and cni and dn
i represent the minimum and maximum of the ith variable at nth iteration,

respectively.

• Chasing ants in the holes: once the ant is trapped in the ant lion’s hole, its movement is

restricted by the position of the hunting ant lion (antlionj). This is modelled by Eqs (7),

and (8):

cni ¼ cn þ antlionsnj ð7Þ

dn
i ¼ dn

þ antlionsnj ð8Þ

where: cn and dn represent the minimum and maximum of all variables at nth iteration,

respectively. cni and dn
i denote the minimum and maximum of all variables for anti,

respectively.

• Sliding trapped ants: ant lions slide ants towards their created traps to prevent them from

escaping. This process is mathematically modeled by iteratively decreasing the lower and

upper bounds of ant’s random walk, Eqs (9) and (10):

cn ¼
cn

I
ð9Þ

dn
¼

dn

I
ð10Þ

where: cn and dn represent the minimum and the maximum of all variables at nth iteration

respectively, and i is a ratio defined by Eq (11):

I ¼ 10w n
N

ð11Þ

where: w denotes a dynamic parameter used to control the search exploitation level.

• Catching ants and hole re-building: The final step of hunting process is to eat the trapped

ants and re-building the previously used hole. Mathematically, this process is modelled

by comparing the fitness of consumed ants with their hunting ant lions. If an ant becomes

fitter than its corresponding ant lions, it means that it is inside the hole and it is about to be
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consumed. Accordingly, Ant lions replace their positions with the consumed ants looking

for increasing their chances for the next hunt. This is defined by Eq (12):

Antlionsnj ¼ Antni If fðAntni Þ > fðAntlionsnj Þ ð12Þ

where: Antlionsnj represents ant lion’s position j at nth iteration, and Antni represents ant’s

position i at nth iteration, assuming maximization of the objective function.

• Maintaining the best solution: ALO adapts elitism strategy in order to preserve the best

obtained solution across different iterations. The position of the fittest ant lion, i.e. elite ant

lion, is used to guide the random walk of each ant as represented by Eq (13):

Antni ¼
ðRn

A þ Rn
EÞ

2
ð13Þ

where: Rn
A denotes random walk around the selected ant lion, and Rn

E denotes the random

walk around the elite ant lion at nth iteration.

2 The proposed ALO algorithm for kidney exchanges

In our proposed method, kidney exchange is formulated as a combinatorial optimization

problem. The goal is to maximize the exchange utility while satisfying the problem constraints.

Feasible exchanges are only allowed (i.e. nodes involved in a given exchange can not be used in

any other exchanges). Also, the length of exchange is restricted to the maximum allowed size

for chains and cycles, which satisfies the hospital resources. The proposed methodology utilizes

the ant lion optimization algorithm to select the optimal exchanges in a manner similar to

wrapper methods in feature selection algorithms. Fig 5 gives a schematic description of the

proposed ALO algorithm for kidney exchanges.

As depicted in Fig 5, the proposed method is composed of three main stages: First, con-

structing the KPD pool using the candidate pairs, the altruistic donors, and the compatible

Fig 5. KPD using Binary Ant Lion Optimization algorithm.

https://doi.org/10.1371/journal.pone.0196707.g005
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relations between them. Second, extracting all possible chains and cycles in the current KPD

pool given that the maximum allowed length is k. Finally, providing all of the possible matches

to the ant lion optimizer to select the best matches/ exchanges, which maximizes the number

of patients receiving a kidney. After each successfully kidney transplants, KPD pool is updated

and ready for a new round of kidney exchange. Fig 6 summarizes the steps used in our algo-

rithm while the following sections explain each step in detail.

2.1 KPD pool construction

Giving a list of incompatible pairs nodes n, and altruistic donors nodes A, the compatibility

matrix V, is generated, as explained by Algorithm (1). This stage is implemented in every new

round or upon the arrival/ departure of new nodes to KPD pool.

Algorithm 1 KPD Pool Construction.
Input:

• The Altruistic donors set A: {a1,..,au}.

Fig 6. A flow chart of the proposed ALO algorithm for kidney exchanges.

https://doi.org/10.1371/journal.pone.0196707.g006
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• A set of incompatible pairs N: {n1,..,nz} where ni: denotes the
donor/ patient pair ðDA

1
; P1

BÞ.
• The compatible relations set C: {c1,..,cl} where ci: (ni, nj, wi,j)

indicates that donor of node ni is compatible with patient of node nj
with utility value wi,j.
Output: Compatibility matrix, a square matrix indicates the comput-
ability relations in the current pool.
1: Initialize v(i, j) = 0, 8{i, j}, where: i, j � u + z.
2: for each ci 2 C do
3: x  ni.
4: y  nj.
5: v(x, y) = wi,j.
6: end for
7: Return compatibility matrix V.

2.2 Chains and cycles extraction

Chains and cycles can have different lengths. However, it is not recommended to have a large

size of cycles and/or chains. Practically, exchanges are executed simultaneously to guarantee

the commitment of kidney exchange process between the incompatible pairs. Therefore,

chains’ and cycles’ length are restricted to the available hospital resources. In our proposed

methodology, there is a dynamically selected parameter k denotes the maximum allowable

length for chains and cycles. Algorithms (2) and (3) present the process of chains and cycles

extraction respectively. The chains and cycles can be extracted sequentially or in parallel.

Algorithm 2 Chains Extraction.
Input:

• Compatibility matrix V, if all wi,j = 1, vi,j 2 {0, 1}.
• Maximum allowed length for chains, k.

Output: All possible chains up to the maximum length.
1: Mchains  Φ.
2: Find the altruistic nodes in current pool, A.
3: for each ni 2 A do
4: t = 1.
5: while t < k do
6: Generate all possible compatible sequence of nodes starting

from root node ni to nodes at depth = t.
7: Save all resulting paths in X, A path is the sequence of nodes:

{ni, . . ., nt}.
8: For each xi 2 X,
9: Mchains  {Mchains [ xi}.
10: t = t + 1.
11: end while
12: end for
13: Return all possible chains Mchains.

As stated in [4], one of the limitations for stochastic-based optimization methods for kidney

exchanges is the large computational running time needed for producing the optimal feasible

exchanges. Extra processing is needed during evolution for restricting exchanges to the only

feasible solutions. In order to decrease the overall running time, we suggested the restriction of

search space to the initial extracted chains and cycles from KPD pool. The chains/cycles

extraction is performed only once in our algorithm as a pre-processing stage, which reduces

the overall algorithm running time.

Algorithm 3 Cycles Extraction.
Input:

• Compatibility matrix V, where if all wi,j = 1, vi,j 2 {0, 1}.
• Maximum allowed length for cycles, k.
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Output: All possible cycles up to the maximum length.
1: Mcycles  Φ.
2: t = 2.
3: while t � k do
4: for each ni 2 N: incompatible pair nodes in the current pool do
5: Generate all possible compatible sequence of nodes starting

from root node ni to nodes at depth = t.
6: Save all resulting paths in X, A path is the sequence of nodes:

{ni, . . ., nt}.
7: For each xi 2 X,
8: if ni = nt then
9: if xi =2 Mcycles then
10: Mcycles  {Mcycles [ xi}
11: end if
12: end if
13: end for
14: t = t + 1.
15: end while
16: Return all possible cycles Mcycles.

2.3 Binary Ant Lion Optimization algorithm

In our proposed method, each individual is represented by a vector with a dimension equals

to the total number of exchanges extracted from the given KPD pool. Usually individuals of

a classical Ant Lion Optimization algorithm are represented by a continuous valued vectors.

Since our representation of KPD problem is formulated as a combinatorial optimization prob-

lem, vector values are restricted to the binary range [0, 1].

Many binarization methods have been proposed to adapt continuous meta-heuristic opti-

mization algorithms for solving binary problems [34]. Great Value Priority (GVP), is a binari-

zation method used to map the individual’s representation from a continuous space to the

binary one. GVP generates a permutation sequence P based on sorting the original individual’s

vector and assigning to P the maximum values in order. The process is repeated for all dimen-

sions of all individuals and P is binarized using Eq (14):

Yi ¼
1 Pi � Piþ1

0 Otherwise

(

ð14Þ

The mapping process of GVP reflects a priority order relation, which is suitable for our for-

mulation of KPD problem. Inspired by this priority binary mapping, we initialized the posi-

tions of ants and ant lions using the previous mapping procedures. The ALO with a binary

vector representation is called Binary Ant Lion Optimization algorithm. The solution repre-

sents the best selected matches/exchanges in the complete set of M exchanges computed by

Eq (15):

mi ¼
MðiÞ Yi ¼ 1

F Yi ¼ 0

(

ð15Þ

where M represents the complete set of pool’s exchanges produced by the pre-processing

stage.

In order to maintain the binary representation of ALO’s individual, we replaced the ran-

dom walk function (Eq (5)) by a mutation operation applied to the given ant lion (Eq (16))

AntlionðiÞ ¼ :AntlionðiÞ ð16Þ
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where Antlion represents the positions vector for the input ant lion, and i is a randomly

selected dimension of the ant lion. Each ant updates its position based on a crossover operation

computed by Eq (17):

Antd ¼
REd rd < 0:5

RAd Otherwise

(

ð17Þ

where RE and RA represent the mutated positions for the elite ant lions and a randomly

selected ant lion, respectively. Antd represents the new ant position at dimension d, r is a vector

contains randomly generated numbers drawn from a uniform distribution in the range [0, 1].

The goal of the utilized Binary Ant Lion Optimization algorithm is to maximize the kidney

exchange’s utility. Fitness function F is proposed to map each individual in the search space

into a real-valued f, which is used to evaluate the strength of an individual in a given problem.

The proposed fitness function is designed according to the following criteria:

• The Altruistic node donates a kidney without taking any benefits in return.

• Every incompatible pairs node in the resulting solution must be involved in the kidney

exchange only once:

• If the node’s donor is used more than once in the resulting exchanges, a penalty value is

added.

• If the node’s receiver is used more than once in the resulting exchanges, a penalty value is

added.

The proposed fitness function is defined by Eq (18):

maximize ð
XL XU

wi;jÞ � E ð18Þ

E ¼ ðE1 þ E2Þl ð19Þ

where:

• L denotes the solution length (number of exchanges i.e., chains or cycles represented by the

solution);

• U denotes the exchange length (number of compatible relations represented by the cycle or

chain);

• i denotes the node’s donor index;

• j denotes the node’s patient index;

• wi,j denotes a utility value for the compatible relation between donor i and patient j (wi,j = 1,

if all are equal).

• E1 denotes the number of donors used more than once for donating a kidney;

• E2 denotes the number of patients used more than once for receiving a kidney;

• λ a penalty value added to maximize error value for solutions, which contain nodes used

more than once, λ� pool size.

To illustrate the impact of the proposed fitness function, Fig 7 represents an example of

exchanges extracted from a KPD pool. The exchanges contain two chains, one cycle of length
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2, and one cycle of length 3. The number of ALO dimensions equals four (two chains and two

cycles). Fitness with a negative value represents an infeasible exchange. To prevent ALO from

producing the infeasible exchanges, a penalty value λ is added to maximize the error value E.

As depicted in Fig 7, given antlion1 represented by the vector [1101], node (1), is used twice

for donating a kidney, therefore, the fitness value of antlions1, f = −44, when λ = 50. If the ant

lion represents a feasible exchange, as given by antlion2 which is represented by the vector

[0101], the error value E equals zero and the fitness value indicates the number of transplants,

f = 5, which denotes the global optimum solution.

Algorithm (4) presents steps of the proposed Binary Ant Lion optimization algorithm for

kidney exchanges. Upon completion of Ant Lion evolution, the resulting exchanges are recom-

mended for kidney transplantations and the KPD pool is updated for preparing the next

round of exchanges.

Algorithm 4 Ant Lion Optimization algorithm for kidney Exchanges.
Input: Total number of: ants, antlions, and number of iterations N.
Output: Best selected matches/exchanges.
1: For each round, construct KPD pool using Algorithm (1).
2: Extract all possible chains, Mchains using Algorithm (2).
3: Extract all possible cycles, Mcycles using Algorithm (3).
4: M  {Mchains [ Mcycles}.
5: For each anti 2 Ants, Length(anti)  |M|.
6: For each antlioni 2 Antlions, Length(antlioni)  |M|.

Fig 7. An example of a problem contains four exchanges.

https://doi.org/10.1371/journal.pone.0196707.g007
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7: Initialize populations of ants’ and antlions’ positions within the
given search domain.

8: Return the exchanges m, represented by ants’ and antlions’ positions
where: {m � M}.

9: Evaluate exchanges using the fitness function defined by Eq (18)
and set the corresponding ants’ and antlions’ fitness values.

10: Find the best antlion, i.e. elite.
11: for n = 1, 2, . . ., N do
12: For each anti 2 Ants
13: Select an antlion using Roulette Wheel selection method.
14: Create a random walk for anti based on Eq (16) and update it’s

position by Eq (17).
15: Calculate the fitness of all ants.
16: Replace an antlion with it’s corresponding ant based on Eq (12).
17: Update the elite if an antlion becomes fitter than the current

elite.
18: end for
19: Get Exch, all exchanges mi 2 M, represented by the best returned

ant lion based on Eq (15).
20: Update Exch, using the post-processing process defined in

Algorithm (5).
21: Return Exch, the best selected exchanges.

Some runs of Ant Lion Optimization algorithm fail to produce the optimal solution and are

trapped in a local optimal region. Therefore, a post-processing stage is introduced to maximize

the overall exchanges’ utility produced by ALO. Algorithm (5) presents the post-processing

step applied to the resulting exchanges.

Algorithm 5 Candidate Exchanges Post-processing.
Input: All possible exchanges M, and candidate exchanges Exch.
Output: Updated exchanges, Exch.
1: For each mi 2 M,
2: if mi =2 Exch then
3: if Nodes(Exch) \ Nodes(mi) = Φ then
4: Exch  {Exch [ mi}
5: end if
6: end if
7: For each mi 2 M
8: For each mj 2 Exch,
9: if Utility(mi) > Utility(mj) then
10: TmpExch  {Exch − mj}
11: if Nodes(TmpExch) \ Nodes(mi)) = Φ then
12: Exch  {TmpExch [ mi}
13: end if
14: end if
15: Return updated exchanges, Exch.

In Algorithm (5), Nodes(x) denote nodes represented by exchanges x, and Utility(x)

denotes the utility value represented by exchanges x, (if all wi,j = 1, the utility value expresses

the number of resulting transplants). The post-processing step searches for extra exchanges,

which are not included in the current exchanges. Also, it can maximize the exchanges’ util-

ity or replace the existing exchanges with better ones without violating the solution’s crite-

ria. Giving a KPD pool with M exchanges, a brute force search requires the maximum

number of trials equals 2|M|, in order to optimally select the best combination of exchanges

m 2M, while satisfying the problem constrains. The post-processing step that follows

the Ant Lion Optimization algorithm requires only the maximum number of trials equals

|M| + |M| � |Exch|, where Exch, represents the candidates’ exchanges produced by ALO.
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The computational running time for all our experiments is explained in detail in the follow-

ing section.

3 Experimental results and discussion

3.1 Data sets and experimental settings

We evaluated the performance of the proposed method using six simulated datasets generated

from an updated version of Saidman generator [35]. The simulated kidney exchange data has a

distribution that approximately mimics the UNOS pool as of April 15, 2013 and is computed

based on the Cumulative Match Report performed by the data analysis group in this study

[36]. The simulated kidney exchange pools have a number of donor-patient pairs varying

from 30 to 200 nodes and the percentage of altruistic donors is chosen according to the value

reported by Saidman generator.

For each experimental run, the compatibility matching rules encoded in the simulated data-

sets differ according to the random generation of a kidney pool. However, it is likely that the

larger pool size results in existing more compatible pairs. Table 2 illustrates the compatibility

information with respect to various pool sizes. To satisfy the real life hospitals constraints, we

set the maximum length for cycles and chains to three, k = 3. The total number of extracted

chains and cycles is also shown in Table 2.

As shown in Table 2: for the KPD pool that contains 200 nodes, there are 1705 compatible

relations (arcs) between nodes. Also, it contains 53 chains of length two and 363 chains of

length three, while the number of cycles of lengths two and three are 21 and 170 respectively.

On the other hand, KPD pool of size 30 contains 56 compatible relations. Also, the pool con-

tains a single chain of length two and 3 chains of length three and the number of cycles of

lengths two and three equals 2 and 1 respectively. It is noted that when the pool size increases,

the total number of compatible relations increases. As a result, the total number of extracted

chains and cycles consequently increases. The extracted chains and cycles together compose all

of the available exchanges in KPD pool.

Once chains and cycles are extracted, the optimization step is initiated to select the optimal

number of feasible exchanges, which in turn maximizes the KPD utility. We compared our

proposed method to Genetic Algorithm(GA), which is the only known stochastic-based opti-

mization algorithm applied to the kidney exchange space [4, 12]. GA was utilized to search for

the maximum number of feasible exchanges in the extracted chains and cycles using the fitness

function defined by Eq (18). The parameters setting for the applied optimization algorithms is

listed in Table 3. Crossover and mutation probabilities for GA were set to 0.8 and 0.2 respec-

tively redand the used selection method was Roulette Wheel. For simplicity, this method is

mentioned as GA-KPD.

Table 2. Compatibility information with respect to the pool size, n.

Compatibility Information

# Arcs # Chain(2) # Chain(3) # Cycle(2) # Cycle(3)

n = 30 56 1 3 2 1

n = 40 108 13 26 3 3

n = 50 123 3 11 7 9

n = 75 238 15 38 3 8

n = 100 482 15 79 10 25

n = 200 1705 53 363 21 170

https://doi.org/10.1371/journal.pone.0196707.t002
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To compare the performance of the applied optimization methods, Ten empirical experi-

ments were performed for the same KPD pool. Each experiment is initiated with a randomly

generated population and the average results are reported. Fig 8 shows the convergence curves

of the proposed method compared to GA-KPD. For each experiment, the fitness value of the

elite individual is recorded per iteration.

As illustrated in Fig 8, the adopted Ant Lion Optimization algorithm in our proposed

method has the fastest convergence capability towards the optimal solution. The proposed

method needs less than 90 generations to converge. On the other hand, GA-KPD could not

converge to the optimal solution for the maximum number of generations equals 100.

Also, we compared our results with a deterministic-based algorithm for kidney exchanges,

Integer Programming (IP), which is utilized for finding the optimal number of exchanges in

the extracted chains and cycles. We will call this method IP-KPD and its problem formulation

is defined by the following equation:

maximize
X

c2M

XU

xcwi;j

s:t: xc 2 f0; 1g; 8c 2 M
X

c2MðtÞ

xc � 1;8t 2 Pool

ð20Þ

where M is the set of all extracted chains and cycles from KPD pool up to the maximum length

Table 3. Parameter settings for GA-KPD and the proposed method.

Parameters GA-KPD Proposed

Max number of iterations (n) 100 200

Population size 800 200

Individual Dimension # number of cycles + # number of chains

Search Domain [0 1]

https://doi.org/10.1371/journal.pone.0196707.t003

Fig 8. Elite individual’s fitness per iteration.

https://doi.org/10.1371/journal.pone.0196707.g008
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equals three. M(t) is a chain or cycle in M that contains node t, which represents an altruistic

or a donor-patient pair. wi,j denotes a utility value for the compatible relation between donor i

and patient j, and xc is a binary vector representing whether the chain or cycle c is selected for

transplant (xc = 1) or not (xc = 0). The existing constraints are stated as no node can be used

more than one in a solution.

To compare the performance of all methods, another set of experiments is executed. All

experiments are tested for different pool sizes. Experiments for GA-KPD and the proposed

method are performed using the parameters specified in Table 3. Also, all experiments are

repeated for ten times to account for possible statistical variations. Fig 9 shows experiments

results in terms of the number of exchanges (transplants) produced by all applied methods for

KPD pool sizes equal 30, 40, 50, 75, 100, and 200. The best, average, and worst number of

resulting transplants are illustrated in the graph.

We can observe that when the pool size was 30, all applied methods gave the same number

of transplants. When pool size is greater than 50, GA-KPD fails to converge and produce infea-

sible solutions, i.e. the number of resulting transplants are considered zeros. Also, we can

observe that the proposed method performs better than GA-KPD. The searching strategy of

ALO is more efficient than GA due to the enhanced exploration, exploitation, and conver-

gence capabilities of ALO over GA. Moreover, it is clear that the proposed method succeeded

to provide a very close performance to IP-KPD in terms of the number of resulting transplants.

Table 4 shows the average number of transplants/ exchanges with the standard deviation,

Fig 9. Transplants returned by all applied methods. (a) Pool size = 30, (b) Pool size = 40, (c) Pool size = 50, (d) Pool

size = 75, (e) Pool size = 100, (f) Pool size = 200.

https://doi.org/10.1371/journal.pone.0196707.g009
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returned by GA-KPD and the proposed method, compared to the exact number of exchanges

returned by IP-KPD.

From Table 4, we can observe that, the number of extracted exchanges (chains/ cycles) does

not imply anything about the number of resulting transplants. For example, when the pool size

equals 100, the total number of exchanges was 129 and the optimal number of transplants pro-

duced by IP-KPD was 24. Also, we can see that our proposed method generally provides an

average number of transplants greater than GA-KPD. When the number of exchanges was

greater than 64, GA-KPD fails to provide any feasible solution (indicated in the table by ‘�’).

Additionally, the maximum number of transplants produced by our proposed method is very

close to IP-KPD in almost all cases.

Moreover, we compared the optimal solutions generated by all methods, Fig 10 depicts an

example for the composition of a generated solution for the pool size equaling 40. The chains

and cycles of the solutions produced by IP-KPD, proposed method, and GA-KPD are shown

Table 4. Number of transplants produced by methods(GA-KPD, Proposed, IP-KPD) for various KPD pool sizes. M denotes total number of extracted exchanges

from KPD pool.

Pool Size M # Transplants

GA-KPD Proposed IP-KPD

n = 30 7 3 ± 0 3 ± 0 3

n = 40 45 9.8 ± 0.8 10.2 ± 0.98 11

n = 50 30 6.6 ± 0.7 7 ± 0 7

n = 75 64 15.4 ± 0.98 17.4 ± 0.92 18

n = 100 129 � 19.8 ± 1.5 24

n = 200 607 � 50.2 ± 3.16 53

https://doi.org/10.1371/journal.pone.0196707.t004

Fig 10. The composition of a resulting optimal solution. (a) IP-KPD, (b) Proposed, (c) GA-KPD.

https://doi.org/10.1371/journal.pone.0196707.g010
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in Fig 10(a), 10(b) and 10(c), respectively. In all figures, the altruistic node is visualized as a

gray-filled circle where the non-filled circles indicate the nodes of patient-donor pairs.

The compatibility relations varies among the pool pairs and consequently the compared

methods can generate different solutions with the same number of transplants. In Fig 10, the

optimal solution produces 11 transplants and contains two chains with lengths two and three,

and three cycles one of length two and the others of length three.

The computational running time of the produced solution is also important because

patients can not wait too long for a kidney transplantation. Therefore, another important goal

for our applied optimization algorithm is providing matches to patients as soon as possible.

Table 5 lists the computational running time for all applied methods. Recall that the time

reported for GA-KPD and our proposed method is the average running time for ten different

runs. Matlab is used for implementing all of the utilized methods, all experiments ran on Win-

dows 8 machine with Core i7 2.7-GHz Intel processors and 4-GB RAM.

It is remarkable to mention that the Ant Lion optimization algorithm converges faster

than GA, which needs larger population size and additional computational steps accordingly.

Despite this, GA fails to converge for large pool sizes and gives infeasible solutions. Moreover,

our proposed method for kidney exchanges overcomes the computational complexity of the

one proposed in [4]. In our KPD problem formulation, the process of extracting all cycles and

chains from a kidney exchange pool is executed only once, which reduces the overall computa-

tional running time.

Moreover, In order to study the effect of the introduced post-processing step on the kidney

exchange results, we compared our results with/without including it. Table 6 lists the max,

average, and min numbers of returned transplants for each case.

For a pool size less than 100 nodes, we can observe that the post-processing step has no

effect on the final solutions (i.e. ALO produces the global optimal solutions). On the other

hand, for large KPD pool sizes, some ALO runs trapped in the local optimal regions of the

search space. Consequently, the post-processing step plays a key role to improve the non opti-

mal solutions given by ALO for large pool sizes.

Table 5. Elapsed running time (in seconds) for all methods in various KPD pool sizes. � indicates runs giving infea-

sible solutions.

Pool Size GA-KPD Proposed IP-KPD

n = 30 13.8 1.89 0.04

n = 40 24.6 3 0.07

n = 50 22.4 2.62 0.05

n = 75 29.3 3.87 0.18

n = 100 68.5� 4.57 0.47

n = 200 1290.5� 14.2 7.1

https://doi.org/10.1371/journal.pone.0196707.t005

Table 6. Number of transplants (with) and without the proposed post-processing step for various KPD pool sizes.

Pool Size Max Average Min

n = 30 (3)3 (3)3 (3)3

n = 40 (11)11 (10.2)10.2 (9)9

n = 50 (7)7 (7)7 (7)7

n = 75 (18)18 (17.4)17.4 (15)15

n = 100 (22)21 (19.8)19.4 (18)18

n = 200 (53)49 (50.2)45 (45)41

https://doi.org/10.1371/journal.pone.0196707.t006
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The most important advantage of our proposed method is the flexibility of its application in

the dynamic kidney exchange environments. Recall that the first term (subgoal) of the pro-

posed fitness function defined in Eq (18), denotes the number of given transplants (if wi,j all

equals 1). By assigning different utility values for each compatible relation wi,j, our method can

be adopted easily to handle on-line exchanges. For example, a high utility value can prioritize

the hard-to-match patients among other pool pairs and increasing their possibility for selec-

tion by the optimization algorithm. Additionally, other factors such as patient’s registration

time, patient’s departure time, etc. could be easily included in the ALO algorithm fitness

function in order to take decisions based on the multi-criteria optimized solutions for kidney

exchanges.

4 Conclusion

Motivated by the increasing number of terminal stage renal patients who have the only option

of kidney transplantation for saving their lives, kidney paired donation (KPD) programs are

recently introduced for increasing the number of kidney exchanges on a large scale. The

dynamic nature of KPD problem and the large size of its candidates’ pool complicate the pro-

cess of searching for the optimal number of possible exchanges. In this paper, we formulate

the KPD as a combinatorial optimization problem using stochastic-based Ant Lion Optimiza-

tion algorithm. The proposed novel method searches efficiently for the optimal number of

exchange cycles and chains in a given KPD pool considering the constraints imposed by the

limited computational and operational hospital resources. The stochastic-based ALO algo-

rithm opens the future of taking fast and customized-based decisions for kidney exchanges

considering the dynamic nature of the problem and its multi-criteria optimized solutions. Our

proposed method has comparable exchange results to other competing tools including deter-

ministic IP, and outperforms stochastic GA in terms of its speed and the quantity of resulted

optimal solutions. One of our future insights is updating the current implementation of ALO

algorithm-based program to include multi-criteria objective function and make it more infor-

mative and usable for patients and hospitals. Ant Lion Optimization algorithm-based program

will bring more hope for caring patients with terminal-stage renal diseases and adjusting the

expectancy of their life quality by taking the optimal decisions at the right time.
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