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Abstract
Scaffolds composed of extracellular matrix (ECM) are being investigated for their ability to facilitate brain tissue remodeling
and repair following injury. The present study tested the hypothesis that the implantation of brain-derived ECM would
attenuate experimental traumatic brain injury (TBI) and explored potential underlying mechanisms. TBI was induced in mice by
a controlled cortical impact (CCI). ECM was isolated from normal porcine brain tissue by decellularization methods, prepared
as a hydrogel, and injected into the ipsilesional corpus callosum and striatum 1 h after CCI. Lesion volume and neurological
function were evaluated up to 35 d after TBI. Immunohistochemistry was performed to assess post-TBI white matter integrity,
reactive astrogliosis, and microglial activation. We found that ECM treatment reduced lesion volume and improved neuro-
behavioral function. ECM-treated mice showed less post-TBI neurodegeneration in the hippocampus and less white matter
injury than control, vehicle-treated mice. Furthermore, ECM ameliorated TBI-induced gliosis and microglial pro-inflammatory
responses, thereby providing a favorable microenvironment for tissue repair. Our study indicates that brain ECM hydrogel
implantation improved the brain microenvironment that facilitates post-TBI tissue recovery. Brain ECM offers excellent
biocompatibility and holds potential as a therapeutic agent for TBI, alone or in combination with other treatments.
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Introduction

Although traumatic brain injury (TBI) is a major public

health problem with a deep socioeconomic impact, no effec-

tive therapies have been developed to date.1 The primary

mechanism underlying TBI-induced brain injury is the phys-

ical disruption of brain tissue by powerful mechanical forces.

A number of secondary pathophysiological events occur

thereafter, including oxidative stress, apoptosis, inflammatory

responses, and neurovascular dysfunction, all of which may

last for months to years and impede tissue recovery.2 Both

gray matter and white matter are affected during severe TBI,

leading to profound sensorimotor and cognitive deficits.3,4

Pro-inflammatory responses further deteriorate neurological

function and contribute to permanent tissue loss.5,6 Therefore,

therapeutic strategies may need to target each of these hetero-

geneous pathophysiological responses in order to achieve

long-lasting protection after TBI.

The extracellular matrix (ECM) is a highly dynamic, het-

erogeneous accumulation of structural and functional
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molecules present in all tissues and organs. The ECM pro-

vides 3-dimensional physical support, segregates cells and

tissues, and transmits biological signals for cell proliferation,

adhesion, and migration.7 The ECM plays a major role in

intercellular communication and cellular differentiation.

Secreted by cells within the local microenvironment, the

ECM is considered an ideal substrate for the maintenance of

tissue-specific cell types. Thus, scaffold materials composed

of (acellular) ECM have been developed to promote the con-

structive and functional remodeling of various tissues and

organs, such as the esophagus, urinary tract, tendon, and myo-

cardium.8–11 Precisely how ECM scaffolds facilitate tissue

remodeling is not yet fully understood, although several pos-

sible mechanisms have been implicated. For example, the

degradation products from urinary bladder matrix (UBM)

have been shown to possess chemotactic and mitogenic activ-

ities for endogenous multipotent progenitor cells.12 Further-

more, biologic scaffolds can exert a profound influence on

innate immune responses by modulation of the macrophage

phenotypic profile, thereby regulating the remodeling

process.13 Finally, ECM supports the survival of stem cells

and has been successfully used as a delivery vehicle in stem

cell transplantation. In a previous study, ECM harvested from

porcine urinary bladder tissue supported the proliferation and

differentiation of neural stem cells (NSCs) after transplanta-

tion into mice and mitigated the effects of TBI in vivo.14 The

molecular composition of the ECM varies across tissues and is

likely to be particularly complex in heterogeneous structures

such as the brain. Thus, an injectable hydrogel derived from

brain ECM has also recently been developed.15 However, it is

not known whether brain ECM facilitates tissue repair and

functional recovery after TBI in animal models.

In the present study, we tested the therapeutic potential of

brain-derived ECM in experimental TBI and explored pos-

sible underlying mechanisms. Our data indicate that brain

ECM offers long-lasting histological protection and func-

tional improvements via multiple mechanisms, including

preservation of white matter integrity and attenuation of

pro-inflammatory responses, and may be a promising ther-

apeutic candidate for TBI.

Materials and Methods

Animals

Male C57 black 6 (C57BL/6J) mice (8 to 10 weeks old) were

purchased from the Jackson Laboratory (Bar Harbor, ME).

Mice were housed in a temperature- and humidity-controlled

animal facility with a 12-h light–dark cycle. Food and water

were available ad libitum. All animal procedures used in this

study were approved by the University of Pittsburgh Institu-

tional Animal Care and Use Committee (IACUC) and per-

formed in accordance with the National Institutes of Health

(NIH) Guide for the Care and Use of Laboratory Animals. All

efforts were made to minimize animal suffering and the num-

ber of animals used. Animal group assignments for TBI or

sham operation or for ECM or vehicle treatment were rando-

mized using a lottery-drawing box. All outcome assessments

were performed by investigators who were blinded to experi-

mental group assignments. Animals that died during or after

the surgery were excluded from further study.

Preparation of Brain-Derived ECM

ECM derived from porcine brains was prepared as described

previously.16 Briefly, porcine brain tissue was obtained from

animals (approximately 120 kg) at a local abattoir (Thoma’s

Meat Market, Saxonburg, PA). Tissues were frozen at

�80 �C for at least 16 h, thawed completely, and separated

from all non-central nervous system (CNS) tissues. Dura

mater was removed. Tissues were decellularized by passing

through a series of agitated baths, as described previously.16

The decellularized brain tissue was then lyophilized and

stored in dry form until use.

Traumatic Brain Injury

TBI was induced by a controlled cortical impact (CCI) as

described previously.17 Briefly, mice were anesthetized with

1.5% isoflurane (Butler Schein Animal Health, Dublin, OH)

in a 30% O2/68.5% N2O mixture under spontaneous breathing

conditions. Mice were then stabilized in a stereotaxic frame,

and an approximately 4-mm craniotomy was performed over

the right parietotemporal area using a motorized drill. The

CCI was centered 2.0 mm lateral to midline and 2.0 mm

anterior to bregma and was produced with a pneumatically

driven CCI device (Precision Systems and Instrumentation,

Fairfax, VA) using a 3-mm flat-tip impounder (velocity, 3.75

m/sec; duration, 150 ms; depth, 1.5 mm). Immediately after

the injury, the bone flap was removed, and the scalp incision

was closed. The core body temperature was monitored by a

rectal thermistor probe and maintained at 37.5 �C + 0.5 �C
during surgery and up to 30 min after CCI with a heating pad.

Sham surgery consisted of all aspects of the protocol (anesthe-

sia, craniotomy, and recovery) except for the CCI itself.

Injection of ECM into the Injured Brain

One hour after TBI, mice were anesthetized and placed in a

stereotaxic frame. The surgical site was reopened, and the burr

hole was reexposed. Each injection contained 1 mL of ECM (5

mg/mL in phosphate-buffered saline [PBS]) and was adminis-

tered through a 10-mL Hampton syringe at a rate of 0.5 mL/

min controlled by a Micro 4 Microsyringe Pump Controller

(World Precision Instruments, Sarasota, FL). Each mouse

received 2 injections into the right corpus callosum (CC)

(anterior–posterior: 1.10 mm; medial–lateral: 1.0 mm; dor-

sal–ventral: 1.5 mm) and the striatum (anterior–posterior:

�0.80 mm; medial–lateral: 1.5 mm; dorsal–ventral: 3.5

mm). The syringe was left in place for 5 min to allow diffu-

sion from the tip. PBS was used as the vehicle control.
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Examination of ECM Distribution after Injection

To examine the distribution of the ECM after injection, 1 mL

of a mixture of Evans blue (0.5 mg/mL in water; Sigma-

Aldrich, St. Louis, MO) and ECM (5 mg/mL in PBS) at a

volume of 1:1 was injected into the brain at 1 h after CCI as

described above. Twenty-four hours after injection, mice

were transcardially perfused with 4% paraformaldehyde

(PFA). Thick coronal sections (1 mm) were cut to view the

anatomical distribution of the Evans blue dye.

Neurobehavioral Tests

Rotarod test. The rotarod test was performed, as described

previously,18 by placing the mouse on a rotating drum with a

speed accelerating from 0 to 10 rpm for a 5-min period. The

time at which the animal fell off the drum was recorded as

the latency to fall. On each testing day, mice were tested for

3 trials with intervals of 15 min, and the mean latency to fall

was calculated.

Wire hang test. The wire hang test was performed as described

previously.17 A stainless steel bar (length: 50 cm; diameter:

2 mm) rested on 2 vertical supports and was elevated 37 cm

above a flat surface. Mice were placed in the middle of the bar

and were observed for 30 s in 4 trials. The amount of time

spent hanging was recorded and scored according to the fol-

lowing criteria: 0, fell off; 1, hung onto the bar with 2 fore-

paws; 2, hung onto the bar with added attempt to climb onto

the bar; 3, hung onto the bar with 2 forepaws and 1 or both

hind paws; 4, hung onto the bar with all 4 paws and with tail

wrapped around the bar; 5, escaped to 1 of the supports.

Corner test. The corner test was performed as described pre-

viously.19 Briefly, the mouse entered a corner made by

2 black board pieces placed at an angle of 30� in front of

the nose. After TBI, mice preferentially turned toward the

nonimpaired (right) side. Ten trials were performed on each

testing day. Performance score was calculated as (right �
left)/(right þ left).

Morris water maze test. The Morris water maze test was per-

formed on day 29 to 34 after TBI to evaluate long-term

cognitive functions, as described previously.20 Briefly, a cir-

cular platform (diameter: 11 cm) was submerged in a pool of

opaque water (diameter: 109 cm). In the “learning phase” of

the test, mice were placed into the pool from one of the

4 locations and allowed 60 s to locate the hidden platform.

The time at which the animal found the platform (escape

latency) was recorded for each trial. At the end of each trial,

the mouse was placed on the platform or allowed to remain

on the platform for 30 s with prominent spatial cues dis-

played around the room. Four trials were performed on each

day for 5 consecutive days. In the “memory phase” of the

test, a single, 60-s probe trial was performed in which the

platform was removed after the last day of the hidden

platform test. The number of crossings made by the mouse

through the goal quadrant (where the platform was located

previously) was recorded. Swim speed was also recorded to

assess gross locomotor function.

Immunohistochemistry and Quantification

At 35 d after TBI, mice were deeply anesthetized and transcar-

dially perfused with 0.9% NaCl followed by 4% PFA in PBS.

Brains were cryoprotected in 30% sucrose in PBS, and frozen

serial coronal brain sections (25 mm) were cut on a cryostat

(CM1900, Leica, Blenheim, Germany). Immunohistochemis-

try was performed on free-floating sections as we described

previously.21 Sections were blocked with 5% donkey serum

(Jackson ImmunoResearch Laboratories, West Grove, PA) in

PBS for 1 h, followed by overnight incubation (4 �C) with the

following primary antibodies: rabbit antimicrotubule-

associated protein 2 (MAP2; Santa Cruz Biotechnology,

Dallas, TX), mouse antinonphosphorylated neurofilaments

(SMI-32; Abcam, Cambridge, MA), rabbit antimyelin basic

protein (MBP; Abcam), rabbit anti-Iba1 (Wako, Richmond,

VA), rabbit antiglial fibrillary acidic protein (GFAP; Dako,

Carpentaria, CA), and rat anti-CD16/32 (BD Biosciences,

Franklin Lakes, NJ). After washing, sections were incubated

for 2 h at 37 �C with the appropriate donkey secondary

antibodies conjugated with DyLight 488 or DyLight 594

(Jackson ImmunoResearch Laboratories). Alternate sections

from each experimental condition were incubated in all

solutions except the primary antibodies to assess nonspecific

staining. Sections were then counterstained with 40,6-

diamidino-2-phenylindole (Thermo Fisher Scientific, Pitts-

burgh, PA) for 2 min at room temperature, mounted, and

coverslipped with Fluoromount-G (Southern Biotech, Bir-

mingham, AL). Fluorescence images were captured with an

Olympus Fluoview FV1000 confocal microscope using FV10-

ASW 2.0 software (Olympus America, Center Valley, PA).

Images were processed in a blinded fashion for automated

analysis with ImageJ, Version 1.48 (NIH, Bethesda, MD) as

described previously.17 Cell numbers were calculated per

square millimeter from 3 random microscopic fields on 3

sections (9 images total) cut through the CC, cortex, and

striatum. For fluorescence quantification, a region of interest

was drawn by a blinded investigator in TBI or sham brains.

White matter injury was expressed as the ratio of SMI-32 to

MBP immunostaining relative to sham animals. Tissue loss

after TBI was measured on 8 equally spaced MAP2-stained

sections encompassing the CCI territory (from �1.58 mm to

þ1.42 mm bregma) using ImageJ. Tissue loss was calculated

as the volume of the contralateral hemisphere minus the

ipsilateral hemisphere.

Nissl Staining and Cell Counting of Cornu Ammonis 3
(CA3) Neurons

Cresyl violet staining was performed as we described

previously.20 Free-floating coronal sections were mounted
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onto color frost/plus slides. Sections were sequentially pro-

cessed through solutions as described20 and were then cover-

slipped with neutral balata. Images of the CA3 subfield were

captured with an Olympus BX51 microscope (Olympus

America) and a color CCD camera (Diagnostic Instruments,

Sterling Heights, MI), and viable CA3 neurons were quanti-

fied by stereology as previously described.20

Statistical Analyses

All data are expressed as mean + standard error of the mean.

The statistical difference between the means of 2 groups was

analyzed by the Student t test. The differences between

means of multiple groups were assessed by 1- or 2-way

analysis of variance followed by the Bonferroni/Dunn post

hoc test. The Pearson product linear regression analysis was

used to correlate the number of CA3 neurons with spatial

memory. A P value less than or equal to 0.05 was considered

statistically significant.

Results

Implantation of Brain-Derived ECM Reduces TBI
Lesion Volume

First, we examined the distribution of brain ECM after intra-

cerebral implantation. One hour after the CCI surgery (Fig.

1a), the mixture of ECM and Evans blue was injected into

the ipsilateral CC and striatum. During the next 24 h, the

injected material diffused readily to adjacent areas surround-

ing the CCI injury site, including the vulnerable hippocam-

pus (Fig. 1b). These data demonstrate the maintenance of

injected ECM in the targeted brain tissue and validate our

selection of injection sites and the amount of ECM injected.

We hypothesized that the ECM hydrogel would provide a

biological scaffold and facilitate cell survival, proliferation,

and migration, thereby promoting tissue repair in the injured

area following TBI. Treatment with ECM significantly

reduced the lesion volume at 35 d after TBI (Fig 1c). On

MAP2-stained coronal sections (Fig. 1d and e), ECM-treated

brains showed a 25% reduction in tissue loss at 35 d

Figure 1. Extracellular matrix (ECM) treatment reduces traumatic brain injury (TBI) lesion volume. (a) Illustration of the experimental
design. Mice were pretrained for the corner, rotarod, wire hang, and Morris water maze tests for 3 d before TBI or sham operation. One
hour after TBI, mice received ECM or vehicle treatment. Sensorimotor functions were evaluated up to 28 d after TBI by the corner, rotarod,
and wire hang tests. Long-term cognitive functions were assessed by the Morris water maze test at 29 to 34 d after TBI. Mice were sacrificed
35 d after TBI for histological examinations. (b) A mixture of ECM and Evans blue was injected into the striatum and corpus callosum (CC) 1
h after TBI as described in Methods. Brains were harvested 1 d after injection. The anatomical distribution of Evans blue in the brain is shown
on 6 consecutive thick coronal sections near the injection site. (c) Representative brain images illustrate less tissue loss (black circle) in ECM-
treated mice compared to vehicle controls at 35 d after TBI. (d) Representative rabbit antimicrotubule-associated protein 2 (MAP2)-stained
coronal sections at different levels from the bregma show significant tissue loss 35 d after TBI in both ECM- and vehicle-treated mice.
However, ECM treatment significantly reduced TBI-induced tissue loss compared to vehicle controls. (e,f) Tissue loss was quantified on 8
equally spaced MAP2-stained sections as described in Methods section. The area of tissue loss on each section (e) and total volume of tissue
loss (f) is shown. n ¼ 4 to 5 mice/group (*P � 0.05, **P � 0.01 TBI þ ECM vs. TBI).
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after TBI (Fig. 1f, 9.14 + 0.49 mm3 vs. 12.17 + 0.68 mm3,

P � 0.01).

ECM Treatment Ameliorates TBI-induced
Neurobehavioral Deficits

Brain ECM implantation not only reduced tissue loss

but also improved sensorimotor and cognitive functions

after TBI. Relative to vehicle-treated mice, ECM-

treated mice exhibited superior performance in the

rotarod test (Fig 2a, P � 0.001) and in the wire hang

test (Fig 2b, P ¼ 0.009) up to 28 d after TBI. In the

corner test, TBI-induced asymmetric deficits were atte-

nuated by ECM implantation compared to vehicle con-

trols (Fig. 2c, P ¼ 0.004). Long-term cognitive

functions were also improved with ECM treatment as

revealed by the Morris water maze test (Fig. 2d). ECM-

treated mice exhibited lower escape latencies in the

learning task (Fig. 2e, P � 0.001) and improvements

in spatial memory (Fig. 2f), with similar gross locomo-

tor function (Fig. 2g). These data suggest that brain

ECM treatment provides long-lasting improvements in

functional recovery after TBI.

ECM Treatment Preserves Hippocampal CA3 Neurons
after TBI

Next, we characterized ECM-afforded protection at the cellu-

lar level by examining changes in the number of viable neurons

upon treatment. TBI induced prominent neurodegeneration in

the ipsilesional hippocampal CA3 region (Fig. 3a). ECM treat-

ment preserved viability in CA3, with a 36% increase in the

number of viable neurons compared to vehicle-treated TBI

brains (Fig. 3b, 74.84 + 4.09% vs. 54.85 + 3.85%, P �
0.05). There was a positive correlation between the animals’

spatial memory performance in the Morris water maze and the

number of viable CA3 neurons in sham, vehicle-, and ECM-

treated groups (Fig. 3c, Pearson product–moment correlation, r

¼ 0.799, P < 0.001). These data suggest that ECM-mediated

improvements in spatial memory might reflect greater preser-

vation of viable neurons in the CA3 region.

ECM Treatment Attenuates White Matter Injury
after TBI

White matter injury contributes significantly to the neurolo-

gical deficits in TBI patients.2 The integrity of white matter

Figure 2. Extracellular matrix (ECM) treatment confers long-term protection against traumatic brain injury (TBI)-induced neurobehavioral
deficits. (a-c) The rotarod, wire hang, and corner tests were performed before TBI or sham operation and up to 28 d after TBI to assess
sensorimotor functions. ECM treatment attenuated TBI-induced motor deficits, as shown by improved performance in the rotarod test at 21 d
after TBI (a) and in the wire hang test at 14 d after TBI (b). (c) Asymmetric sensorimotor deficits were also ameliorated by ECM treatment in
the corner test at 3 to 14 d after TBI. (d-g) Long-term cognitive deficits were assessed by the Morris water maze. (d) Representative images of
the swim paths of mice in each group when the submerged platform was present (learning phase) and after it was removed (memory phase) are
shown. (e) Time to locate the submerged platform was measured from 29 to 33 d after TBI or sham surgery. (f) Spatial memory of the location
of the previously submerged platform was measured at 34 d after TBI or sham surgery and expressed as the number of crossings made by the
mouse through the goal quadrant when the platform was removed. (g) Swim speed was measured 34 d after TBI and showed no significant
difference among groups. n¼ 8 to 9 mice/group. *P� 0.05, **P� 0.01 TBIþ ECM versus TBI by 2-way analysis of variance (ANOVA; in a, b, c,
and e) or 1-way ANOVA (in f) and Bonferroni/Dunn post hoc test. NS represents not significant.
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in the ipsilesional hemisphere was severely compromised at

35 d after TBI, including in the CC and striatum. As shown

in Fig. 4a, TBI induced the loss of MBP and increased the

expression of abnormally dephosphorylated neurofilament

protein (detected using the SMI-32 antibody). As a result,

the ratio of SMI-32 to MBP immunofluorescence was

robustly elevated after TBI (*14-fold in the CC and

*18-fold in the striatum, Fig. 4b), as an index of white

matter injury.17 In the ECM-treated brains, SMI-32 fluores-

cence was significantly reduced compared to vehicle-treated

brains, and the SMI-32/MBP ratio was lowered (by 49% in

the CC and 60% in the striatum, P � 0.01). These data

suggest that ECM implantation preserves white matter integ-

rity after TBI, either by protection against white matter

destruction or by promotion of white matter repair.

ECM Treatment Inhibits Reactive Astrogliosis and Glial
Scar Formation after TBI

TBI induces rapid astrocyte responses at acute stages

(Fig. 5a) and promotes the formation of glial scars at chronic

stages (Fig. 5b), both of which may impede tissue

recovery.4,22 At 7 d after TBI, a large number of GFAPþ

Figure 3. Extracellular matrix (ECM) treatment reduces hippo-
campal Cornu Ammonis 3 (CA3) neurodegeneration after traumatic
brain injury (TBI). Mice were subjected to TBI and received ECM
implantation 1 h after TBI. (a) Nissl staining reveals viable neurons
from both ipsilateral and contralateral CA3 regions of the hippo-
campi in sham, vehicle-, or ECM-treated mice at 35 d after TBI. (b)
The number of CA3 neurons was counted by stereology and
expressed relative to the sham contralateral side. (c) Correlation
between spatial memory and number of viable neurons in ipsilateral
CA3 of the hippocampus. n ¼ 5 mice/group. * P � 0.05 TBI þ ECM
versus TBI.

Figure 4. Extracellular matrix (ECM) implantation ameliorates
white matter injury after traumatic brain injury (TBI). Mice were
subjected to TBI and received ECM implantation 1 h after TBI. Brain
sections were dual-stained for rabbit antimyelin basic protein (MBP;
green) and nonphosphorylated neurofilament H (mouse antinon-
phosphorylated neurofilaments [SMI-32]; red) 35 d after TBI. (a)
Representative immunofluorescent images of MBP and SMI-32
staining in the corpus callosum (CC) and striatum. (b) The degree
of white matter injury was quantified by the ratio of SMI-32 to MBP
and expressed relative to sham controls. n ¼ 4 mice/group. **P �
0.01 TBI þ ECM versus TBI.
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reactive astrocytes were observed in the ipsilateral peri-

lesion area, with more astrocytes in the areas closer to the

lesion site (Fig. 5a to c). ECM reduced reactive astrogliosis,

as reflected by reduced GFAP immunofluorescence, espe-

cially in the area closer to the TBI lesion site, that is, at 0

to 200 mm and 200 to 400 mm from the lesion border (Fig.

5c to d). At 35 d after TBI, a prominent GFAPþ glial scar

was formed in the peri-lesion area (Fig. 5b to c). Inter-

estingly, ECM treatment reduced GFAP fluorescence at

250 to 500 mm but not at 0 to 250 mm from the lesion

border, perhaps because the injury was too severe at this

location (Fig. 5e). These data suggest that ECM inhibits

glial scar formation, specifically, the thickness of the

scar, at chronic stages after TBI, which may facilitate

tissue remodeling.

ECM Treatment Ameliorates Pro-inflammatory
Microglial Responses Induced by TBI

Finally, we performed immunohistochemistry to determine

the effect of ECM implantation on microglial activation. Ten

days after CCI, dramatic microglial activation was detected

in the ipsilesional CC, cortex, and striatum as visualized by

Iba1 immunostaining (Fig. 6a). Furthermore, most cells

demonstrated a pro-inflammatory M1 phenotype,23 as man-

ifested by the expression of the M1 marker CD16/32 (Fig 6a

and b, P � 0.001 TBI vs. sham in CC, cortex, and striatum).

ECM implantation inhibited microglial pro-inflammatory

activation after TBI (Fig. 6b). The numbers of CD16/32þ/

Iba1þ cells were significantly reduced by ECM treatment in

the CC (160.0 + 24.3/mm2 vs. 316.8 + 38.7/mm2, P �
0.01) and striatum (307.2 + 56.9/mm2 vs. 505.6 + 58.0/

Figure 5. Extracellular matrix (ECM) implantation reduces reactive astrogliosis and glial scar formation after traumatic brain injury (TBI).
Mice were subjected to TBI and received ECM implantation 1 h after TBI. Brain sections were stained for the astrocyte marker glial fibrillary
acidic protein (GFAP) at 7 and 35 d after TBI. (a,b) Representative immunofluorescence images of rabbit GFAP (red) staining in peri-lesion
tissues at 7 d (a) or 35 d (b) after TBI. Sections were counterstained with 40,6-diamidino-2-phenylindole (DAPI; blue) for nuclear labeling. TBI
induced prominent astrogliosis in the peri-lesion tissues at 7 d and glial scar formation at 35 d after TBI. (c) Illustration of the ipsilateral peri-
lesion area where the gradient of GFAP fluorescence intensity was quantified. GFAP fluorescence intensity was measured at different
distances from the lesion border at 7 d (d) and 35 d (e) after TBI and expressed relative to the sham group at 400 to 600 mm. n ¼ 4 mice/
group. *P � 0.05, **P � 0.01, ***P � 0.001 TBI þ ECM versus TBI.
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mm2, P � 0.05) at 10 d after TBI. In the cortex, CD16/32þ/

Iba1þ cells were not significantly reduced by the ECM

treatment (Fig. 6b), possibly due to the lower content of

ECM in the cortex compared to the striatum (Fig. 1b). As

described in Methods, ECM was delivered to the mice by 2

intracerebral injections, into the right CC and striatum,

respectively. These injections resulted in diffusion of the

ECM into adjacent areas, including the ipsilateral cortex

and hippocampus (Fig. 1b). However, compared to the

striatum, there was much less ECM in the cortex (Fig.

1b), likely because the ECM had to diffuse from the injec-

tion sites in the CC and striatum to reach the cortex. In

summary, these results suggest that implanted ECM mod-

ulates microglial polarization by inhibiting the detrimental

M1 phenotype in post-TBI brains.

Discussion

The present study is the first to examine the protective

effects of brain-derived ECM implantation on post-TBI

recovery and to investigate potential underlying mechan-

isms. ECM treatment reduced the size of the TBI lesion and

improved long-term functional outcomes, likely through

multiple mechanisms including amelioration of white matter

injury and inhibition of gliosis and microglial pro-

inflammatory activation.

The ECM is a dynamic and complex 3-dimensional

microenvironment secreted by locally residing cells. ECM

consists of various tissue-specific structural and functional

molecules that affect resident cells, including collagen, gly-

cosaminoglycans, proteoglycans, and growth factors.24

Viable cells release the appropriate factors into the ECM

that facilitate their communication with neighboring cells

and continue to support their survival and function in a reci-

procal loop. Since tissue repair is severely impeded after

destruction of the ECM, native ECM represents an ideal

scaffold for tissue-specific reconstruction. Bioengineered

scaffold materials composed of ECM have been shown to

accelerate post-injury remodeling and repair in various tis-

sues and organs, through mechanisms involving the recruit-

ment of endogenous progenitor cells12,25 and modulation of

innate immune responses.13 Brain ECM possesses tissue-

specific effects in promoting CNS remodeling compared to

ECM derived from other tissues. In cultured N1E-115 neu-

roblastoma cells, brain ECM was shown to promote neurite

growth, an effect that was not evident in cells treated with

spinal cord ECM or UBM.15 ECM derived from the CNS

also facilitates the differentiation of NSCs into neurons,

while UBM does not have a significant impact.26 In the

present study, we demonstrate the therapeutic effects of

brain ECM in an animal model of TBI, with some long-

term histological protection and functional improvements.

Aside from its physical lesion-filling function,27 brain ECM

treatment was able to modulate the brain microenvironment

toward a favorable state of promoting post-TBI repair, as

discussed further below.

Figure 6. Extracellular matrix (ECM) implantation suppresses pro-
inflammatory microglial/macrophage activation after traumatic
brain injury (TBI). Mice were subjected to TBI and received ECM
implantation 1 h after TBI. Brain sections were dual-stained for
microglial/macrophage marker Iba1 and M1 microglial/macrophage
marker CD16/32 at 10 d after TBI. (a) Representative immuno-
fluorescence images of CD16/32 (red) and Iba1 (green) staining in
the corpus callosum (CC), cortex, and striatum. Sections were
counterstained with 40,6-diamidino-2-phenylindole (DAPI; blue) for
nuclear labeling. (b) Quantification of CD16/32þ/Iba1þ cells. n ¼ 5
mice/group. ###P � 0.001 TBI versus sham. *P � 0.05, **P � 0.01
TBI þ ECM versus TBI.
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Previous research on brain injuries largely focused on the

pathological changes in neurons within gray matter, but few

effective therapies have been translated from such unidimen-

sional studies into the clinic. The present study has a more

expansive focus on both gray matter and white matter and

investigates the rather underappreciated role of ECM in

health and disease. Recent studies have highlighted the

importance of white matter integrity in long-term recovery

after stroke and TBI.17,28 White matter, consisting of myelin-

ensheathed axons and myelin-producing oligodendrocytes,

is known to play a critical role in signal transduction and

communication across brain regions.29 White matter

destruction is an integral component of most human TBI

cases30,31 and accounts for profound sensorimotor and cog-

nitive impairments.3 In the present study, ECM treatment

preserved white matter integrity and improved long-term

neurological function after TBI. Two potential mechanisms

might underlie these improvements. First, ECM may directly

promote axonal growth and myelination. Multiple compo-

nents of the ECM, for example, tenascin-C, laminin, and

integrins, have been shown to facilitate oligodendrocyte pro-

genitor cell proliferation and migration, as well as their dif-

ferentiation into mature myelinating oligodendrocytes.32

The second explanation for the white matter protection

afforded by brain ECM might be an indirect effect from

microglia. Microglia are among the most potent regulators

of brain repair and regeneration. Microglia undergo pheno-

typic polarization in response to brain injury.33,34 Classically

activated (M1) microglia release pro-inflammatory media-

tors and are neurotoxic. In contrast, alternatively activated

(M2) microglia produce protective trophic factors and pha-

gocytose cellular debris, thereby facilitating postinjury tis-

sue repair.23 After TBI, there is a transient M2 activation of

microglia followed by a shift to the neurotoxic M1 pheno-

type,34 thereby propelling progressive tissue damage. Impor-

tantly, ECM implantation reduced microglial M1 activation

after TBI, which would be expected to mitigate toxic inflam-

matory responses and provide a favorable microenvironment

for tissue repair.35 Furthermore, the shift of microglial phe-

notype might also promote post-TBI white matter repair.17,28

Our results are consistent with previous findings that ECM

scaffold materials induce a change in macrophages pheno-

type from a predominantly pro-inflammatory population

immediately following implantation to an enriched

M2-like, regulatory population by 7 to 14 days after implan-

tation.36 The exact mechanism that controls microglial/

macrophage polarization has not yet been identified, and

future studies on this topic are warranted.

The heterogeneity of TBI pathogenesis demands that

novel therapies target multiple aspects of injury progression

in order to elicit true, long-lasting protection of both gray

matter and white matter. Our study suggests that brain ECM

is a candidate for such multifaceted protection, as it regulates

post-TBI white matter repair, microglial polarization, reac-

tive gliosis, and improves functional outcomes. ECM treat-

ment also holds great promise for potential use as a delivery

vehicle for other therapeutic agents. Notably, treatment with

brain ECM alone conferred limited protection against the

TBI lesion volume (Fig 1d to f). This was perhaps because

ECM alone was not sufficient to provide sustained support of

bioactive substances to facilitate postinjury tissue repair for

an extended period of time. While we are aware of this

limitation, the present study provides important information

that ECM itself achieved significant improvements in

post-TBI histological and functional outcomes and modu-

lated the postinjury microenvironment toward a favorable

state for tissue remodeling. Although transplantation of

neural stem/progenitor cells promotes neural regeneration

after brain injury, the survival and functional integration of

transplanted cells is severely limited, and a large tissue cav-

ity remains within the injury site.37–39 Combination of ECM

with other treatments, for example, transplantation of NSCs,

may boost the beneficial effects of either treatment alone.

Our previous study demonstrated that transplantation of

UBM carrying NSCs significantly reduced TBI lesion and

improved long-term sensorimotor and cognitive deficits.14

Given the beneficial tissue-specific effects of brain ECM

on CNS remodeling and its excellent biocompatibility,

future studies on cell therapies administered in combination

with brain ECM implantation are highly warranted.

Conclusion

The present study demonstrates long-lasting structural and

functional protection offered by brain-derived ECM against

TBI-induced tissue loss and neurological deficits. ECM

ameliorated TBI-induced neurodegeneration and white mat-

ter injury. Furthermore, ECM treatment mitigated glial scar

formation and pro-inflammatory microglial responses,

thereby promoting tissue remodeling and repair. In sum-

mary, brain ECM may be an ideal scaffold material for local

transplantation and injection in future studies to achieve a

more complete, full-scale recovery after TBI.
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