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Abstract: Object information significantly affects the performance of visual tracking. However, it is
difficult to obtain accurate target foreground information because of the existence of challenging sce-
narios, such as occlusion, background clutter, drastic change of appearance, and so forth. Traditional
correlation filter methods roughly use linear interpolation to update the model, which may lead to
the introduction of noise and the loss of reliable target information, resulting in the degradation
of tracking performance. In this paper, we propose a novel robust visual tracking framework with
reliable object information and Kalman filter (KF). Firstly, we analyze the reliability of the tracking
process, calculate the confidence of the target information at the current estimated location, and
determine whether it is necessary to carry out the online training and update step. Secondly, we also
model the target motion between frames with a KF module, and use it to supplement the correlation
filter estimation. Finally, in order to keep the most reliable target information of the first frame in the
whole tracking process, we propose a new online training method, which can improve the robustness
of the tracker. Extensive experiments on several benchmarks demonstrate the effectiveness and
robustness of our proposed method, and our method achieves a comparable or better performance
compared with several other state-of-the-art trackers.

Keywords: visual object tracking; correlation filter; reliable information; Kalman filter

1. Introduction

Visual object tracking is one of fundamental problems in the field of computer vision.
This task aims to estimate the target location in all frames after the initial frame target is
given. It has been widely used in many aspects of real life, including video surveillance [1],
human-computer interaction [2], robots [3] and automatic drive [4]. In recent years, this
field has attracted a large number of researchers and a lot of excellent works [5,6] have also
emerged. Although great progress has been made in visual tracking recently, visual object
tracking is still an open problem in the field of computer vision because of the challenging
scenarios (e.g., deformation, illumination variation, occlusion, background clutter, etc.) in
tracking process.

Recently, correlation filter (CF) [7–10] methods have attracted a lot of attention, which
have the advantages of accurate tracking precision and high tracking frame rate. CF meth-
ods use cyclic shift to approximate dense sampling, which greatly increases the number of
training samples, solves the problem of training samples shortage. Additionally, according
to the convolution theorem, convolution operation of correlation filter is converted to
frequency domain for calculation, which greatly reduces the computational complexity and
enhances the real-time performance. Although the CF tracking methods have these advan-
tages, there are still some drawbacks. Most CF methods adopt simple linear interpolation
to update the model, which will lead to two problems. First, the reliability of tracking
results are not analyzed. When facing challenging scenarios (e.g., occlusion, background
clutter, aspect ratio change, etc.), the noise information is gradually added to the filter when
online training and updating in tracking process and the model will be distorted. Second,
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the first frame information in the whole tracking process is the most reliable. However,
with the updating process, the first frame information in the model gradually decreases,
which reduces the robustness of the model. In addition, most CF methods do not consider
the relationship between frames.

In order to address these problems, we propose a robust visual tracking framework
based on reliable object information and Kalman filter. The method in this paper mainly
includes three modules: tracking results reliability analysis (TRRA) module, Kalman filter
(KF) module and reliable online training (ROT) module. As for the noise interference
problems in online training, the TRRA module will analyze the tracking results and select
the most reliable object information for model training to reduce the impact of noise. For
the problem of the decline of the object information in the first frame of the model, we
propose a new model training method, which uses the first frame and the current frame
jointly to train the model to improve the stability of the model. Finally, we use the KF
module to model the object motion information, so as to supplement the CF tracking and
improve the tracking robustness. Figure 1 shows that our tracker can handle complex
tracking scenarios and has better tracking performance than the basic tracker CFNet [11].

The main contributions of this method can be summarized as follows:

• We propose a new reliable online training method, which can preserve the useful first
frame target information.

• We develop a Kalman filter to describe the object’s motion information, then use the
trajectory information to guide the tracking process.

• We propose a reliability analysis method for tracking process. This ensures the validity
of the target information in the model training process.

• Extensive experiments are conducted on several benchmark datasets. The results
show the effectiveness and robustness of the proposed method. In addition, our
method achieves a competitive tracking performance compared with other state-of-
the-art trackers.

This paper is organized into 5 sections. Some related works are summarized in
Section 2 and the proposed method in this paper is described in Section 3. The experimental
results are provided in Section 4. Section 5 is the conclusion of this paper.

Figure 1. Tracking results in challenging scenarios. The first column is the initial frame, in which the
red box object specifies the target to be tracked. The following columns are the tracking results in
complex scenes, and the blue box represents the basic tracker, and the green box represents ours.
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2. Related Work
2.1. Correlation Filter Methods

The method based on correlation filter was pioneered by Bolme et al. in MOSSE [12].
MOSSE is a linear discriminant classifier based on single-channel pixel feature, and achieves
the frame rate over 600 FPS. Many improved CF methods have also been proposed sub-
sequently. KCF [7,13] introduces the kernel technique into the CF methods to improve
the discriminative ability of the classifier. Multi-channel features also greatly improve the
tracking performance of CF methods, such as KCF uses Histogram of Oriented Gradient
(HOG) features, SAMF [14] uses HOG and CN features. DSST [15] uses a one-dimensional
correlation filter and multi-scale template to accurately estimate the target scale, which
solves the problem of target scale variations and wins the championship on VOT2014.
In order to solve the problem of training correlation filters limited in small search area,
SRDCF [8] adds a space penalty term to the optimization objective function, which enables
the filter to track the target in a larger searching area and reduces the boundary effect
of correlation operation. With the introduction of deep convolution features by Deep-
SRDCF [16], the performance of SRDCF tracker has been further improved. C-COT [10]
learns discriminative convolution operators and obtains confidence map of the target all in
continuous space domain, to improve the richness of model and the localization accuracy.
In consideration of the great influence of background information on tracking performance,
Mueller et al. [17] propose a tracking framework to explicitly learn the background in-
formation around the target on CF trackers. This framework can be widely used in CF
trackers to improve the tracking performance. Bibi et al. [18] proposed an adaptive target
response framework, which can adaptively change the target response frame by frame,
making the tracker insensitive to error locations. Xia et al. [19] build a tracker with fused
deep features and correlation filters to solve challenge situations.

2.2. Deep Learning Methods

Recently, deep learning framework have been used in the field of visual tracking.
Since deep learning has the characteristics of large training data sets and computational
requirements, the trackers based on deep learning can be divided into two categories. One
is to use convolutional neural network (CNN) pretrained on other data sets as feature
extractor, and then combine with traditional methods to achieve object tracking. As
mentioned in the previous subsection, DeepSRDCF [16], C-COT [10] and ECO [20] combine
the deep features extracted by pretrained CNN with CF, and achieve the state-of-the-art
tracking performance. The other is to fully adopt deep learning structure, and then train
the tracker end-to-end on large data sets. MDNet [21] proposes a multi-domain learning
model based on CNN, which can separate the independent information of multiple targets
from the target. GOTURN [22] uses the image pairs of the previous frame target and
the current frame search area as input, and then directly regresses the position of the
target in the search area through the deep network. It can achieve the tracking frame
rate of 100FPS. SINT [23] and SiamFC [24] formulate the visual tracking as a similarity
learning problem. By training a similarity matching network on the detection dataset, the
target in the first frame is compared with the candidate regions of the subsequent frame to
realize the target estimating. There is no model updating in the tracking process, so they
achieve both high frame rate and high tracking accuracy. The backbone used in SiamFC
is relatively shallow, SiamDW [25] and SiamRPN++ [26] explore deeper networks to
improve tracking performance. CFNet [11] takes CF as a differentiable layer of deep neural
network to realize the end-to-end training of the network. SANT [27] presents structure-
attention networks to learn robust structure information of targets. HKSiamFC [28] adopts
Histogram model to explore target’s prior color information, and makes SiamFC more
robust in some complex environments.
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2.3. Temporal Stability

Making full use of temporal information is very important for the robustness of visual
object tracking. Many methods using temporal information are proposed to improve
tracking performance. One kind of tracker simply uses temporal information, such as
CF [7,8,13] and some deep trackers [11,23,24], by focusing on the region near the target
in the previous frame and suppressing other remote regions. The other kind of tracker
is to encode temporal information directly by Recurrent Neural Network (RNN) [29] or
Long Short-Term Memory (LSTM) [30,31]. In this paper, we use KF to model the object
motion, and then use the temporal information of video sequence to supplement the
tracking process.

3. Proposed Method

In this section, we will elaborate on the method proposed in this paper, which mainly
includes three components: reliability analysis, Kalman filter, and reliable online training
method. Finally, we also introduce the filter update and tracking details. The overview of
our proposed method is shown in Figure 2.

Figure 2. Pipeline of our proposed method. Firstly, the correlation filter is initialized with target information in the first
frame. Secondly, the correlation filter (CF) and Kalman filter are used to estimate the target location in the subsequent
frames, and then the reliability of the estimation is analyzed by reliability analysis module. Once the localization is reliable,
the model is trained jointly by using the target information in the initial frame and the current reliable information. Finally,
CF is updated. Besides, r is the reliability of the tracking result; Tr is the threshold to determine whether the tracking is
reliable. In addition, we use CNN to extract image features.

3.1. Reliability Analysis

The response map represents the tracking result on the current frame. So we can
calculate the reliability of the tracking process by analyzing the response map. Response
reliability can be analyzed through two aspects: precision and stability as shown in Figure 3.
Intuitively, a larger maximum response corresponds to a higher accurate location. The
precision corresponds to the magnitude of response of the correlation filter. So the precision
reliability is expressed as

µl = max(Sl), (1)
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where Sl represents the response map of frame l.
Stability reliability corresponds to the quality of filtering response. Peak Sidelobe

Ratio (PSR) is mentioned in the MOSSE tracker as a criterion to measure detection process.
PSR indicates the quality of filtering response and whether tracking drift occurs. It calculate
the ratio of sub-peak to main peak to estimate the reliability of tracking process.

PSR =
rsub

rmain
, (2)

where rsub, rmain represent sub-peak and main peak respectively.
However, this method has one problem, it can not deal with the problem of similar

object interference. For example, when a new similar object appears, there may be a higher
sub-peak around the main peak, resulting in a larger PSR value, but this does not indicate
that the tracking fails, and the tracking result is still reliable. So we improve the stability
reliability calculation as follows:

ρl = 1−min(
rmean

rmax
, 0.6), (3)

where rmax and rmean are the main peak and the mean value of response map respectively.
Threshold 0.6 is also used to mitigate the penalty when similar objects appear in the
search image.

Figure 3. The imagesin first column are frames of sequence Soccer, and corresponding precision
reliability and stability reliability are placed in the second column. Obviously, the reliability of target
image in first row is higher than that in second row.

From Equations (1) and (3), we can calculate the final tracking process reliability

rl = min
(

µl
µmax

· ρl , 1
)

, (4)

where µmax is the maximum value of all response maps that have been tracked. When
the target response reliability meets the condition of rl > Tr, it indicates that the tracking
process is reliable. Tr is a reliability threshold, which is set to 0.6 in this paper.
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3.2. Trajectory Modeling and Kalman Filter

Most of the traditional tracking methods [7,8,11,15,24] only focus on the target detec-
tion in the current frame in the tracking process, and rarely model the temporal information
of the target between frames. Visual tracking is based on video image sequence, so tem-
poral information is very important for robust tracking, especially in challenge tracking
scenes such as occlusion and the existence of similar distractors. In this paper, we use KF
to model the motion of the object and get the trajectory information.

Kalman filtering (KF) is an algorithm that uses the state equation of linear system to
estimate the system state through the input and output observation data of the system.
Given the system parameters, initial values and measurement sequences, the KF can
estimate the system state sequences iteratively. For the tracking tasks, because there is
no control variable, we can first ignore the input, and the process noise and observation
noise can be set as white noise. The label given in the initial frame is a bounding box
(x, y, w, h). In the motion model, we only consider the position information, so we can
formulate the system state as a 4-dimensional vector (xc, yc, vx, vy), where xc, yc represent
the object center, vx, vy is the velocity in both directions. In this paper, we approximate the
translation between frames as a constant velocity model.{

Xk = FXk−1
Zk = HXk + Vk

(5)

where F is the state transition matrix, H is measurement matrix, Vk is measurement noise,
and Zk is the measurement.

The process of state estimation can be divided into two steps: prediction step and
update step. We can use the following formulas to perform the prediction step:

X̂k,k−1 = FX̂k−1, (6)

Pk,k−1 = FPk−1FT , (7)

where X̂k−1 is the optimal estimation of the previous state, Pk−1 is the error covariance
matrix of the previous optimal state estimation.

The formula for calculating the Kalman gain is as follows:

Kk = Pk,k−1HT
(

HPk,k−1HT + R
)

, (8)

where R is the measurement error covariance matrix.
The measurement in this paper can be set as the output of CF. At last, the predicted

values can then be updated:

X̂k = X̂k,k−1 + Kk
(
Zk − HX̂k,k−1

)
, (9)

Pk = (I − Kk H)Pk,k−1, (10)

where X̂k is the posterior estimation of current state, I is the identity matrix, and Pk is the
error covariance matrix of the current state estimation. Thus, we get the optimal state
estimation of the current step through the motion model. The optimal estimation can be
regarded as a refined update of CF tracking results in visual tracking task. It can be a
powerful supplement to CF tracking method.

3.3. Reliable Online Training

The first frame contains the only absolutely reliable information of the target. Maintain-
ing the first frame information in the tracker is very important for robust tracking. In this
paper, we combine the first frame target information with the current target information to
train a reliable correlation filter.
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Firstly, we review the traditional CF tracking methods. The principle of CF method is
extremely simple while tracking at very high frame rate and maintaining high tracking
performance. The core advantages of this method lie in two points: (1) A Large number of
approximate samples are obtained by intensive sampling of the original signal through
cyclic shift. (2) In the process of training and detection, correlation operations are converted
into frequency domain, to simplify the calculation greatly. The CF methods reformulate
the tracking process as a ridge regression problem, train the filter through the samples and
labels, and then use the filter to locate the target in search patch and update the filter on
newly located object. The objective function of ridge regression can be expressed as follows:

min
w
‖Xw− y‖2 + λ1‖w‖2, (11)

where sample matrix X contains the data vector x and all its cyclic shift versions as row
vector, w is the correlation filter to be learned, y is the Gaussian shape regression response
corresponding to all samples, λ1 is a regularization parameter to prevent over-fitting of
the model.

Traditional CF trackers use linear interpolation to update the filter, which makes the
reliable initial target information decrease exponentially. These methods are effective for
tracking under simple situation. For challenging scenarios, noise information will distort
the learned filter, which decline the tracking performance or even lead to tracking drift. We
use reliable object information in initial frame and current object information to enhance
target foreground information and reduce the impact of noise.

Suppose that each target image Xl has M-dimensional features Xi
l , i = 1, ..., M, the cor-

responding filter for each feature channel is wi, i = 1, ..., M. We reformulate Formula (11) to

min
w

2

∑
l=1

βl

∥∥∥∥∥ M

∑
i=1

Xi
lwi − y

∥∥∥∥∥
2

+ λ1

M

∑
i=1
‖wi‖2, (12)

where βl , l = 1, 2 are the weights for the templates.
The summation formula can also be written in vector form

min
w
‖X̄w̄− ȳ‖2 + λ1‖w̄‖2, (13)

X̄ =

[√
β1X1

1 · · ·
√

β1XM
1√

β2X1
2 · · ·

√
β2XM

2

]
, w̄ =

 w1
...

wM

, ȳ =

[√
β1y√
β2y

]
.

Formula (13) can be solved by setting the gradient of the objective function to zero

w̄ =
(

X̄TX̄ + λ1 I
)−1

X̄T ȳ. (14)

According to the properties of cyclic matrix, fast calculation is carried out in frequency
domain. The solution in frequency domain is as follows

ˆ̄w =

D11 + λ1 · · · D1M
...

. . .
...

DM1 · · · DMM + λ1


−1∑2

l=1 βl(X1
l )
∗ � ŷ

...
∑2

l=1 βl(XM
l )∗ � ŷ

, (15)

Dji =
2

∑
l=1

βldiag((X̂ j
l )
∗ � X̂i

l), j, i = 1, ..., M,

where � represents elment-wise multiplication, ∗ denotes complex conjugate. The variable
with hat represents its corresponding Fourier transform.
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For multi-channel, the primal domain detection needs to use the corresponding filter
to detect in each channel of search image Z, and finally all the channel detection results
are integrated

f̂ (Z) =
M

∑
i=1

ẑi � ŵi. (16)

The solution in dual space is

ᾱ = (X̄X̄T + λ1 I)−1ŷ. (17)

Then, according to the properties of cyclic matrix, it is converted to frequency domain for
calculation

ˆ̄α =

[
D11 + λ1 D12

D21 D22 + λ1

]−1[√
β1ŷ√
β2ŷ

]
, (18)

where

Djl =
M

∑
i=1

√
β jβldiag(X̂i

j � (X̂i
l)
∗), j, l = 1, 2.

At last, the detection formula is

f̂ (Z) =
2

∑
l=1

M

∑
i=1

ẑi � (X̂i
l)
∗ � α̂l . (19)

3.4. Filter Update

Most traditional CF trackers adopt strict frame-by-frame update strategy. However,
the target information between adjacent frames changes little and has much redundant
information, which not only slows down the tracking speed, but also makes the tracking
performance degraded when facing complex tracking environment. Many researchers also
proposed improved method to update every N frames, but it still exist the problem of
inaccurate object information. In our method, we adopt the strategy of sparse updating and
reliability analysis of target information. Therefore, we can get more robust and accurate
updated filters. To obtain a better performance and avoid drastic change of model, we use
a moving average method to update correlation filter.

ŵt
i = (1− δ)ŵt−1

i + δŵnew
i , (20)

α̂t
l = (1− η)α̂t−1

l + ηα̂new
l , (21)

where δ, η are the corresponding learning rates.

3.5. Tracking Details

Deep features are extracted by VGG-Net-19 network [32] which removes all the full-
connection layers. The network is pre-trained on the ImageNet [33] ILSVRC dataset to
perform classification tasks, and the deep features extracted by VGG have also been used
in many other fields [11,34]. Instead of just using the output of the last layer of the network,
we use the output of 3-4, 4-4 and 5-4 layers. This is because the high-level features tend
to be semantic, with high stability but low resolution, which is conducive to improve the
robustness of the tracking process. The low-level features are more texture oriented, with
low stability but high resolution, which is conducive to improve the accuracy of localization
process. As shown in Figure 4, we calculate the response maps on the features of three
layers. Finally, we fuse the three response maps to get the final result,
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S f =
5

∑
l=3

wlSl , (22)

where S f is the fused result, Sl , l = 3, 4, 5 represent response maps of different layer features.
wl is the weight for fusing.

Figure 4. Details of the fusion process of response maps. The blue block represents the correlation
filter. First, the three stage features are fed into three correlation filters to obtain three response maps,
and then all the results are fused to compute the final location estimation.

In order to improve the accuracy and stability of the tracking process and make the
filter more suitable for future tracking targets, we use the reliability values of current frame
to calculate the weight

β1 = γl , β2 = 1− β1. (23)

The detailed tracking method is shown in Algorithm 1.

Algorithm 1 Robust Visual Tracking with Reliable Object Information and Kalman Filter

Input: Initial target position p0

Output: Estimated target position pt and updated correlation filters

1: Initialize the filters according to p0, and save object features X0

2: repeat

3: According to the pt−1 and correlation filters , calculate the p̄t in frame t;

4: Taking the computed p̄t as observation, estimate the target position p̂t by Kalman

filter;

5: Fuse the results of two modules, and obtain pt;

6: According to the fusion confidence map, analyse the reliability of the tracking process;

7: if reliability > Threshold then

8: Send X0, Xt into the online training module, and update the filters;

9: else

10: Continue;

11: end if

12: until The last frame of the sequences
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4. Experiments

In this section, we firstly demonstrate the effectiveness of this method with ablation
experiments. Then, we compare our proposed method with state-of-the-art trackers on
dataset OTB-2013 [35], OTB-2015 [36], VOT2016 [37], and VOT2018 [38].

4.1. Evaluation Criteria and Parameter Setting

On OTB dataset, we use OPE criterion [5,37] to evaluate all trackers, which including
two metrics: precision and success rate. Precision is the Euclidean distance between the
center position of estimated result box and ground truth bounding box. Twenty pixel
distance threshold is usually used to compare the performance of each tracker. Success rate
is a measure of the overlapping area of two boxes

IOU =
area(BT ∩ BG)

area(BT ∪ BG)
, (24)

where BT , BG are the estimation and ground truth respectively, ∩,∪ denote the intersection
area and union of two boxes. When the overlap area exceeds a certain threshold, such as
IOU ≥ 0.5 , we assume that the tracking in this frame is successful. The success rate can
be obtained by dividing the number of frames successfully tracked by the total number
of frames. Area Under Curve (AUC) value is usually used to ranking the trackers in
success plot.

In the VOT protocol, the trackers need to be reinitialized when tracking fails. Trackers
performance is measured by accuracy and robustness, which correspond to the bounding
box average overlap during successful tracking and failure rate, respectively. Expected
Average Overlap (EAO) is used to evaluate the overall tracker performance. Please refer to
VOT2016 [37] for details.

We have implemented the proposed method in MATLAB, in which the implementa-
tion of convolution neural network is based on MatConvNet toolbox [39]. All trackers run
on the same computer equipped with Intel Core i7-8700 CPU, 16GB RAM and a NVIDIA
GTX 1080 GPU.

4.2. Ablation Experiments

In this section, we conduct ablation experiments on OTB dataset, and analyze the
effectiveness of each module proposed in this paper. We use DCF as the baseline tracker,
but the difference is that we use convolution network to extract features. In order to
test the performance of different components, we build three different trackers using
baseline tracker and each component: (1) Baseline + RA is constructed by baseline and
reliability analysis module, (2) Baseline + KF is constructed by baseline and Kalman Filter,
(3) Baseline + OT indicates that the updated filter is trained by target information of the
first frame and the current frame.

The overall experimental results are shown in Figure 5. The left figure shows the
experimental results of the accuracy measurement. The number in the legend is the tracking
precision when the distance error threshold is 20. The right figure shows the total success
rate of each tracker. The number in legend is the AUC (area under curve). In precision plots,
Baseline + All obtains the optimal performance of 85.3%, 84.6% on OTB2013, OTB2015,
respectively. Compared with the other four constructed trackers, the precision performance
gains on OTB2013 are 2.3%, 3.2%, 4.3% and 5.9%, and those on OTB2015 are 2.1%, 3.0%,
4.3% and 6.1%, respectively. Similarly, Baseline + All obtains precision scores of 63.2%,
62.1% on OTB2013, OTB2015 in success plots. Compared with the other four trackers,
the success gains on OTB2013 are 1.6%, 2.9%, 4.5% and 6.7%, and those on OTB2015 are
1.5%, 2.5%, 4.3% and 5.9%, respectively. We can see that KF has the least improvement
in the performance of the benchmark tracker among the three modules. This is because
the accuracy of the benchmark tracker is low, which makes the measurement error in
the KF process larger and leads to suboptimal estimation results, which makes a single
KF module improve the performance of the benchmark tracker less than the other three
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modules. The RA module contributes the most to the performance gain of the baseline
tracker, this shows that reliable object information is very important for robust tracking
process. OT module also plays an important role in improving the performance of the
benchmark tracker. This is because the module always keeps a certain initial frame target
information in the model. For occlusion, long sequence and other scenes, it can effectively
keep the reliable information of the target and avoid tracking drift and failure.

(a) (b)

(c) (d)

Figure 5. Overall results of ablation experiments by using one-pass-evaluation on the OTB-100
dataset. The upper and lower pairs are the results on OTB2013 and OTB2015 respectively.

The OTB dataset is manually tagged with 11 different attributes, which represents
the challenging aspects. These attributes include—Illumination Variation, Occlusion, Fast
Motion, Background Clutters, Out-of-Plane Rotation, Deformation, In-Plane Rotation,
Low Resolution, Scale Variation, Motion Blur, Out-of-View. These subsets based on at-
tributes play an important role in evaluating tracker performance and further improvement.
Tables 1 and 2 show the precision scores and AUC scores of each tracker on the 11 attribute
based subset, respectively. We can see that Baseline + All has an absolute advantage over
other trackers in all attribute subsets. Our proposed framework has improved the per-
formance of the baseline tracker greatly, and the performance gain of the baseline tracker
based on each module is consistent with the total result. This further confirms that reliable
target information is the most important for the tracking process, and KF also provides
important supplementary information for robust tracking.
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Table 1. Precision scores of ablation experiments on 11 attributes of OTB100.

Baseline + All Baseline + RA Baseline + OT Baseline + KF Baseline

Illumination Variation 0.848 0.823 0.813 0.796 0.786
Occlusion 0.831 0.801 0.796 0.775 0.771

Fast Motion 0.763 0.742 0.741 0.726 0.706
Background Clutters 0.856 0.836 0.824 0.819 0.786

Out-of-Plane Rotation 0.828 0.811 0.795 0.791 0.782
Deformation 0.852 0.831 0.825 0.814 0.805

In-Plane Rotation 0.830 0.822 0.814 0.807 0.789
Low Resolution 0.798 0.776 0.765 0.758 0.737
Scale Variation 0.817 0.801 0.796 0.785 0.754

Motion Blur 0.788 0.765 0.753 0.750 0.736
Out-of-View 0.721 0.709 0.691 0.679 0.667

Table 2. Area under curve (AUC) scores of ablation experiments on 11 attributes of OTB100.

Baseline + All Baseline + RA Baseline + OT Baseline + KF Baseline

lllumination Variation 0.603 0.582 0.579 0.564 0.556
Occlusion 0.598 0.581 0.572 0.552 0.539

Fast Motion 0.573 0.558 0.546 0.530 0.524
Background Clutters 0.628 0.612 0.609 0.597 0.583

Out-of-Plane Rotation 0.615 0.592 0.583 0.572 0.551
Deformation 0.606 0.586 0.574 0.559 0.531

In-Plane Rotation 0.624 0.608 0.582 0.583 0.568
Low Resolution 0.542 0.521 0.516 0.503 0.496
Scale Variation 0.581 0.571 0.559 0.542 0.532

Motion Blur 0.599 0.583 0.577 0.552 0.548
Out-of-View 0.532 0.519 0.503 0.498 0.482

4.3. Comparison with Other Trackers

In order to analyze and evaluate the proposed tracker more comprehensively, we
compare it with other trackers on OTB and VOT datasets.

OTB Dataset. We compare our tracker with 18 latest methods: TLD [40], CSK
[13], MOSSE [12], Struck [41], KCF [7], DSST [15],CFNet [11], Staple [42], SiamFC [24],
SiamDCF [43], SiamTri [44], SRDCF [8], DLSSVM [45], CNN-SVM [46], ACFN [30], SRDC-
Fad [47], DeepSRDCF [16], TRACA [48]. We also carried out experiments on OTB2013 and
OTB2015, respectively.

Figure 6 shows the tracking performance of all trackers on benchmark OTB2013. Our
tracker achieves the second-best performance in distance precision score of 86.3%, but the
AUC score of 65.1% outperforms all 18 other trackers. The best tracker TRACA outperforms
our tracker by 1.9% in distance precision, but its AUC performance is 0.8% lower than ours.
Figure 7 illustrates the tracking performance of all trackers on OTB2015 dataset. We can
see that our tracker’s AUC and DP scores are 85.6% and 64.5% respectively, which makes
our tracker completely outperforms all other trackers in two indicators. The AUC and DP
scores of the best performance tracker TRACA on OTB2013 decreased by 7.7% and 4.6% on
OTB2015, respectively. The performance of ACFN on OTB2015 is also decreased by 5.2%
and 2.9%. Different from many other trackers, the performance of our tracker on OTB2015
is slightly lower than that of OTB2013, which decreases by 0.7% and 0.6% respectively.
This shows that our tracker can deal with complex tracking scene better and has high
tracking robustness. Overall, the experiment results on two benchmarks demonstarte that
our tracker performs well against other 18 tracker.
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Figure 6. The precision and success scores of our tracker and other trackers on the OTB2013 dataset.
The two columns of numbers in the legend represent the AUC score and the precision score at a
threshold of 20 pixels. All trackers are sorted in the legend by precision scores.

Figure 7. The precision and success scores of our tracker and other trackers on the OTB2015 dataset.
The two columns of numbers in the legend represent the AUC score and the precision score at a
threshold of 20 pixels. All trackers are sorted in the legend by precision scores.

VOT2016 Dataset. The VOT2016 dataset contains 60 short video sequences, and the
accuracy (A), robustness (R) and expected average overlap (EAO) are three important
criterion for evaluating trackers. In addition, EFO is often used to measure tracking
speed. We compare our approach with 18 other state-of-the-art tracking algorithms on
the VOT2016 benchmark. Figure 8 shows the EAO scores and rankings of all trackers on
VOT2016. The best tracker is CCOT, with an EAO score of 0.331. Our tracker ranks second,
with a performance slightly lower than that of CCOT, with an EAO score of 0.328. It is
worth noting that the trackers above the horizontal line in the figure can be considered
as state-of-the-art. Table 3 reports the detailed performance information about ours and
several top trackers on VOT2016. Of all the trackers, our tracker ranked fourth in accuracy
and first in robust. Although our tracker’s accuracy score is inferior to the top three, it is
only 0.5% lower than the best tracker. Our tracker ranks first in robust, which shows that
reliable target information and motion information are very important to the robustness of
the tracker. Our tracker can adapt to a variety of challenging tracking scenarios.
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Figure 8. Expected average overlap scores ranking for compared trackers on the VOT2016 benchmark.
The further to the right, the better the performance of the tracker.

Table 3. Detailed performance information about ours and several top tracker on VOT2016. Red, blue and green highlighted
numbers indicate the 1st, 2nd and 3rd respectively.

Ours CCOT TCNN SSAT MLDF Staple EBT STAPLEp DNT SSKCF SiamFC

EAO↑ 0.328 0.331 0.325 0.321 0.311 0.295 0.291 0.286 0.278 0.277 0.277
Accuracy↑ 0.552 0.539 0.554 0.577 0.490 0.544 0.465 0.557 0.515 0.547 0.549
Robust↓ 0.230 0.238 0.268 0.291 0.233 0.378 0.252 0.368 0.329 0.373 0.382

EFO↑ 10.16 0.507 1.049 0.475 1.483 11.14 3.011 44.77 1.127 29.15 5.444

VOT2017 Dataset. VOT2017 maintains 60 video sequences just like VOT2016. The
difference is that VOT2017 removes 10 least challenging sequences from VOT2016, and
adds 10 new sequences while keeping the overall attribute distribution unchanged. At
the same time, it also re-calibrates the ground truth of all sequences. Figure 9 shows the
EAO scores and rankings of all compared trackers on VOT2017. We can see that the best
tracker is LSART with an EAO score of 0.323, while our tracker ranks third with an EAO
score of 0.287. CCOT, the best tracker in VOT2016, has an EAO score of 0.267, which is
2.0% lower than our tracker. This is mainly due to the replacement of 10 new sequences,
which makes the VOT2017 dataset more challenging than VOT2016, and our tracker has
higher robustness in complex scenes, so our tracker performs better on VOT2017 than
CCOT. Table 4 reports the detailed performance information about ours and 10 top trackers
on VOT2017. We can see that our tracker ranked third in term of robustness with a score of
0.273, better than 0.318 of CCOT.

Figure 9. Expected average overlap scores ranking for compared trackers on the VOT2018 benchmark.
The further to the right, the better the performance of the tracker.
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Table 4. Detailed performance information about ours and several top tracker on vot2017. Red, blue and green highlighted
numbers indicate the 1st, 2nd and 3rd respectively.

Ours LSART CFWCR CFCF ECO Gnet MCCT CCOT CSRDCF SiamDCF MCPF

EAO↑ 0.287 0.323 0.303 0.286 0.280 0.274 0.270 0.267 0.256 0.249 0.248
A↑ 0.486 0.493 0.484 0.509 0.483 0.502 0.525 0.494 0.491 0.500 0.510
R↓ 0.273 0.218 0.267 0.281 0.276 0.276 0.323 0.318 0.356 0.473 0.427

4.4. Quantitative Results

In order to analyze the tracking performance more intuitively, we compare our tracker
with 10 other trackers on several challenging video sequences on OTB datasets, and give
the quantitative tracking results in Figure 10. We can see that our tracker can accurately
locate the target under the influence of occlusion, long sequence, distractors and other
factors. It shows that our tracker can reliably keep the target information, and obtain the
motion information between frames through KF module, which makes it possible to deal
with a variety of complex scenes. So our tracker achieves the best performance in these
challenging sequences.

Figure 10. Quantitative tracking results of our tracker with other 10 trackers on OTB dataset. The
video sequences are Couple, Doll, DragonBaby, Football1, Girl2 and Skating2_1 from top to bottom.
The bottom illustration shows the colors for all trackers.
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5. Conclusions

In this paper, We propose a robust visual tracking framework which mainly includes
three modules: reliability analysis module, reliable online training and update module,
and KF module. The reliability analysis module is mainly used to analyze the tracking
process and identify whether the training update step can be carried out to prevent the
introduction of noise information. The reliable online training update module is mainly to
fuse the information of the first frame and the current frame to maintain the most reliable
target information in the tracking process. KF module models the motion information
between frames, which provides important supplementary information for our tracker. The
proposed method improves the tracking performance of the tracker in complex scenes such
as appearance change, tracking drift and occlusion. We validate the proposed framework
on several benchmark datasets. Our tracker achieves the second and first AUC scores on
OTB2013 and OTB2015, respectively. On VOT2016 and VOT2017 datasets, our tracker
is also at the top. The tracking results show that our tracker achieves state-of-the-art
performance. However, we observed that our tracker cannot deal with the deformation of
objects very well. In future work, we will continue to optimize our tracker.
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