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Simple Summary: This review summarizes gene-expression profiling insights into the background
and origination of diffuse large B-cell lymphomas (DLBCL). To further unravel the molecular biology
of these lymphomas, a consortium panel called BLYM-777 was designed including genes important for
subtype classifications, genetic pathways, tumor-microenvironment, immune response and resistance
to targeted therapies. This review proposes to combine this transcriptomic method with genomics,
proteomics, and patient characteristics to facilitate diagnostic classification, prognostication, and the
development of new targeted therapeutic strategies in DLBCL.

Abstract: Gene-expression profiling (GEP) is used to study the molecular biology of lymphomas.
Here, advancing insights from GEP studies in diffuse large B-cell lymphoma (DLBCL) lymphomagen-
esis are discussed. GEP studies elucidated subtypes based on cell-of-origin principles and profoundly
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changed the biological understanding of DLBCL with clinical relevance. Studies integrating GEP and
next-generation DNA sequencing defined different molecular subtypes of DLBCL entities originat-
ing at specific anatomical localizations. With the emergence of high-throughput technologies, the
tumor microenvironment (TME) has been recognized as a critical component in DLBCL pathogenesis.
TME studies have characterized so-called “lymphoma microenvironments” and “ecotypes”. Despite
gained insights, unexplained chemo-refractoriness in DLBCL remains. To further elucidate the
complex biology of DLBCL, we propose a novel targeted GEP consortium panel, called BLYM-777.
This knowledge-based biology-driven panel includes probes for 777 genes, covering many aspects
regarding B-cell lymphomagenesis (f.e., MYC signature, TME, immune surveillance and resistance to
CAR T-cell therapy). Regarding lymphomagenesis, upcoming DLBCL studies need to incorporate ge-
nomic and transcriptomic approaches with proteomic methods and correlate these multi-omics data
with patient characteristics of well-defined and homogeneous cohorts. This multilayered method-
ology potentially enhances diagnostic classification of DLBCL subtypes, prognostication, and the
development of novel targeted therapeutic strategies.

Keywords: gene-expression profiling; DLBCL; integration genomics; localization

1. Introduction

The main challenge for diffuse large B-cell lymphoma (DLBCL), not otherwise spec-
ified (NOS), the most common lymphoid malignancy, is to improve survival outcomes.
Approximately 40% of patients die or relapse within 3 years from diagnosis after standard
one-size-fits-all immunochemotherapy R-CHOP (rituximab, cyclophosphamide, doxoru-
bicin, vincristine, prednisone) [1,2]. As an explanation, DLBCL is generally assumed to be
a complex disease with significant genetic heterogeneity resulting in different biological
behavior and drug-refractoriness. Many studies examined the molecular background to
understand the various mechanisms of lymphomagenesis and therapy resistance in DLBCL.
Recurrently mutated genes corresponding to multiple pathways have been discovered
demonstrating the intricate molecular background of DLBCL [3–5]. Despite these insights,
an in-depth understanding of this biological heterogeneity is still lacking.

Over the past decades, analysis of the molecular background of DLBCL has advanced
through gene-expression profiling (GEP) studies allowing for the investigation of cell-of-
origin (COO), MYC expression and tumor microenvironment (TME). This review focuses
on the emerging role of GEP studies in elucidating the biological heterogeneity of DLBCL,
thereby improving diagnostic classification, prognosis, and ultimately the development
of targeted treatment. Finally, to facilitate subsequent molecular studies in DLBCL, we
propose a knowledge-based biology-driven and ready-to-use targeted GEP consortium
panel, named BLYM-777, including probes targeting 777 genes, covering many aspects of
lymphoma B cells and the TME.

2. Technical Approaches of Gene-Expression Profiling

Several GEP methodologies have been applied in DLBCL studies, as summarized in
Table 1 and Figure 1. The most conventional technique is reverse-transcription quantitative
polymerase chain reaction (RT-qPCR), in which mRNA is converted into complementary
(c)DNA using reverse transcriptase and this cDNA is subsequently amplified using dyes
or specific probes for quantification of the PCR product after each amplification cycle.
This used to be a monogenic, labor-intensive method that was unable to screen multiple
high-throughput transcripts, but major improvements in throughput have been made over
the years allowing simultaneous amplification of multiple genes in parallel [6].
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Table 1. Literature overview of relevant DLBCL studies with their respective GEP methods, number
of included cases and genes, cluster targets and clinical relevance. COO = cell-of-origin, TME = tumor
microenvironment, N.A. = not available, complete gene lists of these studies were not available.

First Author(s) Year GEP Method No. of
Cases

No. of
Genes

No. of
Genes in

BLYM-777
Clusters Clinical Relevance

Alizadeh,
Elsen, et al. [7] 2000 Microarrays 47 2984 N.A. COO

COO classified DLBCL into GCB or ABC
with prognostic impact, possible benefit

from different treatment options

Rosenwald,
et al. [8] 2002 Microarrays 240 100 N.A. GEP subgroups

COO classification into GCB and non-GCB
(ABC and type 3), molecular predictor of

survival after treatment

Monti, Savage,
et al. [9] 2005 Microarrays 176 2118 97 Consensus

clustering

Three identified DLBCL clusters; oxidative
phosphorylation, BCR/proliferation or
host response, no relation with survival

Lenz, et al. [10] 2008 Microarrays 414 382 60 Stromal
signatures

Consensus clustering identified two
stromal signatures predictive for survival

and one GCB cluster

Alizadeh,
Gentles, et al.

[6]
2011 RT-qPCR 787 2 2 LMO2 and

TNFRSF9
Two survival-correlated biomarkers and

associated with TME

Scott, et al. [11] 2014 NanoString 119 20 20 COO
Validation of COO classification into GCB

or ABC, reflecting survival, possible
benefit from different treatment options

Carey, et al.
[12] 2015 NanoString 55 200 33 MYC high- and

low-risk clusterss
Classification and stratification of

MYC-driven, aggressive BCL

Dybkær,
Bøgsted,
et al. [13]

2015 Microarrays 1139 223 37
B-cell associated
gene signature

(BAGS)

Further discrimination of COO in
centrocytes, centroblasts, plasmablasts, or
memory B cells, with survival outcomes

Ciavarella,
Vegliante,

Fabbri, et al.
[14]

2018

Publicly
available

GEP-data and
NanoString

482 45 45 TME clusters

TME classification presenting high
prevalence of myofibroblasts, dendritic
cells, or CD4 T cells related to survival

outcomes

Michaelsen,
et al. [15] 2018 NanoString 1058 128 53

BAGS2Clinic
(expanded

BAGS)

Intensified BAGS classification in
centrocytes, centroblasts, plasmablasts, or

memory B cells, predictive for survival

Davies,
et al. [16] 2019 Illumina HiSeq

sequencing 1076 N.A. N.A. COO
Molecular characterization for prospective
stratification, randomization and analysis

of DLBCL subgroups

Ennishi,
et al. [17] 2019 RNA-seq 157 104 43 DHITsig

Defined GEP signature high-grade B-cell
lymphoma double or triple hit with BCL2

translocation

Staiger,
Al-

tenbuchinger,
Ziepert,

et al. [18]

2020 NanoString 466 145 17

Lymphoma-
associated

macrophage
interaction
signature
(LAMIS)

Signature indicating the presence of
macrophages and associated with poor

survival

Tripodo,
Zanardi,
Ianelli,

Mazzara,
et al. [19]

2020 NanoString 551 87 52

Spatial dark-
versus light-zone

microenviron-
ment

signature

Distinguishing COO GCB subtype into
dark or light zone with prognostic

significance

Kotlov,
et al. [20] 2021

Publicly
available
GEP-data

4580 203 144
Functional gene
signatures and
TME clusters

Four TME specific categories associated
with survival and with opportunities for

novel targeted treatment

Steen, et al.
[21] 2021

Bulk/single-
cell RNA

sequencing
1584 20380 192

Cell states and
ecotypes of the

TME

Discrimination into cell types and cell
states within the TME, correlated with

survival, and facilitating development of
new targeted treatment strategies
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Figure 1. The meaningful arrival of GEP in DLBCL. This timeline presents the implementation of GEP
strategies in DLBCL studies throughout the past two decades and marks the relevant findings with
their corresponding techniques [7,9–15,17–21]. Within the lymphoma research field, technological
advances shifted the approach from microarrays (red) to NanoString (green) and ultimately (single
cell) RNA sequencing (blue).

Over two decades ago, the application of a new gene expression profiling technique
resulted in a hallmark study of DLBCL [7]. This microarray-based technology allows the si-
multaneous assessment of thousands of gene-transcripts. These microarrays contain probes
that are complementary to fluorescently labelled cDNA produced by reverse transcription
of mRNA from the genes of interest. After hybridization, digital cameras measure fluores-
cence intensity and translate this to gene-transcript counts. This method requires mRNA
input from preferentially fresh frozen material over formalin-fixed paraffin-embedded
(FFPE) samples. However, in routine diagnostics, the material is generally preserved in
FFPE rather than fresh frozen due to practical considerations which impeded a broad
implementation of studies using microarray-based technologies. Nowadays special FFPE
kits (f.e., Agilent and Illumina) are available that allow the routine analysis of RNA isolated
from FFPE.

The NanoString nCounter system (Seattle, WA 98109, USA) is an alternative hybridization-
based gene expression profiling method. This technique detects and counts several hun-
dreds of mRNA transcripts by using probe specific molecular “barcodes” combined with
fluorescent-microscopic imaging. This system is efficient for targeted GEP strategies with
(partially) degraded RNA samples (i.e., FFPE). After entering the lymphoma research
field in 2014, the NanoString nCounter system has been widely used in studies to identify
lymphoma subtypes.

With the advent of next-generation sequencing (NGS) techniques, RNA sequencing
(RNA-seq) was developed as an alternative approach for GEP, enabling the analysis of entire
transcriptomes. Besides the generation of gene-expression profiles, RNA-seq enables the
analysis of gene fusions, mutations, single nucleotide polymorphisms, or even copy number
alterations. For the generation of sequencing libraries, RNA is reverse transcribed to cDNA,
and subsequently fragmented. Like microarray-based GEP assays, methodologies for RNA-
seq using RNA isolated from FFPE has been developed and allows generation of reliable
gene-expression profiles also from poor quality RNA. A derivative of RNA-seq is single-cell
RNA-seq (scRNA-seq) for examination of the transcriptome of each individual nucleus as
opposed to (tumor) bulk analysis. The main drawback of scRNA-seq is that massive data is
produced that needs extensive bioinformatic procedures for appropriate analysis.
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More comprehensive overviews of (dis)advantages of currently available technologies
have been reviewed extensively by Narrandes et al. and Jiang et al. [22,23]. All of the above-
described techniques, RT-qPCR, microarrays, NanoString, and (sc)RNA-seq, have been
applied in DLBCL studies and are discussed below for their relevance to DLBCL pathogenesis.

3. The Arrival of Gene-Expression Profiling

As presented in Table 1 and Figure 1, several relevant DLBCL studies reported on the
use of gene-expression assays with different platforms. As a cornerstone, Alizadeh et al. [7]
were the first in 2000 to demonstrate a large diversity between DLBCL cases in a microarray-
based gene-expression study. This study defined two molecularly distinct DLBCL subtypes
with either germinal center B-cell (GCB) or activated B-cell like (ABC) phenotypes, as shown
in Figure 2. Tumors classified as GCB showed a significantly superior overall survival
(OS) compared to ABC DLBCL cases. Accordingly, Rosenwald et al. [8] independently
reported similar results with an additional third discriminating DLBCL subtype (designated
as type 3), which has a similar survival rate as ABC DLBCL, and grouped together are
generally referred to as non-GCB subtypes. These results were at the basis of identifying
the COO to better understand lymphomagenesis. Several other studies aimed to optimize
the GCB/non-GCB COO classification, explore other potential signatures for DLBCL, and
validate previous findings [6,24–27].

Figure 2. Genetic perspectives of B-cell lymphomagenesis. Under normal physiological circum-
stances, the germinal center is crucial for B-cell development and maturation, defining different
cellular subtypes and states throughout this continuing process. DLBCL lymphomagenesis shows
a GCB subtype in the earlier stages of development and an ABC subtype in later stages, represent-
ing COO classification. The COO classification is substantiated by distinct characteristic GEP and
mutational profiles between GCB and ABC. This insight shows the importance of combining DNA
NGS and GEP in a more multidimensional approach that improves classification and prognostication
of DLBCL.

The advent of the NanoString nCounter platform optimized gene-expression analysis
of FFPE samples. Scott et al. [11] were the first to generate a COO classification using
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the NanoString technology in 2014. This approach utilized a targeted panel (Lymph2Cx),
including 20 genes, and presented high intra-institutional concordance and overlap with
microarray-based GEP. Subsequently, Dybkær et al. [13] aimed to further subdivide the
classified COO subtypes of GCB and ABC into centrocytes, centroblasts, memory B-cells
and plasmablasts. This initially led to the design of a microarray-based assay called B-
cell associated gene signature (BAGS) including 223 genes, demonstrating a significantly
different progression-free survival (PFS) and OS between the four cellular subtypes. Subse-
quently, in 2018, Michaelsen et al. [15] modified the BAGS assay to a new BAGS2CLINIC
panel for the NanoString platform, including 128 genes, enabling fast and easy-to-use GEP
with high overlap with the original BAGS classifier. Compared to the Lymph2Cx panel, the
BAGS2CLINIC panel is more comprehensive and provides a more detailed stratification.
Survival analyses using the COO assignment by BAGS2CLINIC indicated an inferior PFS
and OS for the memory B-cell subtype compared to the plasmablast subtype, both originally
classified as ABC subtypes. Although the centroblast and centrocyte subtypes were both
classified as GCB subtypes, an inferior PFS was identified for the centroblast subtype, with
no difference in OS.

In 2020, Tripodo et al. [19] generated a spatial signature including 87 genes that
discriminates between the dark and light zone of the germinal center, with similarities to
COO and BAGS(2CLINIC) classifications. The subtypes identified by this panel showed
prognostic significance, as a light-zone-like phenotype was associated with superior OS
compared to a dark-zone-like phenotype.

With the advancing insight into COO, interest and understanding of the TME have in-
creased. In 2005 Monti et al. [9] analyzed transcriptional signatures in DLBCL and reported
a so-called “consensus clustering” classification. This study implemented microarrays and
sequential consensus cluster analysis to assess the stability of clusters in gene-expression
data after different clustering methods. Three distinct DLBCL clusters were identified, two
of which contained predominantly B-cell expression profiles characterized by oxidative
phosphorylation and B-cell receptor/proliferation. In contrast, the third cluster was en-
riched for T-cell-mediated immune response and classical complement pathway and as
such reflected the interaction of the microenvironment with the tumor. In contrast to COO,
no correlation was found between the consensus clusters and survival [9].

In 2008, Lenz et al. [10,28] identified a GCB cluster and two stromal signatures, char-
acterized by their TME association. The first stromal signature (stromal-1) reflected the
extracellular matrix and histiocyte infiltration and was associated with a favorable PFS and
OS in comparison to the second stromal signature (stromal-2) which represented tumor
angiogenesis. Over the following years, other independent studies investigated these
stromal signatures and other biological markers for their relevance to survival, reporting
similar findings [21,26,29]. The identification of these stromal signatures emphasized the
importance of studying the TME to improve the biological understanding of DLBCL [10].

Carey et al. [12] performed targeted GEP and identified a molecular classifier of MYC
activity including 80 genes that stratified DLBCL patients into high- (MYC score > 0.5) and
low-risk (MYC score < 0.5) groups. Patients with low MYC scores showed significantly
better OS. This classification was further optimized by Ennishi et al. [17] who generated a
double-hit gene-expression signature (DHITsig) including 104 genes. DHITsig positivity
was determined by overexpression of genes of high-grade B-cell lymphoma double hit or
triple hit with BCL2 translocations. DHITsig-positive cases showed strong cell-autonomous
survival and proliferation signals and reduced dependence on the TME. Using this DHIT-
sig, approximately twice as many tumors were classified as high-grade B-cell lymphoma
than with conventional fluorescence in situ hybridization (FISH). PFS and OS were sig-
nificantly worse in DHITsig-positive patients in comparison to DHITsig negative patients.
Plaça et al. [30] have successfully reproduced the MYC classifier of Carey et al. [12] and the
consensus clustering of Monti et al. [9] in 175 samples of the HOVON-84 trial on a panel of
117 genes using the NanoString platform. These GEP signatures can facilitate the search
for optimization of treatment algorithms, for example, which patients would benefit from
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the addition of lenalidomide to standard R-CHOP treatment (as described by Chamuleau
et al. [31]) or to common intensive chemotherapy regimens.

In summary, along with technological advancements over time, several GEP signatures
of lymphoma cells have been identified which have significantly augmented the biological
knowledge of DLBCL, distinguishing several COO and TME-based molecular subtypes
with prognostic relevance.

4. Integrating Gene-Expression Profiling and Mutational Profiles

DLBCL belongs to the spectrum of cancers with high mutational burden, reporting
7.8 driver mutations per case and a mean number of 23.5 mutations in ABC and 31 in GCB
DLBCL patients, respectively [3,4,32–35]. Using (targeted) DNA (t)NGS technologies, from
now on referred to as NGS, multiple studies identified the involvement of various intracel-
lular signaling cascades (f.e., apoptosis, DNA damage response, JAK/STAT, MAPK, NF-κB,
NOTCH, PI3K) in DLBCL lymphomagenesis. Karube et al. [36] defined the relevance
of genomic alterations in genes involved in the NOTCH pathway in DLBCL suggesting
that analysis of aberrations in defined pathways may be more instructive than indepen-
dent genes alone. Recently, several large NGS studies have shown that various molecular
subgroups informative for prognosis can be distinguished in DLBCL [4,5,37–40]. In 2018,
Chapuy et al. [4] identified five robust molecular DLBCL subgroups, C1-C5. Similarly,
Schmitz et al. [5] identified four distinct subtypes, MCD (co-occurrence of MYD88L265P and
CD79B mutations), BN2 (BCL6 fusions or NOTCH2 mutations), N1 (NOTCH1 mutations),
and EZB (EZH2 mutations or BCL2 translocations). Wright et al. [37] revealed six genetic
subtypes, including the four subtypes that Schmitz et al. already reported, supplemented
by the A53 (TP53 mutations) and ST2 (SGK1 and TET2 mutations) subtypes, known as
the LymphGen profiles. Similarly, Lacy et al. [38] identified five molecular subgroups,
MYD88, BCL2, SOCS1/SGK1, TET2/SGK1, NOTCH2 and an unclassified group. From these
large sequencing studies at least five distinct molecular subgroups have been defined,
partially representing COO subtypes (Figure 2); MYD88/CD79B (NF-κB pathway), TP53,
BCL2/NOTCH2, SOCS1/SGK1 (JAK/STAT pathway) and MYC.

While the pathogenicity of most aberrations on lymphomagenesis is well understood,
for a deeper understanding of DLBCL biology it remains of major importance to comple-
ment these molecular profiles with gene-expression profiles. An elegant example is a key
study by Steen et al. [21], that identified different B-cell states by GEP and integrated this
with genomic data, by comparing the B-cell states to the results of the genomic Lymph-
Gen profiles and the C1-C5 subtypes [4,37]. This comparison resulted in a partial overlap
between these two different subtyping methods and the identified B-cell states, but also re-
vealed significant differences between these mutational and gene-expression classifications.
These differences showed that tumors within similar mutational profiles differed in their
transcriptional profile and depend on different effects on downstream pathways.

This concept was underscored by Shouval et al. [41], who identified two comple-
mentary mechanisms in TP53-mutated DLBCL using transcriptomic profiling. The first
mechanism was the downregulation of IFN signaling and the second was characterized
by a reduced tumor infiltration of CD8-positive T cells. Both mechanisms contributed to
treatment resistance and thereby to inferior survival. This approach demonstrated that
TP53-mutated DLBCL could be further subdivided by transcriptomic profiling improving
the understanding of clinical behavior or treatment responses of these tumors.

As summarized above, Figure 2 shows that GEP and NGS data complement each
other and provide clear added value in understanding the complicated molecular subtypes
of DLBCL, for example, for further subtyping of COO classes. This strategy has shifted the
field of research towards a more multidimensional approach connecting NGS and GEP
data from individual DLBCL cases across the entire study cohort.
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5. The Tumor Microenvironment as Defined by Gene-Expression Profiling

The development of GEP technologies has offered the possibility to study the TME
more extensively. To address various biological and clinical questions, GEP approaches
have primarily focused on the role of fibroblasts, macrophages, or T cells in DLBCL lym-
phomagenesis. Targeted panels with probe sets covering genes encompassing discrimi-
natory aspects of fibroblasts, macrophages, T cells, or other cells, and their activation and
differentiation states have been utilized. With this TME-directed GEP strategy, several TME
signatures have been defined in DLBCL, as presented in Figure 3.

Figure 3. Diversity of TME signatures in DLBCL. Several GEP signatures of lymphoma cells have been
identified that have significantly augmented the biological knowledge of DLBCL. As presented, these
signatures could be subdivided into three categories: tumor microenvironment, B-cell pathways, and
signature assays. A relevant gene selection of potential pathways related to B-cell lymphomagenesis
(purple), cell types within the TME (green), and other specific signature assays (grey) are depicted.
GEP studies have demonstrated its added value in characterizing the DLBCL microenvironment and
the discovery of early principles of their intriguing mechanisms. However biological issues remain,
and further research is needed to determine the true clinical benefit.

Analysis of GEP data of 414 untreated DLBCL samples identified three distinct gene-
expression signatures; GCB, stromal-1, and stromal-2 [10]. The stromal-1 signature was
associated with favorable survival. A computational CIBERSORT method incorporating
17 immune and stromal cytotypes into a 1028-gene matrix was applied to the previously
produced data [10,14,42]. This analysis revealed that a high prevalence of myofibroblasts,
dendritic cells, or CD4-positive T cells was associated with superior PFS and OS as com-
pared to an abundance of activated natural killer cells and plasma cells. Subsequently, a
45-gene set developed for NanoString-based profiling demonstrated a favorable survival
of DLBCL with a high prevalence of these similar cell types [14].

Furthermore, a lymphoma-associated macrophage interaction signature (called LAMIS,
including 145 genes) was developed that specifically targets macrophages with the M2 phe-
notype that are immunosuppressive and promote tumor progression [18]. High expression
of the LAMIS-signature indicated poor PFS and OS, independent of COO subtype and
International Prognostic Index (IPI) score [14,18]. Accordingly, Marcelis et al. [43] character-
ized the TME of primary central nervous system lymphoma and reported that an increased
M1-like/M2-like macrophage ratio was associated with superior OS. Keane et al. [44]
quantified the TME independent of the revised IPI and COO by evaluating the ratios of
immune effectors with potential implications for the selection of patients in clinical trials.
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Two novel corner stone studies investigated the TME through GEP and correlated
these data with clinical and NGS data. Initially, in 2021, Kotlov et al. [20] performed
clustering analysis on a large dataset retrieved from several publicly available datasets
(n = 25, 4580 DLBCL cases). Based on functional gene signatures, four different cellular
subtypes of the lymphoma microenvironment were clustered: germinal center-like, mes-
enchymal, inflammatory, and depleted. The first cluster was characterized by germinal
center features, the second cluster showed a high abundance of stromal cells and extra-
cellular matrix pathways, the third cluster was associated with inflammatory pathways,
while the depleted cluster lacked markers of these three defined GEP signatures. These
lymphoma microenvironment clusters showed an impact on PFS and OS regardless of COO
or genetic subtype, underlining its independent contribution to lymphomagenesis and
clinical presentations. These clusters also demonstrated large similarities with previously
discussed COO, consensus clustering, stromal signatures, and genetically defined entities
(LymphGen profiles and C1-C5 subtypes) [4,5,20,37].

Simultaneously, as another landmark, Steen et al. reported on their so-called “Eco-
typer” -algorithm that was generated for either solid tumors or lymphomas (mainly DL-
BCL). The landscapes of (tumor) cell states and lymphoma ecosystems were examined
by means of bulk or single-cell RNA-sequencing. In this study, the B-cell states repre-
sented the previously discussed COO including GCB and ABC subtypes, as well as the
subdivision into centrocytes, centroblasts, memory B-cells, and plasmablasts established by
the BAGS2CLINIC. Accordingly, these B-cell states were associated with survival, corre-
sponding to the COO or BAGS2CLINIC classification, and molecular classification with
the LymphGen and C1-C5 clusters [4,37]. Furthermore, other cell-type states were identi-
fied along with a total of 9 lymphoma ecotypes that congregated multiple cell-type states
and were equally associated with survival outcomes [21]. Thus, Kotlov et al. [20] and
Steen et al. [21] individually identified distinct microenvironment subtypes associated with
molecular profiles and survival outcomes.

As summarized in Figure 3, complementing GEP studies focusing on tumor cell
subtyping and the lymphoma TME contributed to the insight that several cellular subtypes
within DLBCL phenotypes were related to survival. Conclusively, an association is shown
between the presence of high numbers of M2-type macrophages, natural killer cells, plasma
cells, or increased angiogenesis with inferior survival. In contrast, abundant infiltration of
myofibroblasts, dendritic cells, CD4-positive T cells, CD14-positive monocytes, extracellular
matrix deposition and histiocytes demonstrated superior survival. However, results should
be interpreted cautiously because validation studies are lacking.

The prognostic impact of the TME signatures does not answer the question of whether
these microenvironmental features indicate an underlying interaction of infiltrating cells
with tumor cells that promote tumor growth or, in contrast, represent an ultimate con-
sequence of cellular damage and is thus initiated by the tumor itself. GEP studies have
demonstrated their value in mapping the DLBCL microenvironment. Nevertheless, un-
resolved biological issues on the interaction and activation status of diverse cell types in
the TME remain and further research is needed to determine the true clinical effect of the
interaction between lymphoma cells and the TME.

6. Clinical Impact and Future Perspectives of Gene-Expression Profiling Studies

As depicted in Figure 4, GEP analysis has the potential to elucidate the phenotype
of the tumor, the composition of the TME, and the presence of immune surveillance
mechanisms. Consequently, GEP studies have refined current DLBCL categorization
towards a more biologically driven classification with different COO subtypes. Besides
a more general consensus clustering, the GEP COO classification into ABC and GCB
subtypes has changed the view of DLBCL’s biological behavior and is steadily regaining
its place in diagnostic procedures above the surrogate Hans algorithm for COO based on
immunohistochemical staining [27]. In addition, GEP COO classification is used to allocate
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patients with particular DLBCL subtypes to novel targeted clinical trials although a true
clinical benefit has not yet been established [16,45–47].

Figure 4. Schematic overview of a multilayered research strategy. Combining targeted NGS, targeted
GEP and imaging mass spectrometry allows for inclusive analysis of genotype, phenotype, TME and
immune surveillance of the DLBCL. This methodology substantiates the conversion from the current
approach towards a novel strategy including (1) Hans classification to COO diagnostic classification,
(2) a general clinical prognostic score (International Prognostic Index) towards a biology-guided
prognostication and ultimately (3) facilitating development from a one-size-fits-all R-CHOP treatment
towards more precision medicine.

COO classification has been further developed into dark-zone-like and light-zone-like
phenotypes or even more specific cell types, such as centrocytes, centroblasts, memory
B-cells and plasmablasts, all harboring a prognostic impact. Other independently iden-
tified GEP clustering studies in DLBCL demonstrated predictive significance, such as
stromal, immune-related, LAMIS, lymphoma microenvironment, “Ecotyper”, and other
cellular-specific signatures (Table 1). However, despite the significant progress made in the
refinement of these biological and predictive classifications, validation studies for these
prognostic signatures are currently lacking and hinder direct implementation in routine
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clinical settings to optimize patient management and counseling. Besides that, GEP tech-
niques are time consuming, many pathology departments are not equipped with these
technologies, lack biostatistical tools needed for examining these signatures, and costs are
currently not covered by most health insurances. Although optimizing the specificity of
DLBCL classification is crucial to improving patient care, the challenge is to arrive at a
consortium-oriented panel for discriminatory subtyping that is clinically relevant, easily
accessible, has a short turnaround time, and is affordable for routine use.

GEP results can also be used to initiate a new era of therapeutic trials. Given the
intermediate response to R-CHOP in DLBCL, better subtype classification of mainly high-
risk DLBCL subgroups such as high-grade B-cell lymphoma could improve the effectiveness
of targeted therapeutic strategies. Targeted therapies that complement or replace standard
treatment have been investigated. For example, Davies et al. (2019) [16] studied the effect
of adding bortezomib, a proteasome inhibitor, to R-CHOP treatment and reported no
significant improvement in survival. Data retrieved from this trial, have been re-examined,
identifying a DLBCL subgroup characterized by the prevalence of a distinct CD8 T-cell
state that benefited from the addition of bortezomib to R-CHOP [21]. Therefore, further
patient classification depending on COO status or particular signatures could improve the
efficacy of bortezomib by more efficient upfront patient selection [48,49].

Kuo et al. [45] revealed that ibrutinib was less effective in ABC subtype DLBCL patients
with high BCL2 expression. Wilson et al. [50] investigated this in more detail and reported
that for patients of <60 years the event-free survival after treatment with ibrutinib and
R-CHOP was 100% in the MCD (co-occurrence of MYD88L265P and CD79B mutations) and
N1 (NOTCH1 mutations) subtype. Hartert et al. [51] described the favorable effect of adding
lenalidomide to R-CHOP on event-free survival in patients with mutations in PIM1, SPEN
or MYD88 or expression signatures including NF-κB, IRF4 and JAK-STAT. The addition
of venetoclax to R-CHOP treatment reported worse outcomes than expected in patients
overexpressing BCL2, underlining the necessity of analyzing involved pathways [52,53].
These examples show that intensifying molecular analysis is needed for the optimization
of personalized treatment [54]. Consequently, this paves the way to re-evaluate previous
clinical trials adopting targeted therapies, potentially providing new insights into the
current conclusions.

Another important application of GEP results is in the management of resistance and
efficacy of CAR T-cells and bispecific antibodies in DLBCL patients. These treatments have
shown remarkable efficacy in chemorefractory DLBCL patients; however, in a significant
proportion of patients, these therapies are still not effective [55–59]. Critical analysis of
the TME and its influence on the effectivity of CAR T-cell and bispecific antibody therapy
in DLBCL is lacking. GEP studies in DLBCL patients focusing on the TME will facilitate
further evaluation of the disparate response to these novel treatments.

Kahle et al. [60] published a review on the contribution of molecular imaging to the
understanding of the biology of lymphoma. Adding immunohistochemistry, proteomics, or
imaging mass spectrometry to NGS and GEP data enables a multi-dimensional analysis of
tumors related to the TME. For example, de Miranda et al. [61–63] performed imaging mass
cytometry on tonsil and colorectal cancer tissues, thereby enhancing the understanding of
the heterogeneous and intricate tumor-specific immune landscape of TME. Such molecular
imaging analysis can complement current molecular evaluations in DLBCL to a more
three-dimensional analysis, facilitating the identification of new mechanistic concepts.
In addition, analysis of paired samples before and after an intervention will deepen the
analysis of the TME, subclones and (acquired) therapeutic resistance [64]. The application
of machine learning tools such as artificial intelligence will further enhance the utility of
multi-omics data to better define distinct molecular and prognostic DLBCL subtypes [65].

In summary, to improve the understanding of the intricate molecular biology of
DLBCL and the interaction with its TME, future studies should adopt a multi-dimensional
strategy including immunohistochemistry, NGS, GEP and proteomics. Figure 4 shows
such a multilayered approach and emphasizes that in addition to appropriate equipment,
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it also requires a diverse and well-trained team of molecular biologists, pathologists,
hematologists, bioinformatics, and biostatisticians. Relevant findings of this multilayered
analysis will ultimately be translated into manageable diagnostics that can be implemented
by multiple medical centers.

7. Anatomical Localization and Age Matter

Together with other NGS studies, we demonstrated unique mutational profiles for DL-
BCL with a preferred localization, f.e., in primary central nervous system B-cell lymphoma,
primary testicular lymphomas, intravascular large B-cell lymphoma, primary bone DLBCL,
and primary cutaneous DLBCL leg-type [66–73]. These preferred anatomical localized
DLBCLs were significantly associated with specific COO subtypes variably determined by
GEP and Hans classification (Figure 5). Primary central nervous system B-cell lymphoma,
primary breast DLBCL, intravascular large B-cell lymphoma, and primary testicular large
B-cell lymphoma are mainly classified as ABC type lymphomas. In contrast, craniofacial,
primary mediastinal (thymic) large B-cell lymphoma, primary ovarian DLBCL and primary
bone DLBCL are mainly classified as GCB [67,74,75]. In addition, the Lymph3Cx GEP
panel was developed as an update of the Lymph2Cx, which has distinguished primary
mediastinal (thymic) large B-cell lymphoma from other DLBCL subtypes [75]. By applying
a targeted NanoString panel we recently demonstrated that primary bone DLBCL mainly
constitutes a centrocyte-like GCB-profile, while non-osseous DLBCL with a GCB subtype
principally has a centroblast-like phenotype [67]. This conceptualizes that anatomical
DLBCL localization is relevant for specific COO subtypes and even more for unique cellular
phenotypes. In short, for COO subtypes, localization matters.

Figure 5. COO subtype: Anatomical localization matters. The results of diverse studies using GEP or
Hans classification for COO determination demonstrated an evident association between anatomical
preferred localization and COO subtype. For example, primary central nervous system lymphoma,
primary testicular lymphoma, and intravascular large B-cell lymphoma harbor predominantly an
ABC subtype. In contrast, we recently demonstrated a GCB subtype for primary bone DLBCL, that
could be specified even further to unique cellular phenotypes [67]. This concept calls for additional
investigation of well-annotated homogeneous cohorts of preferred localization DLBCL, including
in-depth molecular studies.
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Another correlation was seen between age and COO subtype, as in the elderly an ABC
subtype was predominant, indicating that COO follows the physiology of senescence and
alteration of the T-cell repertoire [76,77]. Altogether, these concepts have further broadened
the molecular view of DLBCL, as these techniques allow COO to even be considered
down to the individual cell level. As we have mentioned earlier, these results confirm the
additional value of exploring well-annotated homogeneous cohorts and appeal to the need
for in-depth molecular studies of DLBCL with preferred localization [78].

8. A Proposal for a Consortium Gene-Expression Profiling Panel: BLYM-777

From a biological point of view, it is important to apply GEP analysis as broadly
as possible. In practice, this is often not feasible, for instance if only limited amounts
of archived FFPE material are available. For this reason, a targeted GEP approach is
frequently used because it is clinically applicable and allows the analysis of a limited
set of genes of interest. Based on reviewing more than 45 studies and considering the
maximum number of 800 genes that can be analyzed using NanoString technology, we gen-
erated a targeted knowledge-based biology-driven (t)GEP consortium panel, called BLYM-
777 (Figures 3 and 6 and Appendix A). This BLYM-777 panel includes 777 genes involved
in the NF-κB (f.e. MYD88, CD79B and CARD11), JAK/STAT (f.e., SOCS1, JAK1 and STAT1),
MAPK (f.e., BCL2 and MEK2), NOTCH (f.e., NOTCH3 and TBL1XR1), PI3K (f.e., PTEN
and PI3K) pathways that are known to be important in lymphomagenesis of DLBCL. In
addition, the BLYM-777 includes genes relevant for COO identification, such as the original
COO-classification NanoString tool Lymph2Cx (n = 20 genes) (f.e., IRF4, ITPKB, MME and
MYBL1), the BAGS2CLINIC (n = 53) (f.e., STAT3 and IL16), and dark-/light-zone signature
(n = 52) (f.e., B2M, CTLA4, KI67 and AICDA), all of which have individually been shown
to facilitate DLBCL subtype classification [11,15,19]. As the interest in the TME increases
in DLBCL, BLYM-777 additionally includes genes related to TME-focused signatures,
such as the consensus clustering classification (n = 86) (f.e., CD37, TNFRSF1A and PDL1),
LAMIS signature (n = 63) (f.e., CCND2 and CXCR4), a 45-gene TME assay (Ciavarella et al.
n = 45) (f.e., COL1A1 and MMP2), lymphoma microenvironments (n = 155) and ecotypes
(n = 314) [9,14,18,20,21]. This BLYM-777 design also covers other signatures relevant for
DLBCL, such as the DHITsig (n = 35) (f.e., ETV6 and RGCC) since DHIT lymphomas show
an inferior survival, genes relevant in MYC driven B-cell lymphomas (n = 80) (f.e., RFC3 and
TRAP1), genes upregulated in wildtype-TP53 DLBCL with high mutational burden (n = 37)
(f.e., HDAC1 and BBC3), and genes relevant for the identification of resistance to CAR T-cell
or bispecific antibody treatment (n = 35) (f.e., CD58 and FOXP1) [12,17,55–57,79–88]. To
evaluate the influence of mutations on gene expression, 95 genes important for current
molecular classification based on NGS results have also been included [67]. Supplementary
Table S1: BLYM-777 included genes per author, lists all genes belonging to this BLYM-777
tGEP consortium panel. To approach multiple biologically and clinically relevant ques-
tions on the lymphomagenesis of DLBCL, such as the relevance of certain mutations, the
interaction of malignant cells with different components of the TME, immune surveillance
and effectivity of new treatment strategies, the proposed BLYM-777 panel can be deployed
in combination with other molecular characterization techniques. In addition, BLYM-777
is ready to use with NanoString technology and benefits from low-threshold accessibility
and good performance using RNA isolated from FFPE material. However, analysis of
the proposed panel of 777 genes is also possible by selective bioinformatic analysis of
whole transcriptome data or targeted expression data generated by other platforms. The
advantages and disadvantages of different gene-expression detection technologies have
been extensively described by Narrandes et al. and Jiang et al. [22,23] and are beyond the
scope of this clinical translational review.
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Figure 6. A proposal for a targeted BLYM-777 consortium panel. Based on 45 studies, we propose a
knowledge-based, biology-driven targeted (t)GEP consortium panel, called BLYM-777. This BLYM-
777 panel primarily focuses on DLBCL and covers 777 B-cell lymphoma relevant genes, including
their involved pathways (f.e., NF-κB, NOTCH, PI3K). Accordingly, genes were included for COO
identification, TME-focused signatures, ecotypes, DHITsig, differentially expressed genes found
in wildtype-TP53 DLBCL, and genes relevant for resistance to CAR T-cell or bispecific antibody
therapy. Moreover, 95 genes important for current molecular classification based on NGS results have
been included.

In summary, the BLYM-777 panel covers many aspects of B-cell lymphomagenesis,
COO classification, therapeutic efficacy and TME-focused signatures and can facilitate
subsequent molecular investigations. The authors of this publication are currently in
discussion with NanoString with the goal to create this consortium gene-expression BLYM-
777 panel capturing the biology mentioned in this work. Such a panel could bring value
to the hematological field by providing a standardized tool to facilitate collaboration and
shared learnings throughout the community. If you are interested in joining this consortium
effort, please respond to the corresponding author for more information.

9. Conclusion

This review provides a comprehensive overview of current molecular insights into the
biological background of DLBCL obtained by several GEP technologies. These methods
utilized in DLBCL studies identified several GEP signatures including cell-of-origin dis-
crimination in GCB and ABC subtypes and an in-depth analysis of the TME regarding the
exact cell type and state. Combining GEP with other NGS and proteomic-based method-
ologies will facilitate a multi-layered analysis and a next step forward in understanding
biological principles and elucidating the genetic heterogeneity of DLBCL. The proposed
novel knowledge-based biology-driven consortium tGEP panel, named BLYM-777, encom-
passes many aspects of B-cell lymphomagenesis, TME and immune surveillance and is
thereby expected to gain new molecular concepts of DLBCL lymphomagenesis. Applying
BLYM-777 in such a multilayered methodology potentially enhances diagnostic classifica-
tion of DLBCL subtypes, prognostication, and ultimately the development of novel targeted
therapeutic strategies improving patient survival.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14081857/s1, Table S1: BLYM-777 included genes per author.

https://www.mdpi.com/article/10.3390/cancers14081857/s1
https://www.mdpi.com/article/10.3390/cancers14081857/s1
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Appendix A

Table A1. A proposal for a consortium gene-expression profiling panel: BLYM-777.

ACTA2 CKAP4 HIST1H2BC MPST SBK1

ACTB CLCN1 HLA-A MRC1 SCNN1D

ACTG1 CLCN2 HLA-B MRC2 SCOTIN

ACTG2 CLU HLA-C MRPL15 SAMD13

ACTL7A COL12A1 HLA-DMA MRPL3 SELPLG

ADA COL1A1 HLA-DMB MRPL33 SEMA7A

ADHFE1 COL1A2 HLA-DPA1 MRPS34 SEP15

AEBP1 COL3A1 HLA-DPB1 MS4A1 SERPINA1

AEN COL4A1 HLA-DQA1 MSH3 SERPINA9

AFMID COL4A2 HLA-DQB1 MSR1 SERPING1

AGER COL5A2 HLA-DRA MUC16 SGK1

AGR2 COL6A3 HLA-DRB1 MXRA5 SGPP2

AHCY COMMD8 HLA-E MYBBP1A SH2D1A

AHR COX7A2L HMG20A MYBL1 SH2D1B

AICDA CPD HNRNPLL MYBL2 SH2D3C

AKAP1 CPNE3 HPDL MYC SH3PXD2A

AKAP5 CPT1A HRK MYD88 SHARPIN

AKR1D1 CREB1 HS3ST3A1 NBR1 SHISA8

ALCAM CREB3L2 HSPBL2 NCAM1 SIGLEC9

ALDH3B1 CREBBP HTR1A NCR1 SIK1

ALOX5 CSF1 ICAM1 NCR3 SIPA1L3

AMT CSF1R ICOS NDUFB1 SKAP2

ANAPC16 CTHRC1 IDH1 NEMF SLAMF1

ANGPT1 CTLA4 IDO1 NFAM1 SLAMF8

ANGPT2 CTNNA1 IFITM1 NFATC2 SLC12A8

ANO9 CTNNB1 IFNA16 NFKB1 SLC16A9

ANTXR2 CTPS1 IFNAR1 NFKB2 SLC25A27

AP1B1 CTSB IFNG NFKBIE SLC29A3

APLP2 CTSK IGHM NKG7 SLC2A3

APOL6 CTSZ IGLL3 NME1 SLC41A1

APRIL CX3CL1 IGLL5 NOD2 SLFN5

ARG1 CX3CR1 IGSF10 NOLC1 SMAD1

ARHGAP17 CXCL10 IGSF6 NOTCH3 SMARCA5
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Table A1. Cont.

ARID1B CXCL11 IK NPFF SMIM14

ARSI CXCL12 IKZF2 NPFFR2 SNHG19

ASB13 CXCL13 IKZF4 NR4A2 SOCS1

ASNSD1 CXCL5 IL10 NRF1 SOD1

ASPH CXCL8 IL15 NRN1L SP3

ATM CXCL9 IL16 NSA2 SPARC

ATP5D CXCR2 IL18BP NSUN2 SPEN

ATRAID CXCR3 IL1R1 NSUN5 SPI1

AURKA CXCR4 IL2 NTRK1 SPIB

AURKB CXCR5 IL21 OAZ1 SPP1

B2M CYB5R2 IL21R OPA1 SRM

BATF DAB2 IL22 OR13A1 SSBP3

BATF3 DBI IL2RA OR4D5 STAM

BAX DBP IL2RB OSBPL10 STAP1

BBC3 DDX11 IL4 OSMR STAT1

BCAS4 DDX21 IL4I1 OTULIN STAT2

BCL10 DDX6 IL6 OXTR STAT3

BCL11B DHRS2 IL6R P2RY12 STAT6

BCL2 DHX33 IL6ST P2RY14 STAU1

BCL2A1 DKK3 IL7R PABPC3 STC2

BCL2L1 DNAJB12 INHBA PAICS SULF1

BCL2L12 DPP8 INPP5D PALLD SYBU

BCL6 DPYSL3 INSM2 PAPSS2 SYNE1

BCL7A DTX1 IQCD PARP1 TADA2B

BCLAF1 DTX3L IRF1 PARP3 TAP1

BGLAP DUSP2 IRF2BP2 PATL2 TAP2

BGN DUSP4 IRF4 PAX5 TBL1XR1

BID DUSP5 IRG1 PAX8-AS1 TBP

BIRC2 E2F1 IRS2 PCDH9 TBX21

BIRC3 EARS2 ISY1 PCLAF TCIRG1

BLK EBER1 ITGA6 PCNP TCL1A

BRAF EBER2 ITGB2 PCOLCE TCP10

BSG EBF1 ITGB8 PDCD1 TEDC2

BST1 EBI3 ITK PDCD10 TEK

BTBD3 EBNA1BP2 ITM2A PDCD1LG2 TESPA1

BTC EEPD1 ITPKB PDE5A TET2

BTG1 EGFR ITPR2 PDGFC TGFBI

BTG2 EGR1 JAK1 PDGFRB THBS2

BUB1 EGR3 JAK2 PDPN THPO

C10orf128 ELL2 JAK3 PDXDC1 TIGIT

C14orf70 EMCN JAKMIP1 PECAM1 TIM3
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C16orf54 EOMES JAML PEG10 TIMP1

C17orf56 EP300 JCHAIN PERP TIMP2

C19orf24 EPHA4 KCNA4 PGF TIMP3

C2 ERCC2 KCNH4 PHB2 TINAGL1

C3AR1 ERN1 KCNU1 PHF23 TJP1

C3orf22 ESCO2 KDR PIK3CA TLR8

C3orf37 ETFA KI67 PILRA TMEM119

CA9 ETS1 KIAA1128 PIM1 TMEM127

CABP2 ETV6 KIAA1462 PIM2 TMEM135

CACNA1I EZH2 KIF14 PKA TMEM140

CACNA2D2 EZR KIR2DL4 PLCG2 TMEM175

CADM4 F8A3 KIT PLCH2 TMEM202

CALR FABP5 KLF2 PLD3 TMEM219

CAMK1D FADD KLHL14 PLK1 TMEM224

CAPS FAM108C1 KLHL6 PLOD2 TMEM30A

CARD10 FAM117B KLRC2 PMP22 TMEM47

CARD11 FAM13AOS KLRF1 PMPCB TMEM97

CARD14 FAM153A KLRK1 PMS2P2 TMSB4X

CARD9 FAM216A KMT2D PMS2P9 TNF

CASP10 FAM26F KRAS POLD2 TNFAIP3

CASP8 FAS KRT73 POLH TNFRSF10B

CBLB FASLG LAG3 POLR1B TNFRSF13B

CCDC154 FASN LAMB1 POSTN TNFRSF13C

CCDC50 FAT4 LAMP1 POTEC TNFRSF14

CCDC6 FBL LDHB POU6F1 TNFRSF17

CCL20 FBLN2 LGALS7 PPAT TNFRSF18

CCL4 FBLN7 LGALS9 PPP1R3B TNFRSF1A

CCL5 FBXW7 LIMD1 PPRC1 TNFRSF1B

CCNB1 FCER1G LINC01215 PRDM1 TNFRSF4

CCND1 FCGR1B LMO2 PRDX5 TNFRSF9

CCND2 FCRL5 LOC100128071 PRKCH TNFSF13B

CCND3 FDCSP LOC100128682 PRKCQ TNFSF8

CCNE1 FEM1C LOC100131225 PRMT1 TOX

CCR6 FGD5 LOC100131354 PRNP TP53

CCR8 FGFBP2 LOC100287094 PSAT1 TPO

CD11C FIBP LOC100287259 PSEN1 TPT1

CD160 FLJ37307 LOC100287308 PSIMCT.1 TRAC

CD163 FLJ37786 LOC100288639 PSMA2 TRAF1

CD19 FLT1 LOC100288728 PSMA5 TRAF2

CD2 FN1 LOC100289566 PSMA6 TRAP1

CD20 FNDC1 LOC196415 PSMB10 TRAT1
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CD22 FNDC3B LOC284889 PSMB9 TRBC1

CD226 FOXJ3 LOC391358 PSMD14 TRIAL-R1

CD24 FOXP1 LOC401433 PSMD3 TRIM21

CD244 FOXP3 LOC440311 PTEN TRIM56

CD274 FSTL1 LOC729535 PTGES2 TRRAP

CD276 FYB LRP12 PTPN11 TSKU

CD28 FYN LRP1B PTPN13 TSPAN9

CD300LF GABRB1 LRP8 PTPRC TTC8

CD37 GAMT LSM1 PTTG1IP UBA1

CD39 GATA2 LTB QRSL1 UBASH3A

CD3D GATA3 LTBR R3HDM1 UBE2D2

CD3E GATAD2B LUM RAB27A UBXN4

CD3G GBP1 LY6E RAB29 UBXN7

CD4 GBP5 LY75 RAB33A UCHL3

CD40 GDF2 LYAR RAB3GAP2 UCK2

CD40LG GEMIN4 MAF RAB7A VASP

CD44 GIT2 MAFB RABEPK VCAM1

CD47 GLRX MAG RAD54L VEGFA

CD58 GNA13 MALT1 RAG2 VEGFB

CD6 GNAI2 MAML3 RANBP1 VEGFC

CD68 GNG12 MAP2 RASA1 VISTA

CD70 GNLY MAP2K2 RASGRF1 VPS24

CD79A GOT2 MAP4K1 RASL11A VRK3

CD79B GPNMB MARCKSL1 RBL2 VTN

CD80 GPR124 MCL1 RBPJL VWF

CD81 GPR137B MCM2 REL WAC

CD83 GPRIN3 MCM6 RELA WASH2P

CD84 GRHPR MDFIC RELB WASL

CD8A GRIN3A MDM2 RFC3 WDR3

CDC25A GRN MED23 RFFL WDR55

CDCA7L GSK3B MEF2B RGCC XBP1

CDH23 GUK1 MEX3C RNF130 XRCC3

CDH5 GZMB MFAP2 RNF213 XRCC5

CDK2 GZMH MFGE8 ROCK1 ZBTB4

CDK4 HDAC1 MIF RPLP0 ZEB2

CDK5R1 HERPUD2 MIR155HG RRS1 ZFAND4

CDKN2A HIF1A MME RUBCNL ZNF22

CDKN2B HIST1H1C MMP14 RUNX3 ZNF438

CETN3 HIST1H1D MMP2 S100A11

CFLAR HIST1H1E MMP9 S100Z

CIITA HIST1H2AC MPEG1 S1PR2
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