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Abstract: We propose a reinforcement learning (RL) approach to compute the expression of quasi-
stationary distribution. Based on the fixed-point formulation of quasi-stationary distribution, we
minimize the KL-divergence of two Markovian path distributions induced by candidate distribution
and true target distribution. To solve this challenging minimization problem by gradient descent, we
apply a reinforcement learning technique by introducing the reward and value functions. We derive
the corresponding policy gradient theorem and design an actor-critic algorithm to learn the optimal
solution and the value function. The numerical examples of finite state Markov chain are tested to
demonstrate the new method.
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1. Introduction

Quasi-stationary distribution (QSD) is the long time statistical behavior of a stochastic
process that will be surely killed when this process is conditioned to survive [1]. This
concept has been widely used in applications, such as in biology and ecology [2,3], chemical
kinetics [4,5], epidemics [6–8], medicine [9] and neuroscience [10,11]. Many works for rare
events in meta-stable systems also focus on this quasi-stationary distribution [12,13]. In
addition, some new Monte Carlo sampling methods, for instance, the Quasi-stationary
Monte Carlo method [14,15], also arise by using QSD instead of true stationary distribution,
for instance, the Quasi-stationary Monte Carlo method [14,15]

We are interested in the numerical computation of QSD and focus on the finite state
Markov chain in this paper. Mathematically, the quasi-stationary distribution can be solved
as the principal left eigenvector of a sub-Markovian transition matrix. Thus, traditional
numerical algebra methods can be applied to solve the quasi-stationary distribution in
finite state space, for example, the power method [16], the multi-grid method [17] and
Arnoldi’s algorithm [18]. These eigenvector methods can produce a stochastic vector for
QSD instead of generating samples of QSD.

In search of efficient algorithms for large state space, stochastic approaches are in favor
of either sampling the QSD or computing the expression of QSD, and these methods can be
applied or extended easily to continuous state space. A popular approach for sampling
quasi-stationary distribution is the Fleming–Viot stochastic method [19]. The Flemming–
Viot method first simulates N particles independently. When any one of the particles falls
into the absorbing state and becomes killed, a new particle is uniformly selected from the
remaining N − 1 surviving particles to replace the dead one, and the simulation continues.
When time and N tend to infinity, the particles’ empirical distribution can converge to the
quasi-stationary distribution.

In [20–22], the authors proposed to recursively update the expression of QSD at each
iteration based on the empirical distribution of a single-particle simulation. It is shown
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in [21] that the convergence rate can be O(n−1/2), where n is the iteration number. This
method is later improved in [23,24] by applying the stochastic approximation method [25]
and the Polyak–Ruppert averaging technique [26]. These improved algorithms have a
choice of flexible step size but require a projection operator onto probability simplex, which
carries some extra computational overhead increasing with the number of states. Ref. [15]
extended the algorithm to the diffusion process.

In this paper, we focus on how to compute the expression of the quasi-stationary
distribution, which is denoted by α(x) on a metric space E . If E is finite, α is a probability
vector, and if E is a domain in Rd, then α is a probability density function on E . We assume
α can be numerically represented in parametric form αθ and θ ∈ Θ. This family {αθ} can
be in tabular form or any neural network. Then, the problem of finding the QSD α becomes
answering the question of how to compute the optimal parameter θ in Θ. We call this
problem the learning problem for QSD. In addition, we want to directly learn QSD and not
use the distribution family {αθ} to fit the simulated samples generated by other traditional
simulation methods.

Our minimization problem for QSD is similar to the variational inference (VI) [27],
which minimizes an objective functional measuring the distance between the target and can-
didate distributions. However, unlike the mainstream VI methods such as evidence lower
bound (ELBO) technique [28] or particle-based [29], flow-based methods [30], our approach
is based on recent important progresses from reinforcement learning (RL) method [31],
particularly the policy gradient method and actor-critic algorithm. We first regard the learn-
ing process of the quasi-stationary distribution as the interaction with the environment,
which is constructed by the property of QSD. Reinforcement learning has recently shown
tremendous advancements and remarkable successes in applications (e.g., [32–34]). The RL
framework provides an innovative and powerful modeling and computation approach for
many scientific computing problems.

The essential question is how to formulate the QSD problem as an RL problem. Firstly,
for the sub-Markovian kernel K of a Markov process, we can define a Markovian kernel Kα

on E (see Definition 1) and then QSD is defined by the equation α = αKα, which equals α as
the initial distribution and the distribution after one step. Secondly, we consider an optimal
α (in our parametric family of distribution) to minimize the Kullback–Leibler divergence
(i.e., relative entropy) of two path distributions, denoted by P and Q, associated with two
Markovian kernels Kα and Kβ where β := αKα. Thirdly, inspired by the recent work [35]
of using RL for rare events sampling problems, we transform the minimization of KL
divergence between P and Q into the maximization of a time-averaged reward function
and defined the corresponding value function V(x) at each state x. This completes our
modeling of RL for the quasi-stationary distribution problem. Lastly, we derive the policy
gradient theorem (Theorem 1) to compute the gradient with respect to θ of the averaged
reward for the learning dynamic for the averaged reward. This is known as the “actor” part.
The “critic” part is to learn the value function V in its parametric form Vψ. The actor-critic
algorithm uses the stochastic gradient descent to train the parameter θ for the action αθ and
the parameter ψ for the value function Vψ (see Algorithm 1).

Our contribution is that we first devise a method to transform the QSD problem into
the RL problem. Similar to [35], our paper also uses the KL-divergence to define the RL
problem. However, our paper fully adapts the unique property of QSD that is a fixed point
problem α = αKα to define the RL problem.

Our learning method allows the flexible parametrization of the distributions and uses
the stochastic gradient method to train the optimal distribution. It is easy to implement
optimization with scale up to large state spaces. The numerical examples we tested have
shown our that methods converge faster than other existing methods [22,23].

Finally, we remark that our method works very well for QSD of the strict sub-
Markovian kernel K but is not applicable to compute the invariant distribution when
K is Markovian. This is because we transform the problem into the variational prob-
lem between two Markovian kernels Kα and Kβ (where β = αKα). Note that Kα(x, y) =
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K(x, y) + (1− K(x, E))α(y) (Definition 1), and our method is based on the fact that α = β
if and only if Kα = Kβ. If K is Markovian kernel, then Kα ≡ K for any α, and our method
cannot work. Thus, K(x, E) has to be strictly less than 1 for some x ∈ E .

This paper is organized as follows. Section 2 is a short review of the quasi-stationary
distribution and some basic simulation methods of QSD. In Section 3, we first formulate the
reinforcement learning problem by KL-divergence and derive the policy gradient theorem
(Theorem 1). Using the above formulation, we then develop the actor-critic algorithm to
estimate the quasi-stationary distribution. In Section 4, the efficiency of our algorithms is
illustrated by four examples compared with the simulation methods in [24].

Algorithm 1: (ac-α method) Actor-critic algorithm for quasi-stationary distri-
bution αθ

Initialization
t = 0; θ = θ0; ψ = ψ0; rt = r0;
Sample X0 ∼ µθ0 , the stationary distribution of Kαθ0

for t = 0, 1, 2, . . . do
Sample Xt+1 from the transition kernel Kαθt

(Xt, Xt+1)

δt = Vψt(Xt+1)−Vψt(Xt) + Rθt(Xt, Xt+1)− rt

θt+1 = θt + ηθ
t (δt∇θ ln Kαθt

(Xt, Xt+1) +∇θ ln Kβθt
(Xt, Xt+1))

ψt+1 = ψt + η
ψ
t δt∇ψVψt(Xt)

rt+1 = rt + ηr
t δt

Xt ∼ µθt+1 the stationary distribution of Kαθt+1
t = t + 1

2. Problem Setup and Review
2.1. Quasi-Stationary Distribution

We start with an abstract setting. Let E be a finite state equipped with the Borel σ-field
B(E), and let P(E) be the space of probabilities over E . A sub-Markovian kernel on E is
defined as a map K : E × B(E) 7→ [0, 1] such that for all x ∈ E , A 7→ K(x, A) is a nonzero
measure with K(x, E) ≤ 1 and for all A ∈ B(E), x 7→ K(x, A) is measurable. In particular,
if K(x, E) = 1 for all x ∈ E , then K is called a Markovian kernel. Throughout the paper, we
assume that K is strictly sub-Markovian, i.e., K(x, E) < 1 for some x.

Let Xt be a Markov chain with values in E ∪ {∂} where ∂ /∈ E denotes an absorbing
state. We define the extinction time

τ := inf{t > 0 : Xt = ∂}.

We define the quasi-stationary distribution (QSD) α as the long time limit of the condi-
tional distribution, if there exists a probability distribution ν on E such that the following is
the case:

α(A) := lim
t→∞

Pν(Xt ∈ A | τ > t), A ∈ B(E). (1)

where Pν refers to the probability distribution of Xt associated with the initial distribution
ν on E . Such a conditional distribution well describes the behavior of the process before
extinction, and it is easy to see that α satisfies the following fixed point problem:

Pα(Xt ∈ A | τ > t) = α(A) (2)

where Pα refers to the probability distribution of Xt associated with the initial distribution
α on E . Equation (2) is equivalent to the following stationary condition such that the
following is the case:
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α =
αK

αK1
, or α(y) = ∑x α(x)K(x, y)

∑x α(x)K(x, E) (3)

where α is a row vector and 1 denotes the column vector with all entries being one and

K(x, E) = ∑
x′∈E

K(x, x′).

For any sub-Markovian kernel K, we can associate K with a Markovian kernel K̃ on
E ∪ {∂} defined by the following:

K̃(x, A) = K(x, A)
K̃(x, {∂}) = 1− K(x, E)
K̃(∂, {∂}) = 1.

for all x ∈ E , A ∈ B(E). The kernel K̃ can be understood as the Markovian transition kernel
of the Markov chain (Xt) on E ∪ {∂} for which its transitions in E is specified by K, but it is
“killed” forever once it leaves E .

In this paper, we assume E is a finite state space and the process in consideration
has a unique QSD. Assume that K is irreducible, then existence and uniqueness of the
quasi-stationary distribution can be obtained by the Perron–Frobenius theorem [36].

An important Markovian kernel is the following Kα, which is defined on E only and
has a “regenerative probability” α.

Definition 1. For any given α ∈ P(E) and a sub-Markovian kernel K on E , we define Kα, a
Markovian kernel on E , as follows:

Kα(x, A) := K(x, A) + (1− K(x, E))α(A) (4)

for all x ∈ E and A ∈ B(E).

Kα is a Markovian kernel because Kα(x, E) = 1. It is easy to sample Xt+1 ∼ Kα(Xt, ·)
from any state Xt ∈ E : run the transition as normal by using K̃ to have a next state denoted
by Y, then Xt+1 = Y if Y ∈ E ; otherwise, sample Xt+1 from α.

We know that α is the quasi-stationary distribution of K if and only if it is the stationary
distribution of Kα.

α = αKα. (5)

It is easy to observe that α = β if and only if Kα = Kβ for any two distributions α and
β. Moreover, for every α′, Kα′ has a unique invariant probability denoted by Γ(α′). Then,
α′ 7→ Γ(α′) is continuous in P(E) (i.e., for the topology of weak convergence), and there
exists α ∈ P(E) such that α = Γ(α) or, equivalently, α is a QSD for K.

2.2. Review of Simulation Methods for Quasi-Stationary Distribution

According to the above subsection, the QSD α satisfies the fixed point problem as
follows:

α = Γ(α), (6)

where Γ(α) is the stationary distribution of Kα on E . In general, (6) can be solved recursively
by αn+1 ← Γ(αn).

The Fleming–Viot (FV) method [19] evolves N particles independently of each other
as a Markov process associated with the transition kernel Kα until one succeeds in jumping
to the absorbing state ∂. At that time, this killed particle is immediately reset to E as
an initial state uniformly chosen from one of the remaining N − 1 particles. The QSD
α is approximated by the empirical distribution of the N particles in total, and these
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particles can be regarded as samples from the quasi-stationary distribution α such as the
MCMC method.

Ref. [37] proposed a simulation method by only using one particle at each iteration to
update α. At iteration n, given an αn ∈ P(E), one can run a discrete-time Markov chain
X(n+1) as normal on ∂∪ E with initial X(n+1)

0 ∼ αn; then, αn+1 is computed as the following
weighted average of empirical distributions:

αn+1(x) := αn(x) +
1

n + 1

τ(n+1)−1

∑
k=0

I
(

X(n+1)
k = x | X(n+1)

0 ∼ αn

)
− αn(x)

1
n+1 ∑n+1

j=1 τ(j)
(7)

where n ≥ 0 and I are the indicator functions, and τ(j) = min
{

k ≥ 0 | X(j)
k ∈ ∂

}
is the first

extinction time for the process X(j). This iterative scheme has a convergence rate of O( 1√
n ).

In [23,24], the above method is extended to the stochastic approximations framework:

αn+1(x) = ΘH

αn + εn

τ(n+1)−1

∑
k=0

(
I
(

X(n+1)
k = x|X(n+1)

0 ∼ αn

)
− αn(x)

) (8)

where ΘH denotes the L2 projection into the probability simplex, and εn is the step size
satisfying ∑ εn = ∞ and ∑ ε2

n < ∞. Specifically, if εn = O( 1
nr ) for 0.5 < r < 1, under a

sufficient condition, they have
√

nr(αn − α)
d−→ N (0, V) for some matrix V [23,24]. If the

Polyak–Ruppert averaging technique is applied to generate the following:

νn :=
1
n

n

∑
k=1

αk, (9)

then the convergence rate of νn → α becomes 1√
n [23,24].

The simulation schemes (7) and (8) need to sample the initial states according to αn
and to add the empirical distribution and αn at each x point wisely. Thus, they are suitable
for finite state space where α is a probability vector saved in the tabular form. In (8), there
is no need to record all exit times τ(j), j = 1, . . . , n, but the additional projection operation
in (8) is computationally expensive since the cost is O(m log m) where m = |E | [38,39].

3. Learn Quasi-Stationary Distribution

We focus on the computation of the expression of the quasi-stationary distribution.
In particular, when this distribution is parametrized in a certain manner by θ, we can
extend the tabular form for finite-state Markov chain to any flexible form, even in the
neural networks for probability density function in Rd. However, we do not pursue this
representation and expressivity issue here and restrict our discussion to finite state space
only to illustrate our main idea first. In finite state space, α(x) for x ∈ E = {1, . . . , m} can be
simply described as a softmax function with m− 1 parameter θi : α(i) ∝ eθi , 1 ≤ i ≤ m− 1
(θm = 0). This introduces no representation error. For the generalization to continuous
space E in jump and diffusion processes or even for a huge finite state space, a good
representation of αθ(x) is important in practice.

In this section, we shall formulate our QSD problem in terms of reinforcement learning
(RL) so that the problem of seeking optimal parameters becomes a policy optimization
problem. We derive the policy gradient theorem to construct a gradient descent method for
the optimal parameter. We then show a method for designing actor-critic algorithms based
on stochastic optimization.
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3.1. Formulation of RL and Policy Gradient Theorem

Before introducing the RL method of our QSD problem, we develop a general formu-
lation by introducing the KL-divergence between two path distributions.

Let Pθ and Qθ be two families of Markovian kernels on E in parametric forms with the
same set of parameters θ ∈ Θ. Assume both Pθ and Qθ are ergodic for any θ. Let T > 0 and
denote a path up to time T by ωT

0 = (X0, X1, . . . , XT) ∈ ET+1. Define the path distributions
under the Markov chain kernel Pθ and Qθ , respectively.

Pθ(ω
T
0 ) :=

T

∏
t=1

Pθ(Xt | Xt−1), Qθ(ω
T
0 ) :=

T

∏
t=1

Qθ(Xt | Xt−1). (10)

Define the KL divergence from Pθ to Qθ on ET+1:

DKL(Pθ | Qθ) := ∑
ωT

0

Pθ(ω
T
0 ) ln

Pθ(ω
T
0 )

Qθ(ω
T
0 )

= −EPθ

T

∑
t=1

Rθ(Xt−1, Xt), (11)

where the expectation EPθ
is for the path (X0, X1, . . . , XT) generated by the transition kernel

Pθ , and the following is called the (one-step) reward.

Rθ(Xt−1, Xt) := − ln
Pθ(Xt | Xt−1)

Qθ(Xt | Xt−1)
. (12)

Define the average reward r(θ) as the time averaged negative KL divergence in the
limit of T → ∞.

r(θ) := − lim
T→∞

1
T
DKL(Pθ | Qθ) = − lim

T→∞

1
T

EPθ

T

∑
t=1

Rθ(Xt−1, Xt). (13)

Due to ergodicity of Pθ , r(θ) = ∑x0,x1
Rθ(x0, x1)Pθ(x1|x0)µθ(x0) where µθ is the in-

variant measure of Pθ , r(θ) is independent of initial state X0. Obviously, r(θ) ≤ 0 for
any θ.

Property 1. The following are equivalent:

1. r(θ) reaches its maximal value 0 at θ∗;
2. Pθ∗ = Qθ∗ in P(ET+1) for any T > 0;
3. Pθ∗ = Qθ∗ ;
4. Rθ∗ ≡ 0.

Proof. We only need to show (1) =⇒ (3). It is easy to see that

r(θ) = −∑
x0

DKL(Pθ(·|x0) | Qθ(·|x0)) µθ(x0).

If r(θ) = 0, since µθ > 0, then

DKL(Pθ(·|x0) | Qθ(·|x0)) = 0 ∀x0.

Thus, we have Pθ = Qθ .

The above property establishes the relationship between the RL problem and QSD
problem.

We show our theoretic main result below as the foundation of our algorithm to be
developed later. This theorem can be regarded as one type of the policy gradient theorem
for the policy gradient method in reinforcement learning [31].
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Define the following value function ([31] Chapter 13).

V(x) := lim
T→∞

T

∑
t=1

EPθ
[Rθ(Xt−1, Xt)− r(θ) | X0 = x]. (14)

Certainly, V also depends on θ, although we do not write θ explicitly.

Theorem 1 (policy gradient theorem). We have the following two properties:

1. At any θ, for any x ∈ E , the following Bellman-type equation holds for the value function V
and the average reward r(θ):

V(x) = EY∼Pθ(·|x)[V(Y) + Rθ(x, Y)− r(θ)]. (15)

2. The gradient of the average reward r(θ) is the following:

∇θr(θ) = E[∇θ ln Qθ(Y | X)]+

E
[(

V(Y)−V(X) + Rθ(X, Y)− r(θ)
)
∇θ ln Pθ(Y | X)

]
, (16)

where expectations are for the joint distribution (X, Y) ∼ µθ(x)Pθ(y | x) where µθ is the stationary
measure of Pθ .

Proof. We shall prove the Bellman equation first and then we use the Bellman equation to
derive the gradient of the average reward r(θ). For any x0 ∈ E , by writing ωT

0 = (x0, . . . , xT)
and defining

∆Rθ(ω
T
0 ) =

T

∑
t=1

(R(xt−1, xt)− r(θ)),

we have the following:

V(x0) = lim
T→∞

EPθ

[
∆Rθ(ω

T
0 ) | X0 = x

]
= lim

T→∞
∑

x2,...,xT
∑
x1

((
T

∏
t=2

Pθ(xt | xt−1)

)
Pθ(x1 | x0)∆R(ωT

0 )

)

= lim
T→∞

∑
x1

(
Pθ(x1 | x0) ∑

x2,...,xT

(
T

∏
t=2

Pθ(xt | xt−1)
[
∆R(ωT

1 ) + ∆R(ω1
0)
]))

= ∑
x1

(
Pθ(x1 | x0)

(
lim

T→∞

[
∑

x2,...,xT

T

∏
t=2

Pθ(xt | xt−1)∆R(ωT
1 )

]
+ ∆R(ω1

0)

))
= ∑

x1

Pθ(x1 | x0)[V(x1) + Rθ(x0, x1)]− r(θ),

(17)

which proves (15); in other words, we have the following.

r(θ) = EY∼Pθ(·|x)[V(Y) + Rθ(x, Y)−V(x)], ∀x ∈ E .

Next, we compute the gradient of r(θ). By trivial equality of the following:

∑
x1

Pθ(x1 | x0)∇θ ln Pθ(x1 | x0) = ∇θ ∑
x1

Pθ(x1 | x0) = 0, (18)
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and the definition (12), we can write the gradient of r(θ) as follows.

∇θr(θ) =∑
y
∇θ Pθ(y | x)[V(y) + Rθ(x, y)−V(x)]

+ ∑
y

Pθ(y | x)[∇θV(y)−∇θV(x) +∇θ ln Qθ(y | x)].

We here keep the term V(x) in the first line, even though it has no contribution here
(in fact, to add any constant to V(x) is also fine). Since this equation holds for all states x on
the right-hand side, we take the expectation with respect to µθ , the stationary distribution
of Pθ . Thus, we have the following.

∇θr(θ) =∑
x,y

µθ(x)∇θ Pθ(y | x)[V(y) + Rθ(x, y)−V(x)]

+ ∑
x,y

µθ(x)Pθ(y | x)[∇θV(y)−∇θV(x) +∇θ ln Qθ(y | x)]

=∑
x,y

µθ(x)∇θ Pθ(y | x)[V(y) + Rθ(x, y)−V(x)]

+ ∑
y

µθ(y)∇θV(y)−∑
x

µθ(x)∇θV(x) + ∑
x,y

µθ(x)Pθ(y | x)∇θ ln Qθ(y | x)

=∑
x,y

µθ(x)Pθ(y | x)
[

V(y) + Rθ(x, y)−V(x)
]
∇θ ln Pθ(y | x)

+ ∑
x,y

µθ(x)Pθ(y | x)∇θ ln Qθ(y | x).

In fact, we can add any constant number b (independent of x and y) inside the squared
bracket of the last line without changing the equality due to the following fact similar to (18):
∑x,y µθ(x)∇θ Pθ(y | x) = ∑y µθ(y)∇θ ∑x Pθ(x | y) = 0. (16) is a special case of b = r(θ).

Remark 1. As shown in the proof, (16) holds if r(θ) at the right-hand side is replaced by any
constant number b. b = r(θ) is a good choice to reduce the variance since r(θ) can be regarded as
the expectation of Rθ .

Remark 2. If Pθ = Qθ , then the first term of (16) vanishes due to (18) and the second term of (16)
vanishes due to (15).

Remark 3. The name of “policy” here refers to the role of θ as the policy for decision makers to
improve reward r(θ).

3.2. Learn QSD

Now, we discuss how to connect QSD with the results in the previous subsection. In
view of Equation (5), we introduce β := αKα as the one-step distribution if starting from
the initial α; in other words, we have the following.

β(y) := ∑
x∈E

α(x)Kα(x, y), ∀y (19)

By (5), α is a QSD if and only if β = α. However, we do not directly compare these
two distributions α and β. Instead, we consider their Markovian kernels induced by (4): Kα

and Kβ. Our approach is to consider KL divergence similar to (11) between two kernels
Kα and Kβ since α = β if and only if Kα = Kβ. In this manner, one can view Kα and Kβ

(note β = αKα) as two transition matrices Pθ and Qθ in the previous section, in which the
parameter θ here is in fact the distribution α.
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To have a further representation of the distribution α, which is a (probability mass)
function on E , we propose a parametrized family for α in the form αθ where θ is a generic
parameter. In the simplest case, αθ takes the so-called soft-max form αθ(i) = eθi

∑j≥1 eθj
if

E = {1, . . . , N} for θ = (θ1, . . . , θN−1, θN ≡ 0). This parametrization represents α without
any approximation error for finite state space and the effective space of θ is just RN−1. For
certain problems, particularly with large state space, if one has some prior knowledge
about the structure of the function α on E , one might propose other parametric forms of αθ

with the dimension of θ less than the cardinality |E | to improve the efficiency, although the
extra representation error in this manner has to be introduced.

For any given αθ ∈ P(E), the corresponding Markovian kernel Kαθ
is then defined

in (4) and βθ = αθKαθ
i is defined by (19). Kβθ

is like-wise defined by (4) again. To use the
formulation in Section 3.1, we chose Pθ = Kαθ

and Qθ = Kβθ
. Define the objective function

as before:

r(θ) := − lim
T→∞

1
T
DKL(Pθ | Qθ) = − lim

T→∞

1
T

EPθ

T

∑
t=1

Rθ(Xt−1, Xt).

where the following is the case.

Rθ(x, y) = − ln
Kαθ

(x, y)
Kβθ

(x, y)
.

The value function V(x) is defined similarly. Theorem 1 now provides the expression
of the following gradient:

∇θr(θ) = E[
(

Rθ(X, Y)− r(θ) + V(Y)−V(X)
)
∇θ ln Kαθ

(X, Y)

+∇θ ln Kβθ
(X, Y)]

(20)

where (X, Y) ∼ µθ(x)Kαθ
(x, y) and where µθ is the stationary measure of Kαθ

.
The optimal θ∗ for the QSD αθ is to maximize r(θ), and this can be solved by the

gradient descent algorithm:
θt+1 = θt + ηθ

t∇θr(θt). (21)

where ηθ
t > 0 is the step size. In practice, the stochastic gradient is applied:

∇θr(θt) ≈ ∇θ ln Kαθ
(Xt, Xt+1)× δ(Xt, Xt+1) +∇θ ln Kβθ

(Xt, Xt+1)

where Xt, Xt+1 are sampled based on the Markovian kernel Kαθ
(see Algorithm 1) and the

differential temporal (TD) error δt is as follows.

δt = δ(Xt, Xt+1) = Rθ(Xt, Xt+1)− r(θt) + V(Xt+1)−V(Xt). (22)

Next, we need to address a remaining issue, which is the question of how to compute
value functions V and r(θt) in the TD error (22). In addition, we also need to show the
details of computing ∇θKαθ

and ∇θKβθ
.

3.3. Actor-Critic Algorithm

With the stochastic gradient method (21), we can obtain optimal policy θ∗. We refer to
(21) as the learning dynamics for the policy, and it is generally known as actor. To calculate
the value function V appearing in ∇r(θ), we need to have a new learning dynamic, which
is called critic. Then, the overall policy-gradient method is termed as the actor-critic method.

We start with the Bellman Equation (15) for the value function and considered the
mean-square-error loss as follows:



Entropy 2022, 24, 133 10 of 17

MSE[V] =
1
2 ∑

x
ν(x)

(
∑
y

Kαθ
(x, y)[V(y) + Rθ(x, y)− r(θ)]−V(x)

)2

where ν is any distribution supported on E . MSE[V] = 0 if and only if V satisfies the
Bellman Equation (15), i.e., V is the value function. To learn V, we introduce function
approximation for the value function, Vψ, with the parameter ψ and considered to minimize
the following:

MSE(ψ) =
1
2 ∑

x
ν(x)

(
∑
y

Kαθ
(x, y)[V(y) + Rθ(x, y)− r(θ)]−Vψ(x)

)2

by the semi-gradient method ([31], Chapter 9).

∇ψ MSE(ψ) = −∑
x,y

ν(x)Kαθ
(x, y)

[
V(y) + Rθ(x, y)− r(θ)−Vψ(x)

]
∇ψVψ(x)

≈ −∑
x,y

ν(x)Kαθ
(x, y)

[
Vψ(y) + Rθ(x, y)− r(θ)−Vψ(x)

]
∇ψVψ(x)

Here, the term V(y) is frozen first and then approximated by Vψ since it could be
treated as a prior guess of the value function for the future state.

Then, for the gradient descent iteration ψt+1 = ψt − η
ψ
t ∇ψ MSEV(ψt) where η

ψ
t is the

step size, we can have the following stochastic gradient iteration:

ψt+1 = ψt + η
ψ
t δ(Xt, Xt+1) ∇ψVψt(Xt) (23)

where the differential temporal (TD) error δ is defined above in (22).

δt = δ(Xt, Xt+1) = Rθt(Xt, Xt+1)− r(θt) + Vψt(Xt+1)−Vψt(Xt).

Here, for the sake of simplicity, (Xt, Xt+1) are the same samples as in the actor method
for θt. This means that distribution ν above is chosen as µ used for the gradient ∇θr(θ).

Next, we consider the calculation of the reward r(θ) by the following Bellman Equation (15).

∑
x

µ(x)∑
y

Kαθ
(x, y)(Rθ(x, y)− r(θ) + V(y)−V(x)) = 0

Let rt be the estimate of the reward r(θt) at time t. We can update our estimate of the
reward every time a transition occurs as follows:

rt+1 = rt + ηr
t × δt (24)

where δt is the TD error before

δt = δ(Xt, Xt+1) = Rθt(Xt, Xt+1)− rt + Vψt(Xt+1)−Vψt(Xt).

In conclusion, (21), (23) and (24) together consist of the actor-critic algorithm, which
is summarized in Algorithm 1. We remark that Algorithm 1 can be easily adapted to use
the mini-batch gradient method where several copies of (Xt, Xt+1) are sampled, and the
average is used to update the parameters. The stationary distribution µθ of Kαθ

is sampled
by running the corresponding Markov chain for several steps with “warm start”: the initial
for θt+1 is set as the final state generated from the previous iteration at θt. The length of
this “burn-in” period can be set as just one step in practice for efficiency.

Remark 4. Finally, we remark on the computation of ∇θ ln Kαθ
and ∇θ ln Kβθ

in Algorithm 1.
The details are shown in Appendix A. We comment that the main computational cost is the function
K(x, E), which has to be pre-computed and stored. If the problem has some special structure, the
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function could be approximated in parametric form. Another special case is our second example
where K(x, E) = 0 ∀x ∈ {2, 3, . . . , N}.

4. Numerical Experiment

In this section, we present two examples to demonstrate Algorithm 1. We call the
algorithm (7), (8) and (9) in Section 2.2 used in [23,24], as Vanilla Algorithm, Projection
Algorithm and Polyak Averaging Algorithm, respectively. Let 0 be the absorbing state
and E = {1, . . . , N} are non-absorbing states; the Markov transition matrix on {0, . . . , N}
is denoted by the following:

K̃ =

[
1 0
∗ K

]
,

where K is an N-by-N sub-Markovian matrix. For Algorithm 1, distribution αθ on E is
always parameterized as follows:

αθ =
1

eθ1 + . . . + eθN−1 + 1

[
eθ1 , . . . , eθN−1 , 1

]
,

and the value function Vψ(x) is represented in tabular form for simplicity:

Vψ = [ψ1, . . . , ψN ]

where ψ ∈ RN .

4.1. Loopy Markov Chain

We test a toy example of the three-state loopy Markov chain, which was considered
in [23,24]. The transition probability matrix for the four states {0, 1, 2, 3} is as follows.

K̃ =


1 0 0 0
ε 1−ε

3
1−ε

3
1−ε

3
ε 1−ε

3
1−ε

3
1−ε

3
ε 1−ε

3
1−ε

3
1−ε

3

, ε ∈ (0, 1).

The state 0 is the absorbing state ∂ and E = {1, 2, 3}. K is the sub-matrix of K̃
corresponding to the states {1, 2, 3}. With the probability ε, the process exits E directly
from state 1, 2 or 3. The true quasi-stationary distribution of this example is the uniform
distribution for any ε.

In order to show the advantage of our algorithm, we consider two cases: (1) ε = 0.1
and (2) ε = 0.9. For a larger ε, the original Markov chain is very easy to exit; thus, each
iteration takes less time, but the convergence rate of Vanilla algorithm is slower.

In order to quantify the accuracy of the learned quasi-stationary distribution, we
compute the L2 norm of the error between the learned quasi-stationary distribution and
the true values.

In Figure 1, we compute the QSD when ε = 0.1. We set the initial value θ0 = [−1, 1],
ψ0 = [0, 0, 0], r0 = 0, the learning rate ηθ

n = max{1/n0.1, 0.2}, η
ψ
n = 0.0001, ηr

n = 0.0001 and
the batch size is 4. The step size for the Projection Algorithm is εn = n−0.99. Figure 2 is
for the case when ε = 0.9 We set the initial value θ0 = [4,−2], ψ0 = [0, 0, 0], r0 = 0, the
learning rate ηθ

n = 0.04, η
ψ
n = 0.0001, ηr

n = 0.0001 and the batch size is 32. The step size for
the Projection Algorithm is εn = n−0.99.
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Figure 1. The loopy Markov chain example with ε = 0.1. The figure shows the log–log plots of
L2-norm error of the Vanilla Algorithm (a), Projection Algorithm (b), Polyak Averaging Algorithm
(c) and our actor-critic algorithm (d). The iteration for the actor-critic algorithm is defined as one step
of gradient descent (“t” in Algorithm 1).
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Figure 2. The loopy Markov chain example with ε = 0.9. The figure shows the log–log plots of
L2-norm error of Vanilla Algorithm (a), Projection Algorithm (b), Polyak Averaging Algorithm (c)
and our actor-critic algorithm (d).
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4.2. M/M/1/N Queue with Finite Capacity and Absorption

Our second example is an M/M/1 queue with finite queue capacity. The 0 state has
been set as an absorbing state. The transition probability matrix on {0, . . . , N} takes the
following form:

K̃ =



1 0 0 0 0 . . . 0 0
µ1 0 λ1 0 0 . . . 0 0
0 µ2 0 λ2 0 . . . 0 0
0 0 µ3 0 λ3 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 0 0 λN−1
0 0 0 0 0 . . . 1 0


where λi =

ρi
ρi+1 , µi =

1
ρi+1 , i ∈ {1, 2, · · · , N − 1}. ρi > 1 means a higher chance to jump

to the right than to the left. A larger ρi will have less probability of exiting E . Note that
K(x, E) = 1 for x ∈ {2, . . . , N}. Thus, Kα(x, y) = K(x, y) for any α if x 6= 1 and Kα(1, y) =

K(1, y) + µ1α(y) =

{
λ1 + µ1α(1) y = 1,
µ1α(y) 2 ≤ y ≤ N

. Then, Rθ(x, y) = − ln
Kαθ

(x,y)
Kβθ

(x,y) = 0 if x 6= 1

and by (20), the gradient is simplified as follows:

∇θr(θ) = EY[
(

Rθ(1, Y)− r(θ) + V(Y)−V(1)
)
∇θ ln Kαθ

(1, Y) +∇θ ln Kβθ
(1, Y)]

where Y follows distribution Kα(1, ·).
We consider two cases: (1) a constant ρi = 1.25 and (2) a state-dependent

ρi = 2 − 3
2N−4 (i − 1). Note that ρi = 1 gives an equal probability of jumping to the

left and to the right. Thus, in case (1), there is a boundary layer at the most right end and in
case (2), we expect to see a peak of the QSD near i ≈ 2N/3. Figure 3 shows the true QSD in
both cases. We set N = 500.
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Figure 3. The QSD for M/M/1/500 queue with ρi ≡ 1.25 (left) and ρi = 2− 3
2N−4 (i− 1) (right).

In Figure 4, we consider the case when ρi = 1.25 and compute L2 errors. We set the
initial value θi

0 = −35 + 35
498 (i− 1) for i ∈ {1, 2, . . . , 498} and θ499

0 = 3, ψ0 = [0, 0, . . . , 0],
r0 = 0 and the learning rate ηθ

n = 0.0003, η
ψ
n = 0.0001, ηr

n = 0.0001 and the batch size
is 64. The step size for Projection Algorithm is εn = n−0.95. Figure 5 plots the errors for
the state-dependent ρi = 2− 3

2N−4 (i− 1). We set the initial value θi
0 = 8 + 35

250 (i− 1) for
i ∈ {1, 2, . . . , 250}, θ251

0 = 44, θi
0 = 43 for i ∈ {252, . . . , 305}, θ306

0 = 48, θ307
0 = 42 and

θi
0 = 43− 38

293 (i− 1) for i ∈ {308, 309, . . . , 499}, ψ0 = [0, 0, . . . , 0], r0 = 0 and the learning
rate is ηθ

n = 0.0002, η
ψ
n = 0.0001, ηR

n = 0.0001 with the batch size as 128. The step size for the
Projection Algorithm is εn = n−0.95. Both figures demonstrate that actor-critic algorithm
performs quite well on this example.

In Table 1, we compared the CPU time of each algorithm in the M/M/1/500 queue
when they obtain an accuracy at 2× 10−1. We found that our algorithm cost less time on
this example.



Entropy 2022, 24, 133 14 of 17

(a)
100 101 102 103 104 105

log(iteration)

10−1

100

lo
g(
L2

-n
or

m
 o
f e

rro
r)

Vanilla

(b)
100 101 102 103 104 105

log(iteration)

10−1

100

lo
g(
L2

-n
or

m
 o
f e

rro
r)

Projection

(c)
100 101 102 103 104 105

log(iteration)

10−1

100

lo
g(
L2

-n
or
m
 o
f e

rro
r)

Polyak Averaging

(d)
100 101 102 103 104 105

log(iteration)

10−1

100

lo
g(
L2

-n
or
m
 o
f e

rro
r)

ac_α

Figure 4. The M/M/1/500 queue with ρi = 1.25. The figure shows the log–log plots of L2-norm
error of Vanilla Algorithm (a), Projection Algorithm (b), Polyak Averaging Algorithm (c) and our
actor-critic algorithm (d).
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Figure 5. The M/M/1/500 queue with ρi = 2− 3
2N−4 (i− 1). The figure shows the log–log plots of

L2-norm error of Vanilla Algorithm (a), Projection Algorithm (b), Polyak Averaging Algorithm (c)
and our actor-critic algorithm (d).



Entropy 2022, 24, 133 15 of 17

Table 1. The CPU time of each algorithm in the M/M/1/500 queue when they obtain the accuracy at
2× 10−1.

Algorithm Vanilla Projection Polyak Averaging ac_α

Time (s) 1038.3279 429.6304 505.2299 186.9280
Time (s) 753.9503 259.0671 268.5476 251.5370

5. Summary and Conclusions

In this paper, we propose a reinforcement learning (RL) method for quasi-stationary
distribution (QSD) in discrete time finite-state Markov chains. By minimizing the KL-
divergence of two Markovian path distributions induced by the candidate distribution and
the true target distribution, we introduce the formulation in terms of RL and derive the
corresponding policy gradient theorem. We devise an actor-critic algorithm to learn the
QSD in its parameterized form αθ . This formulation of RL can receive benefit from the
development of the RL method and the optimization theory. We illustrated our actor-critic
methods on two numerical examples by using simple tabular parametrization and gradient
descent optimization. It has been observed that the performance of our method is more
prominent for large scale problems.

We only demonstrate the preliminary mechanism of the idea here, and there is much
space left for improving the efficiency and extensions in future works. The generalization
from the current consideration of finite-state Markov chain to the jump Markov process and
the diffusion case is in consideration. More importantly, for very large or high dimensional
state space, modern function approximation methods such as kernel methods or neural
networks should be used for the distribution αθ and the value function Vψ. The recent
tremendous advancement of optimization techniques for policy gradient in reinforcement
learning could also contribute much to efficiency improvement of our current formulation.
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Appendix A

In this appendix, we discuss the computation of the gradient of∇θ ln Kαθ
and∇θ ln Kβθ

.
Note that ∇θαθ is straightforward since we model α in its parametrization form θ. By
definition (4), we have the following:

∇θ ln Kαθ
(Xt, Xt+1) =

1− K(Xt, E)
Kαθ

(Xt, Xt+1)
∇θαθ(Xt+1)

and the following as well:

∇θ ln Kβθ
(Xt, Xt+1) =

1− K(Xt, E)
Kβθ

(Xt, Xt+1)
∇βθ(Xt+1).
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where Kβ(x, y) = K(x, y) + (1− K(x, E))β(y). The vector K(x, E) for any x can be pre-
computed and saved in tabular form.

By (19), the one-step distribution β is computed below.

β(Xt+1) = ∑
x

α(x)
[

K(x, Xt+1) + (1− K(x, E))α(Xt+1)

]
≈ 1

n

n

∑
i=1

K(Zi, Xt+1) + (1− K(Zi, E))α(Xt+1)

Here, the samples Zi ∼ α could be approximated by stationary distribution µ; thus,
one may simply use the known sample Xt to replace Zi with n = 1.

To find ∇θ βθ , we use stochastic approximation again.

∇θ βθ(Xt+1) = ∑
x
∇αθ(x)[K(x, Xt+1) + (1− K(x, E))αθ(Xt+1)] +

[
∑
x

αθ(x)(1− K(x, E))
]
∇θαθ(y),

≈ 1
n

n

∑
i=1
∇ ln αθ(Zi)[K(Zi, Xt+1) + (1− K(Zi, E))αθ(Xt+1)] + (1− K(Zi, E))∇θαθ(Xt+1).
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