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Abstract

Objectives

Resistance training (RT) is a promising strategy to slow or prevent fluid cognitive decline

during aging. However, the effects of strength-specific RT programs have received little

attention. The purpose of this single-group proof of concept clinical trial was to determine

whether a 12-week strength training (ST) program could improve fluid cognition in healthy

older adults 60 to 80 years of age, and to explore concomitant physiological and psychologi-

cal changes.

Methods

Twenty participants (69.1 ± 5.8 years, 14 women) completed this study with no drop-outs or

severe adverse events. Baseline assessments were completed before an initial 12-week

control period, then participants were re-tested at pre-intervention and after the 12-week ST

intervention. The NIH Toolbox Cognition Battery and standard physical and psychological

measures were administered at all three time points. During the 36 sessions of periodized

ST (3 sessions per week), participants were supervised by an exercise specialist and chal-

lenged via autoregulatory load progression.

Results

Test-retest reliability over the control period was good for fluid cognition and excellent for

crystallized cognition. Fluid composite scores significantly increased from pre- to post-inter-

vention (8.2 ± 6.1%, p < 0.01, d = 1.27), while crystallized composite scores did not (-0.5 ±
2.8%, p = 0.46, d = -0.34). Performance on individual fluid instruments, including executive

function, attention, working memory, and processing speed, also significantly improved.

Surprisingly, changes in fluid composite scores had small negative correlations with
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changes in muscular strength and sleep quality, but a small positive correlation with

changes in muscular power.

Conclusions

Thus, improvements in fluid cognition can be safely achieved in older adults using a 12-

week high-intensity ST program, but further controlled studies are needed to confirm these

findings. Furthermore, the relationship with other widespread physiological and psychologi-

cal benefits remains unclear.

Introduction

Older adults naturally experience declines in fluid cognition, the ability to process informa-

tion, solve novel problems, and encode new memories [1]. The rate of fluid decline is linked to

neurobiological integrity and neurological disorders that can interfere with independent living

[2]. However, higher levels of physical activity reduce the rate of cognitive decline and risk of

dementia [3], and exercise interventions have well-documented cognitive benefits [4]. Resis-

tance training (RT) is one such form of exercise. A recent meta-analysis reported positive

effects (d = 0.71) of RT interventions on cognition composite scores [5].

RT interventions can vary in their training parameters: exercise selection, intensity (load),

volume (sets and repetitions), frequency, and rest periods. Most of the previous RT studies for

cognition in healthy older adults involved low-intensity/high-volume circuits [6–8] or more

traditional moderate-intensity/moderate-volume hypertrophic weightlifting [9–14]. While

improvements in global fluid cognition and executive function appear to be partially mediated

by increases in muscular strength [15,16], it is unclear whether this relationship holds with a

strength-specific RT program. Knowing that a high-intensity periodized strength training (ST)

program can maximize gains in muscular strength [17,18], an investigation for cognitive-

enhancement is warranted.

Other pleiotropic benefits of RT are commonly observed in physiological and psychological

outcomes that are epidemiologically linked to cognition [19]. The most familiar effects are

increased physical capacity and protection against sarcopenia [20,21], but improvements are

also notable in measures of body composition, mood, sleep quality, and cardiovascular health

[22–24]. These factors may help us understand how cognitive enhancement arises. Even with

only small associations, there may be cumulative effects from each underlying factor.

The purpose of this proof-of-concept study was to estimate the effects of high-intensity ST

on fluid cognition in healthy older adults, and to explore potential relationships with concomi-

tant physical and psychological changes. The single arm pre-post design with initial control

period allowed us to address practicality, while maintaining a thorough proof-of concept

framework [25]. While various cognitive assessments have been used [5], we chose the NIH

Toolbox1 Cognition Battery (NIHTB-CB) as a standardized set of comprehensive assessment

tools [26]. The NIHTB-CB has been normed and validated in participants ages 3–85, and

ensures that assessment methods and results can be used for comparisons across existing and

future studies [27]. We hypothesized that a 12-week ST program performed 3 days per week

could improve fluid cognition in healthy older adults. As an exploratory analysis, the wide-

spread benefits of ST were analyzed for potential associations with cognitive changes.
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Methods

Participants and study design

Using a single arm pre-post design, the effects of a 12-week ST intervention on fluid cognition

were compared to that of an initial control period. Thus, participants served as their own con-

trols and completed all assessments at three time points: baseline, pre-intervention, and post-

intervention. All control periods took place before the ST intervention to ensure that results

were not confounded by detraining effects or long-term cognitive benefits [12]. In addition, a

control period equal in duration to the intervention allowed direct within-subjects statistical

comparisons. Participants were asked to not change their eating or exercise habits outside of

the study and were encouraged to continue their normal activities.

All procedures of this single-group clinical trial were conducted at the University of South-

ern California (USC, Los Angeles, CA) Health Sciences Campus. This study was approved by

the USC Health Sciences Review Board and registered with ClinicalTrials.gov (ID:

NCT03982550). Clinical trial registration was performed retrospectively due to technical issues

with the account. All future trials will be registered prospectively. A flow diagram of partici-

pant recruitment and testing is shown in Fig 1. Recruitment took place between July 2018 and

May 2019. Strategies included participant referral and flyer distribution with, whenever possi-

ble, public announcement (e.g. at the end of a class at the local senior center). The USC Health

Sciences Campus is approximately 5 miles from residential/business areas, which provide

access to health clubs, country clubs, and senior centers. Only investigators (stating their asso-

ciation with the study and USC) discussed the study details with potential participants (includ-

ing the time requirements, training protocols, and outcome measures) and inquired about

possible interest.

Written informed consent was obtained from all potential participants assessed for eligibil-

ity. Primary considerations for inclusion/exclusion criteria were to ensure that participants

were healthy, interested, and available to participate, without any contraindications to ST. In

addition, participants were required to meet the following criteria: 60–80 years of age; living

independently (without need of assistance); answer ‘NO’ to all questions on the Physical Activ-

ity Readiness Questionnaire (PAR-Q) or receive medical clearance from a physician; cogni-

tively healthy (score 24 or higher on the Mini Mental State Examination); have no known

history of neurological disease, cerebral infarct, or traumatic brain injury; have no known

Type 1 or Type 2 Diabetes; and do not self-report engaging in heavy RT (i.e. “using a resistance

heavy enough that you could not lift more than 15 times in a set”) in the last 6 months.

To first confirm the effects on fluid cognition, we computed a preliminary sample size of 18

in an a priori power analysis. We used a meta-analysis effect size of RT on fluid cognition,

d = 0.71 [5], alpha of 0.05, power of 0.80, and within-subjects pre-post design. We accounted

for an anticipated attrition rate of 10%. All 20 participants (Table 1) that were included in the

study completed the required number of training sessions (>90%) and all assessments at base-

line, pre-intervention, and post-intervention. The last participant finished post-intervention

testing in December 2019. There were no participant drop-outs or severe adverse events.

Resistance training intervention

Participants performed a periodized and progressive ST program emphasizing development of

total-body strength using machine-based exercises. All 36 training sessions (3 days per week)

were performed in the USC Clinical Exercise Research Center, supervised by an exercise spe-

cialist, and lasted approximately one hour. Throughout the program, volume linearly

decreased, and intensity linearly increased (Table 2). Mesocycle I (weeks 1–4) was designed for
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muscular hypertrophy to develop a base for more intense training in later phases. Mesocycles

II (weeks 5–8) and III (weeks 9–12) were designed to promote strength gains. Training ses-

sions alternated between lower body (leg press, leg extension, leg curl) focus and upper body

(chest press, lat pulldown, seated row, and seated shoulder press) focus.

These parameters were chosen to maximize performance on 4–6 repetition maximum

(RM) testing post-intervention, according to the principle of specificity [18]. Training loads

Fig 1. Flow diagram of participant recruitment and testing. 72 potential participants were assessed for eligibility. All

20 participants that were included in this study completed the required number of training sessions (>90%) and all

assessments at baseline, pre-intervention, and post-intervention. There were no participant drop-outs or severe

adverse events.

https://doi.org/10.1371/journal.pone.0255018.g001

Table 1. Participant characteristics at baseline (N = 20).

Variable Actual

Female 14 (70%)

Non-Hispanic: 15 (75%)

• Asian • 2 (10%)

• Black or African American • 4 (20%)

• White • 9 (45%)

Hispanic: 5 (25%)

• White • 1 (5%)

• More than one race • 4 (20%)

Age (years) 69.1 ± 5.8 (60.1,79.7)

Height (cm) 166.7 ± 8.9 (154.4, 188.2)

Weight (kg) 72.3 ± 10.1 (58.3, 96.5)

Mini Mental State Examination^ 28.0 ± 1.6 (26, 30)

N (%) or Mean ± SD (range).

^Score< 24 indicates possible mild cognitive impairment.

All participants were required to score� 24 in order to be eligible for the study.

https://doi.org/10.1371/journal.pone.0255018.t001
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were individually progressed in a safe and effective manner to elicit the greatest training-

induced neuromuscular adaptations [28]. Because older adults respond to training stimuli at

different rates, autoregulatory progression was used [29]. While the sets and repetitions were

fixed for each week, supervised autoregulation allowed participants to progress loads at their

own pace based on maximum performance on the last set of each exercise.

In the event a participant missed a training session during the 12-week intervention, she/he

could complete missed sessions during a 2-week buffer period. A maximum of 6 sessions (3

per week) were allowed during this period. All post-intervention study procedures were con-

ducted at least 48 hours after the last training session and within 2 weeks.

Primary outcomes—Cognitive function

All cognitive assessments were administered by the same trained investigator (TRM) using the

NIHTB-CB (Version 1.21) application on an iPad Pro 10.5-inch (Apple, Cupertino, CA). The

NIHTB-CB has seven individual instruments—Flanker Test, Picture Sequence Memory Test,

List Sorting Working Memory Test, Dimensional Change Card Sort Test, Pattern Comparison

Test, Picture Vocabulary Test, and Oral Reading Recognition Test—that test the following

cognitive subdomains: inhibitory control and attention, episodic memory, working memory,

executive function, and processing speed for fluid cognition and vocabulary and reading rec-

ognition for crystallized cognition [26]. Each assessment lasted approximately 45 minutes.

In addition to scores for each individual instrument, the battery yields a Fluid Composite

Score and a Crystallized Composite Score. The NIHTB-CB has good convergent validity with

Gold Standard measures of Crystallized (r = 0.90) and Fluid (r = 0.78) Composite Scores and

excellent test-retest reliability (r = 0.92 and 0.86 for Crystallized and Fluid Composite Scores,

respectively), which is similar to that of the Gold Standard [27]. All scores are standardized to

the population, with a normative mean of 100 and a standard deviation of 15.

Secondary outcomes

Body composition. Body composition was assessed in morning fasted conditions. Weight

was measured on an InBody 770 (InBody, Seoul, South Korea). Percent body fat (PBF, %),

lean body mass (LBM, g), and fat mass (FM, g) were measured by dual energy x-ray absorpti-

ometry (DXA) on a Lunar iDXA (GE Healthcare, Waukesha, WI).

Muscular strength. Participants performed a familiarization session approximately one

week prior to baseline strength testing. They were instructed in proper technique on all

machine-based resistance exercises to be used for testing and training. Muscular strength was

assessed using 4-6RM tests. The load and number of completed repetitions were used to esti-

mate 1RM values according to a standard equation. This calculated 1RM represents a valid

assessment of muscular strength in older adults [30]. Single measures for lower body strength,

Table 2. Periodization model of the high-intensity resistance training program.

Macrocycle: 12 weeks

Mesocycle 1 Mesocycle II Mesocycle III

Sets 3 3 4 3 4 3

Repetitions 10 8 6 6 4 4

Weeks 1–2 3–4 5–6 7–8 9–10 11–12

This linear periodization model was used to maximize strength gains during the 12-week intervention.

https://doi.org/10.1371/journal.pone.0255018.t002
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upper body strength, and total body strength were calculated using the cumulative 1RMs of

their respective exercises.

Physical function. Gait speed is an important marker of vitality that can predict the life

expectancy of older adults [31]. Participants were instructed to walk on a marked 8-meter

walkway at a normal, comfortable speed. Time taken to walk the central 4 meters of the course

was recorded. The average of two measurements were used to calculate gait speed (m/sec).

The Timed Up and Go (TUG) test was used as a standard measure for mobility and fall risk

[32]. Participants began seated in a chair with hands on the armrests and then were asked to

rise, walk to a line on the floor 3 meters from the chair, turn around, and return to the same

seated position as quickly and safe as possible. The average of three timed trials was recorded

(sec).

Functional power was measured using the Margaria Stair Climb test for older adults [33].

We used a modified version in which participants were instructed to ascend a flight of 10 stairs

one step at a time as quickly as possible without using the handrail. Timing began when one

foot stepped on the 3rd stair and ended when that foot reached the 9th stair. Power (W) was

then calculated using the stair height, body weight, and average time of three trials.

The Y-Balance test (Functional Movement Systems) was used as a dynamic assessment of

single-leg standing balance abilities [34]. Participants stood with one foot on a platform from

which 3 polyvinylchloride pipes extend in the anterior, posteromedial, and posterolateral

directions. The participant was instructed to push a target with the reaching foot and return to

a standing position without touching the ground. Maximal reach was recorded for each foot,

in each of the 3 directions. The six reach distances were summed and used for analyses (cm).

Four participants were not able to perform all six reach directions at baseline and/or pre-inter-

vention, so their data were excluded from analyses.

Questionnaires. Participants were asked not to include any activities of the present study

in their questionnaire responses. The International Physical Activity Questionnaire (IPAQ)

was used to assess average weekly physical activity outside of the study [35], determined in

metabolic equivalents (MET�min/week). The Pittsburgh Sleep Quality Index (PSQI) was

administered to evaluate overall sleep quality [36]. Scores are inversely related to sleep quality.

A PSQI score of 5 or above is indicative of clinically poor sleep quality. The shortened Inter-

personal Support Evaluation List (ISEL) was administered for perceptions of social support

[37]. The ISEL has three dimensions of support: Appraisal support, Belonging support, and

Tangible support. The three scores were averaged for an overall ISEL score. A higher ISEL

score indicates greater social support, up to a maximum of 16. Finally, general health-related

quality of life status was assessed using the Short Form-36 (SF-36). This survey yields an eight-

scale profile of scores, including physical functioning, role limitations due to physical health,

role limitations due to emotional problems, energy/fatigue, emotional well-being, social func-

tioning, pain, and general health [38]. Higher scores indicate greater health status, up to a max-

imum of 100 for each scale.

Statistical analyses

All raw data can be found in the S1 and S2 Datasets. The following intention to treat analyses

were performed in SPSS Statistics V.25 (IBM, Chicago, IL). All data were considered continu-

ous, examined for normality using Shapiro-Wilk tests, and described by either means and

standard deviations or medians and interquartile range (if not normally distributed). For each

outcome, all data from a participant were excluded if data from one visit were missing. Test-

retest reliability over the control period (baseline and pre-intervention) was evaluated using

two-way mixed effects intraclass correlation coefficients (ICCs) with absolute agreement.
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Estimates less than 0.50, between 0.50 to 0.75, between 0.75 and 0.90, and greater than 0.90

were classified as poor, moderate, good, and excellent test-retest reliability, respectively [39].

Effect sizes were calculated for all outcomes to determine the magnitude of differences

between control and intervention periods. For normally distributed data, an adapted Cohen’s

d effect size was calculated—mean changes from pre- to post-intervention were subtracted by

the mean changes from baseline to pre-intervention, then divided by the average standard

deviation of those changes [40]. For non-normally distributed data, matched-pairs rank-biser-

ial effect size was calculated—the differences between control and intervention changes were

ranked, then the sum of positive ranks was subtracted by the sum of negative ranks and

divided by the total sum of ranks [41]. For both adapted Cohen’s d and matched-pairs rank-

biserial, effect sizes of 0.2, 0.5, 0.8, and 1.2 were classified as small, medium, large, and very

large, respectively [42].

Only changes in cognition were tested for significance because fluid cognition was the only

outcome powered for a priori hypothesis testing. Paired t-tests were used, comparing data

from pre- and post-intervention, with statistical significance set at P < 0.05. The criteria for

outlier exclusion were set at any z-score greater than 3 or less than -3. One outlier was noted

for crystallized cognition. At post-intervention, this female participant had vocabulary and

crystallized composite scores that were 4.3 and 4.1 standard deviations above the sample

mean, respectively. Therefore, all crystallized cognition data for this participant were removed

from further analyses.

Relationships between fluid cognition improvements and changes in other outcome vari-

ables were analyzed. Only raw changes from pre- to post-intervention were used. Spearman

rank correlation coefficients were chosen to reduce effect variability with small samples [43].

Spearman’s rho values of 0.1, 0.3, and greater than 0.5 were classified as small, medium, and

large associations, respectively [44].

Results

Tables 3 and 4 present the descriptive statistics for all outcome measures of the study:

mean ± SD (or median ± IQR if data not normally distributed) at baseline, pre-intervention,

and post-intervention, test-retest reliability of the 12-week control period, and effect sizes of

the 12-week intervention period. Because participants were asked to maintain their normal

eating and exercise habits outside of the study, no changes in outcome measures were expected

after the control period. Reliability was moderate to good for fluid cognition measures (except

the picture sequence memory test had poor reliability), good to excellent for crystallized cogni-

tion measures, excellent for body composition, good for blood pressure and heart rate, excel-

lent for muscular strength and power, moderate for physical function, and good for PSQI and

ISEL responses (Tables 3 and 4). The eight SF-36 scales ranged from poor to good reliability.

Responses to the IPAQ were not normally distributed (Shapiro-Wilk P< 0.05). However,

there were no differences between baseline (median = 4012 MET�min/week, IQR = 5806

MET�min/week) and pre-intervention (median = 4318 MET�min/week, IQR = 5211

MET�min/week) responses, or between pre-intervention and post-intervention (median = 4439

MET�min/week, IQR = 4709 MET�min/week) responses. Therefore, participants appeared to

have followed instructions to not change their exercise habits outside of the study.

Cognitive outcomes

All participants completed the NIHTB-CB at baseline, pre-intervention, and post-interven-

tion. Composite score data are presented in Fig 2A. Fluid composite scores significantly

increased from pre- to post-intervention (+7.7 ± 5.5 Standard Units, p< 0.01). Note that this
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mean 8.2% improvement is a very large effect size (d = 1.27) compared to the control period

and is about one half of the population standard deviation (SD = 15 Standard Units) improve-

ment. In contrast, there was no change in crystallized composite scores from pre- to post-

intervention (-0.7 ± 3.3 Standard Units, p = 0.46). S1 Fig also presents the fluid composite

score data at pre- and post-intervention for each participant, categorized by sex and age.

Data from each individual instrument are presented in Fig 2B. For fluid cognition, four of

the five individual instrument scores significantly increased from pre- to post-intervention:

Dimensional Change Card Sort Test (+4.1 ± 6.8 Standard Units, p = 0.04), Flanker Test

(+3.2 ± 6.4 Standard Units, p = 0.02), List Sorting Test (+10.7 ± 10.2 Standard Units,

p< 0.01), and Pattern Comparison Test (+2.0 ± 11.5 Standard Units, p< 0.01). The effect

sizes were small for the Dimensional Change Card Sort Test and the Flanker Test, and large

for the List Sorting Test and the Pattern Comparison Test (Table 3). The only fluid instrument

that did not improve from pre- to post-intervention was the Picture Sequence Memory Test

(+8.0 ± 8.5 Standard Units, p = 0.45). As expected for crystallized cognition, there were no

changes from pre- to post-intervention in the Picture Vocabulary Test (-1.0 ± 4.5 Standard

Units) or the Oral Reading Recognition Test (-0.2 ± 2.2 Standard Units).

Secondary outcomes

Table 4 shows the descriptive statistics for physiological outcomes and questionnaire

responses. Although these outcomes were not tested for statistical significance, all effect sizes

were in the expected direction of improvement or were negligibly small. Fluid cognition

improvements were explored for possible relationships with these outcomes. The SF-36 was

excluded from these analyses because the median change for six of the eight domains was zero.

Spearman correlations were computed between raw fluid composite score changes and

changes in other outcome variables. Table 5 shows the degrees of correlation between the

ranked data. Raw fluid cognition changes had small correlations with changes in fat mass,

blood pressure, heart rate, total body strength, Margaria power, Y-balance, and PSQI score,

Table 3. Descriptive statistics for cognitive outcomes at baseline, pre-intervention, and post-intervention (N = 20).

Measure Baseline (Week 0) Pre-Intervention (Week 12) Post-Intervention (Week 24) ICC^ (3,1) Effect Size^^ (d)

Cognitive Outcomes:

NIHTB-CB Fluid Composite Score 95.4 ± 8.2 95.9 ± 8.4 103.6 ± 8.7 0.77 1.27

• Flanker 95.8 ± 7.5 97.3 ± 6.2 101.4 ± 7.2 0.64 0.40

• List Sorting 96.5 ± 9.1 94.9 ± 10.2 102.9 ± 6.2 0.69 1.19

• Dimensional Change Card Sort 101.5 ± 7.5 102.7 ± 7.4 105.9 ± 8.3 0.81 0.35

• Pattern Comparison 95.8 ± 12.1 93.90 ± 12.8 104.5 ± 12.8 0.57 1.15

• Picture Sequence 98.2 ± 12.1 100.5 ± 10.8 102.5 ± 12.4 0.47 -0.03

NIHTB-CB Crystallized Composite Score# 112.4 ± 7.2 112.8 ± 8.3 112.1 ± 7.0 0.91 -0.34

• Picture Vocabulary# 113.5 ± 7.6 113.6 ± 9.0 112.6 ± 7.2 0.89 -0.26

• Oral Reading# 110.4 ± 6.7 111.0 ± 6.9 110.8 ± 6.6 0.93 -0.35

The control period 12-week test-retest reliability was important since this study was a single group clinical trial. No changes were observed from baseline to pre-

intervention. The effects of the 12-week periodized RT intervention are evident via changes from pre- to post-intervention and calculated effect sizes. Mean ± SD.

^Two-way mixed intraclass correlation coefficient (ICC) with absolute agreement calculated using baseline and pre-intervention data.

^^Adapted Cohen’s d effect size calculated by subtracting the mean changes from pre- to post-intervention by the mean changes from baseline to pre-intervention and

dividing the average standard deviation of those changes.
#Data from one participant were considered outliers and therefore excluded from analyses (N = 19).

NIHTB-CB = NIH Toolbox Cognition Battery. All scores presented as uncorrected standard scores (population mean and SD = 100 ± 15).

https://doi.org/10.1371/journal.pone.0255018.t003
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and weak correlations with changes in body fat percentage, lean body mass, TUG time, and

ISEL score. Spearman correlations were also computed between raw fluid composite score

changes and pre-intervention values in other outcome variables, and are presented in S1

Table.

Discussion

This study demonstrates that a 12-week ST intervention with cognitive outcomes is feasible

and safe with healthy older adults. Although we recognize the limitations of the single-group

design, this study was rigorously executed by qualified investigators using standard/well-

Table 4. Descriptive statistics for physiological outcomes and questionnaire responses at baseline, pre-intervention, and post-intervention (N = 20).

Measure Baseline (Week 0) Pre-Intervention (Week 12) Post-Intervention (Week 24) ICC^ (3,1) Effect Size^^ (d)

Physiological Outcomes:

Body Weight (kg) 72.3 ± 10.1 72.0 ± 9.5 72.2 ± 9.8 0.98 -0.01

Body Fat Percentage (%) 38.8 ± 5.8 38.7 ± 5.9 37.8 ± 5.7 0.99 0.67

Lean Body Mass (kg) 42.8 ± 8.4 42.7 ± 7.9 43.5 ± 8.1 0.99 0.63

Fat Mass (kg) 26.8 ± 4.3 26.6 ± 4.5 26.2 ± 4.5 0.96 0.21

Systolic Blood Pressure (mmHg) 121.6 ± 18.9 121.1 ± 15.0 117.2 ± 14.9 0.79 -0.04

Diastolic Blood Pressure (mmHg) 63.4 ± 10.4 64.2 ± 10.0 64.5 ± 10.9 0.77 -0.14

Heart Rate (bpm) 65.7 ± 9.9 65.6 ± 11.1 64.5 ± 10.6 0.77 -0.01

Total Body Strength (kg) 307.1 ± 141.3 299.5 ± 140.6 452.2 ± 162.6 0.99 3.86

• Lower Body Strength (kg) 207.6 ± 106.1 202.6 ± 106.1 319.9 ± 125.3 0.99 3.73

• Upper Body Strength (kg) 99.5 ± 37.4 96.8 ± 36.5 132.3 ± 40.9 0.98 3.37

Margaria Power (W) 362.2 ± 103.2 366.8 ± 101.6 417.2 ± 112.0 0.97 1.59

Timed Up and Go (sec) 5.9 ± 0.5 6.1 ± 0.6 5.4 ± 0.5 0.67 -1.98

Y-Balance## (cm) 396.4 ± 38.7 407.7 ± 37.3 430.5 ± 38.3 0.59 0.55

Habitual Gait Speed (m/sec) 1.4 ± 0.2� 1.4 ± 0.2� 1.5 ± 0.2� 0.68 0.01�

Questionnaire Responses:

PSQI Score 4.0 ± 2.8� 5.0 ± 3.0� 3.5 ± 1.75� 0.84 -0.39�

ISEL Score 15.0 ± 2.0� 14.3 ± 3.5� 15.0 ± 2.3� 0.81 0.69�

SF-36 Physical Functioning 95.0 ± 13.8� 92.5 20.0� 95.0 10.0� 0.53 0.47�

SF-36 Limitations Due to Physical Health 100.0 ± 18.8� 100.0 ± 25.0� 100.0 ± 0.0� 0.16 0.27�

SF-36 Limitations Due to Emotional Problems 100.0 ± 24.9� 100.0 ± 24.8� 100.0 ± 0.0� 0.10 0.30�

SF-36 Energy/Fatigue 76.0 ± 9.8 76.8 ± 10.6 79.3 ± 10.4 0.56 0.19

SF-36 Emotional Well-Being 88.0 ± 8.0� 88.0 ± 15.0� 90.0 ± 8.0� 0.77 0.26�

SF-36 Social Functioning 100.0 ± 12.5� 100.0 ± 0.0� 100.0 ± 0.0� 0.66 -0.24�

SF-36 Pain 90.0 ± 28.1� 90.0 ± 30.0� 90.0 ± 17.4� 0.72 0.13�

SF-36 General Health 77.8 ± 12.3 80.3 ± 12.5 85.3 ± 10.1 0.46 0.26

The control period 12-week test-retest reliability was important since this study was a single group clinical trial. No changes were observed from baseline to pre-

intervention. The effects of the 12-week periodized RT intervention are evident via changes from pre- to post-intervention and calculated effect sizes. Mean ± SD.

^Two-way mixed intraclass correlation coefficient (ICC) with absolute agreement calculated using baseline and pre-intervention data.

^^Adapted Cohen’s d effect size calculated by subtracting the mean changes from pre- to post-intervention by the mean changes from baseline to pre-intervention and

dividing the average standard deviation of those changes.

�Median ± IQR and matched-pairs rank-biserial effect size calculated on the changes from pre- to post-intervention versus changes from baseline to pre-intervention.
##Four participants were not able to perform all six reach directions at baseline and/or pre-intervention, so their data were excluded from analyses (N = 16).

PSQI = Pittsburgh Sleep Quality Index. Lower scores indicate better sleep quality, scores� 5 are classified as clinically poor sleep quality.

ISEL = International Support Evaluation List. Higher scores indicate greater social support, up to a maximum of 16.

SF-36 = Short Form-36. Higher scores indicate greater health-related quality of life, up to a maximum of 100.

https://doi.org/10.1371/journal.pone.0255018.t004
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Fig 2. NIH Toolbox Cognition Battery uncorrected standard scores assessed at baseline, pre-intervention and

post-intervention. A) Crystallized (N = 19) and fluid (N = 20) composite scores (Mean ± SD). B) Scores for each

individual instrument (Means only, standard deviations were removed for simplicity). Crystallized composite scores

and their corresponding instruments (Vocabulary and Reading) are shown in gray. Fluid composite scores and their

corresponding instruments (Flanker, Dimensional Change Card Sort, List Sorting, Pattern Comparison, and Picture

Sequence) are shown in black. � p< 0.05.

https://doi.org/10.1371/journal.pone.0255018.g002

Table 5. Spearman’s rho correlations between pre- to post-intervention changes in fluid composite score and

changes in other outcome variables of interest (N = 20).

Measure Spearman’s rho

Total Body Strength -0.24

• Lower Body -0.25

• Upper Body -0.11

Margaria Power 0.21

Body Fat Percentage -0.07

Lean Body Mass 0.03

Fat Mass 0.17

Systolic Blood Pressure 0.11

Diastolic Blood Pressure -0.24

Heart Rate -0.17

Timed Up and Go 0.07

Y-Balance# 0.23

Habitual Gait Speed 0.01

PSQI Score 0.27

ISEL Score 0.01

These correlation analyses were used to explore factors that may influence fluid cognitive enhancement after RT.

Raw pre- to post-intervention changes were used. Note that these correlations should be understood in the context of

changes. For example, the small positive correlation with Margaria power suggest that greater increases in fluid

composite score are associated with greater increases in Margaria power. However, the small negative correlation

with total body strength suggest that greater increases in fluid composite score are associated with smaller increases

in total body strength.

PSQI = Pittsburgh Sleep Quality Index. Lower scores indicate better sleep quality, scores� 5 are classified as

clinically poor sleep quality.

ISEL = International Support Evaluation List. Higher scores indicate greater social support, up to a maximum of 16.
#Four participants were not able to perform all six reach directions at baseline and/or pre-intervention, so their data

were excluded from analyses (N = 16).

https://doi.org/10.1371/journal.pone.0255018.t005
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established techniques. Participants had a 100% adherence rate, and all operations were per-

formed nominally (i.e., there were no severe adverse events or missed data collections). Find-

ings should be interpreted with caution, but the data presented here can be used to support

future studies with additional controls.

Significant improvements were observed in the NIHTB-CB fluid composite score and four

of its five individual instruments: List Sorting Test, Pattern Comparison Test, Flanker Test,

and Dimensional Change Card Sort Test. However, no changes were observed in the Picture

Sequence Memory Test or in crystallized composite score and its instruments: Picture Vocab-

ulary Test and Oral Reading Recognition Test. As expected with this type of exercise interven-

tion, there were large effect on muscular strength and power, with notable positive effects on

body composition and physical function. Although there were no changes in blood pressure or

heart rate, positive mental health effects were observed in questionnaire responses, including

improved sleep quality, perceptions of social support, and health-related quality of life.

Together, these post-intervention improvements highlight the multidimensional impact that

ST can have on overall health. Furthermore, the exploratory findings can contribute to our

understanding of how fluid cognition is enhanced.

Fluid cognition

In addition to cognition effect sizes, interpretations can be simplified in the context of aging.

Population fluid composite scores tend to decline with age (r = -0.68) [27]. After adjusting for

gender and education, age has a significant -0.0347 SD/year effect on fluid composite score

(using population SD). In our study, the mean uncorrected fluid composite score improved by

7.7 standard units, or 0.51 SD, from pre- to post-intervention. Using the regression coefficient

above, we calculate that the fluid cognition improvement observed in the current study is

equivalent to 14.7 years of mean population fluid cognition decline. The supporting data (S1

Fig) showing differences in fluid composite score changes based on sex and age are interesting

given previous reports of sex differences in age-related cognitive decline [45] and sex and age

differences in exercise-related changes in cognition [46,47]. However, these comparisons

should be interpreted with caution due to the small sample sizes.

Of the individual instrument mean score improvements, large effects were recorded for

working memory and processing speed, and small effects were recorded for executive func-

tion and attention. The only subdomain that did not improve was episodic memory, but

this measure also had the lowest reliability over the control period. This appears to both

support and counter recent meta-analysis findings [5]. Landrigan and colleagues reported

small to medium effects on executive functions (d = 0.39), but very small non-significant

effects on working memory (d = 0.15). There are a couple of key explanations for these

findings.

One reason could be small practice effects on the NIHTB-CB. In a test-retest reliability

study with a sample representative of the population, the mean two-week (15.5 days) practice

effect (d) for the NIHTB-CB fluid composite score was 0.42 [27]. In our study, the fluid com-

posite practice effect was much smaller (z = 0.06), likely due to our older cohort (mean

age = 69.1 years) and longer interval (12 weeks) between test-retest [48]. It is worth noting too

that even less practice effects are expected for a third assessment [48].

Another reason could be the heterogeneity of cognitive measures used in the literature.

Improvements in executive function have been commonly observed, with measures ranging

from Flanker tests, Stroop tests, Trail Making tests, and Reaction Time tests [6,13,14]. Changes

in memory with RT have been less consistent and may depend on the test administered;

improvements have been observed in digit span tests [6,8,49], complex figure tests [49],
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delayed word free recall [50], and verbal learning tests [12], but not in image recall tests [10] or

auditory episodic memory tests [51].

There could also be discrepancies in the literature as to how measures are classified into

fluid subdomains. Often measures will assess multiple subdomains. For example, working

memory has dual service in executive control and episodic memory. Therefore, the NIHTB-CB

treats working memory as a separate subdomain [26], with the List Sorting Working Memory

Test designed on a paradigm emphasizing both holding and manipulation components. Other

investigators, however, do not separate working memory from episodic memory. For example,

in the recent meta-analysis [5], data from four studies that used the Rey Auditory Verbal

Learning Test (RAVLT) were included in the working memory domain. But the RAVLT was

used as a convergent validity measure (“Gold Standard”) to validate the NIHTB-CB Picture

Sequence Memory Test for episodic memory. Therefore, subdomain analyses require a more

direct systematic approach before definite conclusions can be made about selective

enhancement.

At least one other RT study has used the NIHTB-CB for fluid cognitive outcomes; however,

they did not find any significant changes [7]. Instead, they found smaller effect sizes for fluid

composite score (d = 0.22) and individual instrument scores (d = 0.03–0.51) compared to the

current study, which may be partly due to differences in exercise prescription. Their circuit

training protocol involved lower loads to optimize the production of muscular power for 12

repetitions per set, versus the high-intensity strength training model in the current study. They

did, however, find improvements in executive function through improved inhibition

(d = 1.49) and processing speed (d = 0.32) during ambulation [7].

Exercise prescription

This study used a ST intervention, designed to maximize gains in muscular strength. These

considerations might explain the large increase in global fluid cognition compared to that

found in a recent meta-analysis (d = 1.27 versus d = 0.71, respectively), despite the duration

(12 weeks) being shorter than the median duration (16 weeks, range 4–96 weeks) of the 24

studies in the meta-analysis [5]. Unfortunately, the effects of duration are currently unclear.

Determining whether shorter interventions can produce similar results, or whether a plateau

effect is present with longer durations can significantly affect exercise prescriptions.

The influence of other training parameters is also unclear. Most of the previous RT studies

for cognition in healthy older adults involved low-intensity/high-volume circuits [6–8] or

more traditional moderate-intensity/moderate-volume hypertrophic weightlifting [9–14].

Only one study [51] used a linear periodization model similar to what was used in the current

study. However, the current study cycled down to lower reps (4 reps/set versus 6 reps/set),

with correspondingly higher loads (90% of 1RM versus 85% of 1RM), that resulted in larger

fluid effects (d = 1.27 versus d = 0.28). However, direct group comparisons are needed because

previous studies reported no cognitive effects of higher intensity or frequency [9,14].

Secondary and exploratory analyses

The effect on muscular strength was expected given the ST program. However, the negative

correlations between changes in fluid composite score and changes in strength were unex-

pected. Previous studies have found the opposite—positive associations between changes in

muscular strength and changes in fluid cognition [15]. Perhaps these differences are due to

assessment techniques. While Mavros and colleagues assessed strength via pneumatic resis-

tance machines for 1RMs, we used pulley- and plate-loaded resistance exercise machines for 4-

6RMs. These machines have initial resistances that are not calculated as part of the load (e.g.
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the sled on the leg press). Another difference in our study was the magnitude of strength gains.

The effect size we observed was much larger than that by Mavros and colleagues (d = 3.86 ver-

sus d = 0.84, respectively). Therefore, there may be an unknown factor or interaction effect.

Despite this unexpectedly negative correlation with strength, the positive correlation between

changes in fluid composite score and changes in muscular power is consistent with the epide-

miological link between physical and cognitive functions [19].

Habitual and acute sleep patterns play a vital role in long-term cognitive abilities and daily

cognitive performance, respectively [52]. Age-related worsening of habitual sleep patterns is

apparent with aging, and is associated with increased cognitive decline and greater risk of cog-

nitive impairment [52]. But RT can improve sleep quality simultaneously with cognition [23],

with greater effects observed when higher loads (i.e. > 70% 1RM) and/or higher frequencies

(i.e. 3 days per week) are used [53]. Participants in our study had a median sleep quality score

at pre-intervention (PSQI score = 5.0) that is considered to be the cutoff for clinically poor

sleep quality [36]. But since our ST intervention involved high frequency and intensity (relative

to Kovacevic and colleagues) it is no surprise that sleep quality was improved at post-interven-

tion. A small correlation was observed between changes in fluid composite score and changes

in sleep quality. The positive correlation indicates that smaller decreases in PSQI score (less

improved sleep) were associated with larger increases in fluid composite score. This novel

finding is small but interesting given the improvement in sleep quality from pre- to post-inter-

vention. Future studies can refine our understanding of this relationship by designing com-

bined interventions involving both RT and manipulated sleep patterns.

Last, we observed positive effects on other mental health measures. Improved perceptions

of social support may serve as a buffer against the effects of stress [37]. And widespread

improvements in certain scales of health-related quality of life (self-reported physical function-

ing, role limitations due to physical health, role limitations due to emotional problems,

energy/fatigue, emotional well-being, pain, and general health) may represent an overall mood

enhancement of RT [22]. However, changes were generally not correlated with cognition.

Limitations

One limitation of this study was the use of a single group. Because this was a proof-of-concept

study, the design was determined based on feasibility and study funding. Having a single-arm

nonrandomized design allowed us to address practicality while maintaining a thorough proof-

of-concept framework [25]. Furthermore, allowing all participants to receive the ST interven-

tion may have contributed to the 100% adherence rate. However, blinding was not feasible

with this design. Randomly crossing over the control and intervention periods was opposed so

that results were not confounded by detraining effects or long-term cognitive benefits. While

we were unable to conduct one-year follow up testing due to the COVID-19 pandemic [54], a

previous study demonstrated that RT benefits in executive function and muscular power were

still present at one-year follow up compared to the control group [12]. We expected similar

benefits in our participants. Longer-term follow-up is needed to determine whether these

interventions in healthy older adults can help prevent dementia. In addition, a separate active

control group is needed in future studies to accurately estimate the effects of training and

establish causal relationships.

Conclusion

In conclusion, we have demonstrated the feasibility of conducting a ST intervention in older

adults with promising analyses of cognitive outcomes. It appears that a high-intensity period-

ized ST program can improve fluid cognition in 12 weeks. Further controlled studies are
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needed to confirm these findings. These relatively rapid improvements occurred simulta-

neously with well-characterized effects on muscular strength, physical function, body compo-

sition, sleep, and quality of life. Our exploratory analyses provide promising preliminary data

for future studies to investigate the relationships between these changes, which may help us

understand the shared mechanisms of benefit.
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