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Reprogramming of adipocyte function in obesity is implicated inmetabolic disorders like type
2 diabetes. Here, we used the pig, an animal model sharing many physiological and
pathophysiological similarities with humans, to perform in-depth epigenomic and
transcriptomic characterization of pure adipocyte fractions. Using a combined DNA
methylation capture sequencing and Reduced Representation bisulfite sequencing (RRBS)
strategy in 11 lean and 12 obese pigs, we identified in 3529 differentially methylated regions
(DMRs) located at close proximity to-, orwithin genes in the adipocytes. By sequencingof the
transcriptome from the same fraction of isolated adipocytes, we identified 276 differentially
expressed transcripts with at least one or more DMR. These transcripts were over-
represented in gene pathways related to MAPK, metabolic and insulin signaling. Using a
candidate gene approach, we further characterized 13 genes potentially regulated by DNA
methylation and identified putative transcription factor binding sites that could be affected by
the differential methylation in obesity. Our data constitute a valuable resource for further
investigations aiming to delineate the epigenetic etiology of metabolic disorders.

Keywords: Sus scrofa, DNA methylation, obesity, RNAseq, epigenetics, metabolism
INTRODUCTION

Obesity is a severe global health concern associated to several metabolic diseases, such as insulin
resistance, type 2 diabetes, cardiovascular diseases, and several forms of cancer (Davoodi et al., 2013;
Pedersen, 2013). Obesity is defined as a complex disease, and is associated with profound alterations in
geneexpression,which are causedbybothgenetic andenvironmental factors. Inhumans, genetic factors
determine approximately 40% to 70% of the phenotypic variation in obesity (Albuquerque et al., 2015);
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however, so far, only a small fraction of this variation has been
explained by loci identified by genome wide association studies
(GWAS). Epigenetic modifications such as DNA methylation and
histone modifications have an important influence on gene
regulation and have therefore been acknowledged as additional
contributing factors in the development of obesity (Campión et al.,
2009; Ronn et al., 2015). Hence, genetic variations and DNA
methylation may synergistically influence gene regulation and
contribute to diseases like obesity and its co-morbidities (Drong
et al., 2013; Grundberg et al., 2013; de Toro-Martín et al., 2016;
Guénard et al., 2017).

The adipose tissue itself plays an essential role in the
development of obesity, not only for the obvious contribution to
energymetabolism,but also in the regulationof tissue inflammation
and appetite control through the production and secretion of
hormones, cytokines, and chemokines (Reilly and Saltiel, 2017).
Gene expression in adipose tissue changes significantly in the obese
state, due to adipocytes expansion and increased exposure of
circulating insulin levels (Ahima and Flier, 2000; Reilly and
Saltiel, 2017). These signaling molecules activate different cell
surface receptors and drive signaling through the PI3K, MAPK,
and JAK/STAT pathways, which are fundamental for cell
migration, survival, proliferation, and apoptosis. Thus, long term
disturbance of these pathways has considerable consequences for
the cells, notably on pathways disrupted in cancer, which may
explain why obesity is linked to an increased risk of developing
cancer (Hopkins et al., 2016).

However, since adipose tissue is amixture of several different cell
types, includingmature adipocytes, preadipocytes, endothelial, and
immune cells, it is still unclear how each of the individual cell types
contributes to the dysregulation of the pathways associated with
obesity. Likewise, the epigenetic profile can also differ substantially
between various cell types.Hence profilingDNAmethylation in the
entire tissue would reflect the overall tissue methylation pattern
rather than true differences in methylation in the individual cell
types, and due to the large differences in cell composition between
lean and obese conditions, it would mask the true cell specific
differential methylation.

Therefore, we havemade a cell-type specific genome-wide study
ofmature adipocytes isolated from abdominal fat tissue fromobese
and lean pigs to explore to which degree the adipocyte expression
pattern is perturbedbetween leanandobese individuals.Differences
in methylation pattern were merged with the gene expression level
in the very same samples.Weshowthat a largenumberof genes and
pathwaysarederegulatedwhencomparingexpression inadipocytes
from lean and obese pigs, respectively. We propose DNA
methylation remodeling is a potential factor contributing to gene
reprogramming and disease predisposition.
MATERIALS AND METHODS

Animals and Collection of Cells
24 Duroc-Göttingen minipig inter-cross F2 animals were selected
from the UNIK resource population (Kogelman et al., 2012) to
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represent the two extremes of the lean and obese phenotypes,
respectively. There were 8 boars and 4 sows in each group,
however one lean female was excluded in the upstream data
analysis due to incorrect phenotyping, leaving 12 obese and 11
lean animals for the analysis (Table 1, Figure 1). The UNIK
resource population is a large F2 comprising a total of 502 F2
pigs. It has been generated by crossing the obesity prone Göttingen
minipig with lean production pigs (Yorkshire and Duroc) in the
parent generation andby intercrossing the F1 animals. All pigswere
housed in the same environment and had free access to food and
water during their whole lifespan.

Slaughtering took place at a commercial slaughterhouse at the
ages between 8 and 13 months at which point weight, length, and
abdominal circumference were measured. The animals were
euthanized by bleeding after electrical stunning, and the
following visceral fat samples were collected and weighed:
retroperitoneal fat, mesenteric fat, and greater omentum. The
latter was measured from an 8-cm diameter large section of the
omentum in the triangle between ileum and cecum. All research
involving both animal and tissue sampling were conducted
according to the Danish “Animal Maintenance Act” (Act 432
dated 09/06/2004) and with the approval from the Danish
Animal Experimental Board (J.nr 2007/561-1434).

Plasma Lipids
Plasma lipid profile was established using an Autoanalyzer
(Konelab 20, Thermo Fisher Scientific, Waltham, MA, USA)
and commercial kits from Roche Diagnostics for total cholesterol
(Roche Diagnostics, Basel, Switzerland) and from Thermo
Electron (Thermo Fisher Scientific) for triglycerides (TG) and
HDL-cholesterol (HDL-C). Fasting plasma LDL-C was
calculated using the Friedewald formula (Friedewald et al., 1972).

Cell Isolation
Mature adipocytes were isolated from approx. 15 g of the
retroperitoneal adipose tissue as described in (Decaunes et al.,
2011) with a few adjustments. Briefly, the adipose tissue was
quickly removed from the animal during slaughter and rinsed in
37°C PBS (1% penicillin, 1% streptomycin, 1% BSA). The tissue
was then roughly minced, and placed in 50 ml falcon tubes, and
20 ml of pre-warmed (37°C) 0.2% collagenase solution (HBSS,
1% BSA) was added. Samples were incubated under shaking for
approximately 90 min in a 37°C water bath. The digested adipose
tissue was filtered through a 200-µm sterile nylon filter, and
washed with DMEM (10% FBS, 4.5 g/L glucose), and the mature
adipocytes were allowed to float. These were washed gently three
times with DMEM (10% FBS, 4.5 g/L glucose) and allowed time
to float to the top after each wash. Adipocyte pellets were
hereafter preserved in −80°C until the RNA and DNA
extraction. A representable example of the isolated adipocytes
is shown in Supplementary Figure S1.

RNA and DNA Extraction
For the global DNAmethylation studies, DNA was extracted from
the mature adipocytes using the Epicenter kit (Illumina) according
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to the manufacture's recommendations, except for adding an
additional centrifugation step at 4°C after nuclei lysis to remove
the released lipids. For the global transcriptome analysis and
subsequent quantitative real-time PCR (qPCR) validation, total
RNA was isolated from the mature adipocytes according to the
protocoldescribed in (Cirera, 2013) including theDNAse treatment
step. Nucleic acid concentrations and purity were estimated using
the NanoDrop 1000 spectrophotometer (Thermo Scientific) and
the RNA quality was further determined using the Experion™
Frontiers in Genetics | www.frontiersin.org 3
system (Bio-Rad). Only RNA samples with an RQI value above 6
were processed further.

DNA Methylation Immunoprecipitation
Sequencing (mDNAcap)
1.1 µg DNA from each animal was fractionated in a Bioruptor
sonicator (Diagenode) into 100- to 500-bp fragments.
Methylated DNA fragments were hereafter enriched using the
MethylMiner Methylated DNA Enrichment Kit (Invitrogen)
according to the protocol. DNA libraries were generated
according to the Low Input TruSeq Library Preparation
protocol (Illumina) and subjected to single-end (SE)
sequencing using Illumina HiSeq2000 and a 100-bp read
length. The raw reads were trimmed for quality and adapters
using trimmomatic V0.22 (Bolger et al., 2014) (quality trimming
by phred quality of 20) The cleaned reads were mapped to the pig
genome version 10.2 using segemehl V0.1.4 (Hoffmann et al.,
2009) and the following parameters: accuracy 95%, and
minimum mapping size 18. The mapped reads were analyzed
with diffReps V1.55.4 using the G-test and default values for all
remaining parameters (Shen et al., 2013).

Reduced Representation Bisulfite
Sequencing (RRBS)
200-ng genomic DNA from each of the 23 samples was digested
with MspI (NEB) and used for gel-free multiplexed reduced
representation bisulfite sequencing (mRRBS) as described in
(Boyle et al., 2012) with a few modifications. Briefly, the
digested products were subjected to end-repair and A-tailing,
and adapter–ligated using TruSeq preparations kit (Illumina).
TABLE 1 | Anthropometric and metabolic characteristic of the animals.

All animals: Lean (n = 11) Obese (n = 12) P value

Age (months) 9.88 ± 1.6 9.26 ± 0.6 P = 0.22
Length (cm) 87.3 ± 4.5 89.3 ± 8.1 P = 0.48
Weight (kg) 84.9 ± 11.7 121 ± 20.7 P = 4.0E−5
BMI 111 ± 12.6 152 ± 10.7 P = 3.6E−6
Abdomen (cm) 110 ± 5.8 136 ± 7.5 P = 3.5E−9
Retroperitoneal fat (g) 1055 ± 520 3900 ± 1366 P = 2.0E−6
Mesenteric fat (g) 12.4 ± 4.3 25.8 ± 8.0 P = 6.5E−5
Omental fat (g) 268 ± 139 653 ± 321 P = 1.5E−3
Total Cholesterol (mg/dl) 82.6 ± 22.3 104 ± 22.2 P = 0.04
Triglycerides (mg/dl) 38.3 ± 8.9 65.7 ± 34.2 P = 0.02
HDL-C (mg/dl) 50.0 ± 12.2 55.5 ± 12.0 P = 0.30
LDL-C (mg/dl) 24.9 ± 12.6 35.3 ± 12.4 P = 0.06

RNAseq males Lean (n = 5) Obese (n = 5) P value
Age month (months) 10.48 ± 2.0 9.61 ± 0.50 P = 0.23
Length (cm) 85.3 ± 5,2 89.2 ± 5.5 P = 0.30
Weight (kg) 77.7 ± 9.9 121.9 ± 11.9 P = 2.1E−4
BMI 106 ± 6.9 153 ± 6.7 P = 4.7E−6
Abdomen (cm) 105 ± 4.0 136 ± 6.6 P = 1.6E−5
Retroperitoneal fat (g) 718 ± 318 2977 ± 1419 P = 8.4E−3
Mesenteric fat (g) 9.5 ± 4.2 22.9 ± 8.3 P = 1.2E−2
Omental fat (g) 187 ± 82 585 ± 311 P = 2.4E−2
Total Cholesterol (mg/dl) 82.0 ± 19.8 104 ± 18.1 P = 0.10
Triglycerides (mg/dl) 32.8 ± 7.6 80.6 ± 38.3 P = 2.6E−2
HDL-C (mg/dl) 54.0 ± 13.6 53.6 ± 6.9 P = 0.95
LDL-C (mg/dl) 21.4 ± 8.4 34.3 ± 14.0 P = 0.12
December 2019 | Volume 10 |
The animals were weighted and measured before slaughter, and after slaughter the weight of the visceral fat pads were measured. Triglycerides, total cholesterol, high-density lipoprotein
(HDL-C), and low-density lipoprotein (LDL-C) were measured from plasma collected after an overnight fast. Data are mean ± SD. The P-values were calculated as independent t-test.
FIGURE 1 | Biplot of the Principal Component Analysis (PCA) of the
anthropometric and metabolic characteristics of studied animals. The
variables were scaled prior to the analysis. Lean animals are separated from
obese animals according to the first component.
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Libraries were then pooled and bisulfite treated using EZ DNA
methylation Kit for 20 hours (Zymo Research). The converted
DNAwas amplified using Pfu Turbo Cx (Agilent), purified using
a 1× volume of AMPure XP (Beckman Coulter) and subjected to
SE sequencing using aHiSeq2000 (Illumina). The raw reads were
cleaned for quality and adapters using and in-house tools
removing TrueSeq adapters and clipping read tails of phred
quality less than 20. The reads were mapped to the pig genome
version 10.2 using bismark v 0.10 (Krueger and Andrews, 2011)
with standard parameters except using bowtie 2 v2.1.0 for the
mapping option of bismark (Langmead and Salzberg, 2012). A
minimum of 5 reads were required before calling methylation
levels. Mapped reads were analyzed using Metilene v 0.2-
7 requiring at least five pigs in both the obese and lean groups
(–X 5 –Y 5) (Jühling et al., 2016).

RNA Sequencing
RNAseq libraries from 10 of the samples (only males, 5 lean and 5
obese) were prepared using the TruSeq stranded total RNA kit
including Ribo-Zero Gold (Illumina). Each library was subjected to
100 bp paired-end (PE) sequencing on a HiSeq2000. Six lanes in
total were sequenced. The raw reads were cleaned for quality and
adapters using and in-house tools removing TrueSeq adapters and
clipping read tails of phred quality less than 20 The reads were
mapped to the pig transcriptome using the STAR aligner v2.3.1
(Dobin et al., 2013)with the followingoptions anddata: pig genome
version10.2, ensembl annotation version 70 andwith intron-motifs
[XS : A] tags in the SAMoutput. The aligned reads were assigned to
transcripts of the ensembl version 70 annotation with cufflinks
version 2.2.0 (Trapnell et al., 2013). The subsequent differential
expression analysis was performed with cuffdiff from the cufflinks
package and was based on the Ensembl v70 annotation. Standard
options were used for the cufflinks programs in all cases. All further
analysis was done using the annotation from ensemble v81.

Pathway Analysis
Webgestalt GSAT analysis 2013 (Zhang et al., 2005) was used to
perform functional enrichment analysis of the genes, which were
significantly regulated and/or significantly methylated. KEGG
pathway (Kanehisa et al., 2007) analysis was performed using the
human annotation by transferring the gene abundances via the
unique gene symbols and gene names. We tested for significant
overrepresentation of KEGG pathways (Kanehisa et al., 2007)
accepting only Bonferroni corrected p values < 0.05.

Quantitative Real-Time PCR (qPCR)
To validate the gene expression level of selected genes, cDNA was
prepared in duplicates using 400 ng total RNA, Improm-IITM
reverse transcriptase RNAsin (Promega), and a 3:1 mixture of
random hexamers/OligodT. QPCR was performed on cDNA
diluted 1:8 on the Biomark HD 96.96 IFC chip (Fluidigm)
according to their protocol, and data were collected and
processed using the associated software. Raw Ct values were
analyzed in GeneEx5 pro (MultiD), and the relative expression
levels were normalized to the reference genes; RPL4 and TBP, as
these two showed highest stability in the adipocytes according to a
Genorm analysis (Vandesompele et al., 2002).
Frontiers in Genetics | www.frontiersin.org 4
Immunoblot Analysis
To analyze the relative protein levels in the adipocytes, proteins
were extracted from the phenol/ethanol supernatant from theRNA
purification according to the manufacturer's protocol (TriReagent)
and solubilized in 5 M urea and 0.5% SDS. Protein concentrations
were determined using a Pierce BCA assay (ThermoFisher). 20 µg
total protein was loaded on a Bis-Tris 10% NuPage gel
(ThermoFisher) and transferred to a PVDF membrane using the
Invitrogen transfer system (ThermoFisher). Two rabbit polyclonal
antibodies against TBC1D16 were used at a dilution of 1:1000. One
targeting the N-terminal of the TBC1D16 (aa71–120, ab104407,
Abcam) and one targeting approximately the middle of TBC1D16
(aa431–480, LS-C101973, LSBio). Using GAPDH as a loading
control and for normalization, the relative protein levels were
estimated in ImageQuantTL (GE Healthcare). All three
antibodies target human proteins, but they were all predicted to
work with the pig TBC1D16 and GAPDH proteins.

Predicted Transcription Factor Binding Sites
To further decipher the regulatory role of the methylation of six
genes (TBC1D16, PNPLA2, MTOR, PPARA, HLCS, and COL6A1)
where the expression level correlated significantly (p < 0.05) with
methylation at a specific CpG, an analysis of the predicted
transcription factor binding sites were performed in LASAGNA-
search 2.0 (Lee and Huang, 2013). Sequences of DNA from 15 bp
upstream and 15 bp downstream of the CpG site were inserted into
the search tools and analyzed using TRANSFACTFBSsmodel v7.0
(Matys et al., 2006), which computes a scoring value for each
predicted TF binding sites utilizing a position specific weight
matrix mode and a cutoff p value of 0.005.

Statistical Analysis
Anthropometric and obesity characteristics of the animals were
expressed as mean ± SD, and the comparisons between groups
were estimated by independent t-tests. QPCR data was log
transformed to obtain a normal distribution, and differences in
gene expression between groups were also estimated using
independent t-tests. Pearson correlation was used for all the
correlation presented. Manhattan and QQ plots for the three
data sets (mDNAcap, RRBS (5.5), and RNAseq) are enclosed in
the Supplementary Figure S2. Principal component analysis
(PCA) was performed in R using Bioconductor packages
Supplementary Figure S3. For mDNAcap we used the
normalized read counts from diffReps. For RRBS we used only
the 2565 methylation sites, which could be called in all samples,
and the data were not normalized. The PCA plots for mDNAcap
and RRBS are shown in Supplementary Figure S3. For
comparison sample 584 was removed in both PCA plots.
RESULTS

Metabolic Characteristics of Studied Animals
Animal characteristics are shown in Table 1. Compared to the
lean group, the obese group is characterized by higher body mass
index (BMI), abdomen circumference, visceral fat amounts, and
circulating total cholesterol and triglycerides. The subset of
December 2019 | Volume 10 | Article 1268
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animals used for the transcriptomic analysis (RNAseq males)
shows similar anthropometric and metabolic characteristics
compared with all animals (Table 1). Principal component
analyses were performed with all the variable characteristics
after scaling (Figure 1). For all animals, the first two
components explain 64% of the variance. Obese males/females
are markedly separated from the lean males/females by the first
component, which additionally shows a large positive association
with visceral fat amount, abdomonal circumference, and weight.
The second component shows a negative association with plasma
lipids and a positive association with the length and age of the
animals. Males used for RNAseq show a similar profile
(Supplementary Figure S3), where the first two components
account for 80% of the variance.

DNA Methylation Is Altered in Adipocytes
From Obese Pigs
To explore if DNAmethylation in adipocytes is different between
obese and lean pigs, we performed DNA methylation capture
(mDNAcap) followed by deep sequencing in mature adipocytes
extracted from adipose tissue. On average, we obtained 22
million reads per sample, of which approximately 60% mapped
(48% uniquely). We found a total of 7303 differential methylated
regions (DMRs) between obese and lean pigs with an adjusted p
value < 0.05 (5159 hypo-methylated and 2144 hyper-methylated
regions). 30% of these overlap with one or more gene [2207 out
of 7303, Supplementary Table S1(1)]. To validate our DNA
methylation results and further investigate methylation at single
base resolution, we performed Reduced Representation Bisulfite
Sequencing (RRBS) on the same cell material with a genome
wide base coverage of 0.1× to 0.3×. We identified 575 DMRs (p
value < 0.05, 182 hypo-methylated and 393 hyper-methylated
regions) containing 10 or more CpGs, a mean methylation
difference of ≥ 10%, and minimum five pigs in each group (see
Supplementary Table S1(2). These regions were assigned to 522
unique nearest genes, with a large fraction (48%) located in gene
bodies. Compared to RRBS, our mDNAcap results appeared to
be skewed toward hypo-methylated regions, as previously
reported (Radford et al., 2014). A less stringent analysis of the
RRBS data was performed tolerating only three pigs in each
group, but still requiring 10 or more CpGs, and a mean
methylation difference of ≥ 10% to call methylation (RRBS-
3.3). In this analysis, we identified 2408 DMRs [Supplementary
Table S1(3)]. We opted to use a more stringent RRBS analysis
(RRBS-5.5) in the rest of our analyses.

We next evaluated the distribution of the identified DMRs in
both datasets based on their location to the nearest gene. Figure 2
shows an overview of the genomic distribution of the DMRs with
respect to the various genomic annotation types for both
mDNAcap and RRBS. Overall, RRBS and mDNAcap data
showed similar distribution of the DMRs in respective genome
annotations, with approximately 50% of the DMRs overlapping
intergenic regions. From the mDNAcap data, obese animals
appeared to have less (hypo) methylation in intergenic region,
whereas increasedmethylation was more pronounced within, or at
close proximity to genes. The DMRs from the RRBS data show, on
Frontiers in Genetics | www.frontiersin.org 5
the other hand, less methylation in both promoter and in 5′UTR
in the obese animals.

Overlapping of the mDNAcap and RRBS data sets resulted in
a total of 7985 DMRs of which 3529 are assigned to genes.
Interestingly, overlapping DMRs are located at proximity of 173
genes in common between the datasets. However, when
comparing the specific location of the DMRs between datasets,
only 25 regions overlapped in their positions, and only 17 out of
these regions showed parallel methylation between the datasets
(15 hypermethylated and 2 hypomethylated regions).

Gene Expression Is Remodeled in
Adipocytes From Obese Pigs
To get insight into the possible influence of the identifiedDMRs on
gene transcription, we performedRNAseq in a subset of 10 animals
(5 lean and 5 obese, Table 1, Supplementary Figure S3). On
average, we obtained 100 million reads per sample, of which
approximately 80% mapped uniquely. Out of the almost 25,000
annotated porcine transcripts, 1205 were differentially expressed
(DE) in adipocytes of lean, compared to obese animals [q < 0.05,
SupplementaryTable S1(4)].Out of the codingDE transcripts, 708
were downregulated and 497 were upregulated in the obese group.

Integration of Epigenomic and
Transcriptomic Data Sets
To get insight into the functional relevance of our data, we
performed gene enrichments analysis on all three data-sets (i.e.
DE genes and genes located nearest to the DMRs). We used
official gene symbols of the human genome, since the human
annotation information is much more comprehensive than that
of the pig. A detailed list of all the over-represented KEGG
pathways in the three gene-sets can be found in Supplementary
Table S2(1–3). The top five of the enriched pathways genes in
common for all three datasets are represented in Figure 3A. We
identified pathways in cancer, MAPK signaling pathway, focal
adhesion as specifically enriched and, most interestingly, other
FIGURE 2 | DMRs overlapping different genomic annotations. DMRs from
mDNAcap and RRBS are shown as hypo-methylated (decrease methylation
in obese animals) or hyper-methylated (increased methylation in obese
animals). The overlap percentage is calculated as the number of regions of
the given type overlapping an annotation compared to the total number of
regions of the given type. As many of the DMRs overlap more than one
annotation type, the numbers do not add up to 100% even when the “Gene”
annotation is left out.
December 2019 | Volume 10 | Article 1268
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enrichedpathways that arehighly relevant to theobesity phenotype,
such asmetabolic pathways and insulin signaling pathway.

Next, we investigated whether differential expression
observed between lean and obese animals is associated with
changes in DNAmethylation of the nearest DMR. This was done
by combining the expression data with the RRBS and mDNAcap
data sets. In total, 276 DE genes encompassed a least one DMR,
and 29 (11%) of these genes showed differential methylation in
both methylation datasets [Supplementary Table S2(4)].

Here also, to get insight into a potential biological relevance of
these overlapping genes, we performed gene enrichment analysis
on the identified 276 DE genes [Supplementary Table S2(5)].
Frontiers in Genetics | www.frontiersin.org 6
Most interestingly, this analysis revealed that KEGG pathways
mentioned above (common genes in our epigenomic and
transcriptomic analyses), are within the first ten enriched
pathways of genes with parallel DNA methylation and gene
expression change (Figure 3B).

Validation of Differential Expression
To test for the robustness of our findings made in the original
cohort, we next investigated expression levels in 9 of the animals
from the RNAseq group as well as 10 additional animals using
high throughput qPCR. We selected 83 genes based on three
criteria: 1) Genes to which statistically significant DMRs mapped
FIGURE 3 | (A) Enrichment analysis of the Top5 KEGG pathways in common between the DE genes (RNAseq) and the genes with identified DMRs (RRBS and
mDNAcap). (B) Pathway analysis showing the significant enrichment of the same five pathways after data was merged, accordingly the DE genes encompassed a
least one DMR. Orange columns represent the expected number of genes in the pathways, and blue column display the actual number of identified differential
expressed genes/methylated genes in each pathway. The specified p values are all Bonferroni corrected.
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(38/83), 2) Genes that were show to be significantly regulated in
the RNAseq data (43/83), and 3) Genes implicated in obesity
development and immune responses (65/83). The selected genes
are listed in Supplementary Table S3(1). RT-qPCR analysis on
the 83 genes yielded a total of 33 significantly differentially
expressed genes, and all displayed directionally consistent
results between the RNAseq and qPCR analyses [Figure 4 and
Supplementary Table S3(2–5)]. Of these 33 differential
expressed genes, 18 genes encompassed a least one DMR (p <
0.05), denoted by * or ** after the gene name in Figure 4.

Association Between DNA Methylation and
Gene Expression
To further explore the link between gene expression and DNA
methylation level at either specific CpG sites (RRBS data) or the
methylation levels of specific regions (mDNAcap data), a
Pearson's correlation coefficient (r) was calculated between
expression and methylation levels for each of the 18 genes
encompassing one or more DMRs (Gene name with * or ** in
Figure 4). For 9 of the genes, we found an association between
methylation level and gene expression (r > ±0.46 and p < 0.05).
MTOR, SYNE1, and IDS, which almost reached significance level
in the gene expression analysis [p < 0.1, FC > 1.2, Supplementary
Table S3(2)], also showed significant correlation between
methylation levels and gene expression. Likewise, we found a
significant correlation between COL6A1 expression and
methylation. COL6A1 was significantly downregulated in the
RNAseq analysis but not in the RT-qPCR analysis. We opted to
include MTOR, SYNE1, IDS, and COL6A1 in the subsequent
analysis. A positive correlation was found for 7 genes: HLCS,
TBC1D16, DUSP10, PPARA, MGMT PNPLA2, and IDS, and a
Frontiers in Genetics | www.frontiersin.org 7
negative correlation was obtained for 6 genes: RHOQ, HLCS,
NPEPL1, MTOR, SYNE1, and COL6A1. Table 2 summarizes the
correlations between gene expression fold-changes and
methylation levels of the DMRs for these 13 genes. Five of
these genes exhibit more than one identified DMR correlated
with gene expression. Correlation analysis plot was generated for
all the 13 genes (21 regions, Supplementary Figures S4 and S5).
Figure 5 shows the correlation analysis between gene expression
and DNA methylation for 4 of the genes illustrating the different
patterns of methylation-expression correlation. KLB shows a
strong methylation-induced expression silencing for the
mDNAcap DRM in intron 4, whereas methylation of the
3UTR region of IDS shows the opposite; i.e. a methylation-
dependent increased in gene expression. PPARA contains 2
correlated RRBS DMRs, located 9 kb apart in intron 2. The
first shows positive correlation, and the second show negative
correlation with PPARA expression. PNPLA2 also contains 2
DRMs, located 54 bases apart in the 3UTR, and both showing a
negative correlation with gene expression (Figure 5). This
specify that methylation of CpGs at different location in the
gene can have different regulatory functions.

For the 24 remaining genes that were significantly regulated
between lean and obese animals, for which no correlations were
identified, we looked at the potential relationship between
changes in gene expression and the changes in metabolic
characteristics of the animals, such as the amount of
retroperitoneal fat, abdomen circumference, and blood lipid
levels (LDL and triglycerides) using Pearson's correlations
coefficient. We identified strong and highly significant
correlations (r > ±0.6, p < 0.005) between the amount of
retroperitoneal fat and the expression of ADIPOQ (r = −0.65,
FIGURE 4 | Gene expression profile of the differentially expressed genes in mature adipocytes. RT-qPCR: Orange columns, 9 lean and 10 obese. RNAseq: Blue
columns, 5 lean and 5 obese. + FC; Upregulated in obese pigs, − FC; Downregulated in obese pigs. ND, Not determined. †; No significant differentially expression
between the groups. *Genes encompassing a DMR. **Genes encompassing a DMR, where the gene expression level correlates with the methylation level (Pearson
p < 0.05).
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p = 0.003), GRB10 (r = −0.62, p = 0.005), INPPL1 (r = 0.71, p =
0.0006), LEP (r = 0.74, p = 0.0003), OSBPL10 (r = 0.69, p =
0.001), RNF10 (r = 0.70, 0.0009), and SP1 (r = −0.65, p = 0.002).
Abdominal circumference correlated positively with MOCOS
(r = 0.75, p = 0.0002) and negatively with EBF2 (r = −0.63, p =
0.004). The LDL-cholesterol level correlated positively with
LITAF (r = 0.74, p = 0.0003) and negatively with ISLR (r =
−0.80, p = 3.5e−05). See Figure 6 for representation of some of
these correlations or Supplementary Figure S6 for all the results.
Frontiers in Genetics | www.frontiersin.org 8
Further Analysis of the TBC1D16 Gene
Among the 13 genes showing association betweenDNAmethylation
and gene expression, the TBC1D16 gene was described to be
dysregulated in obesity (Pietiläinen et al., 2016; Crujeiras et al.,
2017) and contains the highest number of DMRs (5 in total)
[Figures 4 and 7A and Supplementary Table S3(4-5)]. Thus, we
aimed to further characterize the epigenetic reprogramming in
obesity for this gene. Several isoforms of human TBC1D16 have
been identified and annotated, and one smaller isoforms (47 kDa)
TABLE 2 | Differentially expressed genes that correlates significantly with differentially methylated CpG.

Expression Methylation Correlation

Gene RNA FC Q-value QPCR FC P value Gene region DDNA methylation P value Analysis Methylation vs Expression

RHOQ 2.10 0.001 2.41 0.000 Intron2 −34% 1.78E−04 mDNAcap r = −0.57 p = 0.017
HLCS 1.75 0.001 1.81 0.000 TSS-30 kb −51% 1.19E−07 mDNAcap r = −0.57 p = 0.014

Intron4 −41% 5.66E−05 mDNAcap r = −0.50 p = 0.035
3UTR-3.4 kb +13% 4.00E−14 RRBS_3.3 r = +0.66 p = 0.039

TBC1D16 1.71 0.016 1.64 0.001 Intron3 +12% 7.30E−04 RRBS_5.5 r = +0.55 p = 0.040
Intron3 +17% 2.10E−13 RRBS_3.3 r = +0.54 P = 0.046
Intron3 +75% 2.41E−05 mDNAcap r = +0.48 p = 0.042
3UTR-22 kb + 23% 6.30E−06 RRBS_5.5 r = +0.54 p = 0.025

NPEPL1 1.57 0.022 1.45 0.002 3UTR-11 kb −31% 9.33E−05 mDNAcap r = −0.57 p = 0.014
KLB −1.25 ns −1.30 0.003 Exon4 +46% 1.33E−05 mDNAcap r = −0.74 p = 0.0004
DUSP10 −1.99 0.001 −1.88 0.003 TSS-94 kb −37% 4.90E−05 mDNAcap r = +0.58 p = 0.013
PPARA 1.35 0.184 1.51 0.004 Intron2 +13% 3.00E−06 RRBS_3.3 r = +0.73 p = 0.007

Intron2 +18% 6.40E−07 RRBS_3.3 r = −0.68 p = 0.044
MGMT 1.85 0.001 1.53 0.005 3UTR-29 kb +45% 3.18E−06 mDNAcap r = +0.52 p = 0.027
PNPLA2 −1.02 0.961 −1.25 0.008 3UTR-0.3 kb +12% 2.30E−03 RRBS_5.5 r = −0.69 p = 0.018

3UTR-0.3 kb +12% 2.30E−03 RRBS_5.5 r = −0.52 p = 0.046
MTOR 1.07 0.849 1.17 0.056 Intron26 −29% 1.07E−05 mDNAcap r = −0.58 p = 0.011

Intron30 −11% 2.90E−06 RRBS_5.5 r = −0.55 p = 0.050
SYNE1 2.36 0.001 1.67 0.089 Intron33 −46% 1.37E−06 mDNAcap r = -0.51 p = 0.030
IDS 1.56 0.023 1.35 0.094 3UTR-19 kb +47% 1.92E−07 mDNAcap r = +0.55 p = 0.019
COL6A1 −2.50 0.001 −1.72 0.140 Exon1 +13% 6.90E−10 RRBS_5.5 r = −0.65 p = 0.016
December 20
19 | Volume 10
DDNA methylation; + increase methylation in obesity, − decreased methylation in obesity. Ns, not significant; r = Pearson's correlations. + FC (Fold Change); Upregulated in obesity, − FC;
Downregulated in obesity.
FIGURE 5 | Representative illustrations of significant correlations between gene expression and DNA methylation levels (mDNAcap)/DNA methylation percentage
(RRBS) of selected genes. The mDNAcap methylation levels of KLB correlate negatively with the gene expression, and gene expression correlates positively with the
methylation of IDS. In PPARA both a positive and a negative correlation is observed between the RRBS methylation percentages and the gene expression level,
whereas only negative correlation is seen for the 2 differential methylated CpGs in PNPLA2. r is Pearson's correlation coefficient. (See Supplementary Figures S4-
S5) for all the 21 correlation analysis).
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encodedby an alternative transcription start site (TSS) in intron5has
been shown to be expressed in human cancer cell lines (Vizoso et al.,
2015). The expression of the small isoform is thought to be initiated
byhypomethylation in the regionaround this alternativeTSS (Vizoso
et al., 2015). To get insight into the possible regulatory role of DNA
methylation of TBC1D16 on gene expression, we thus searched at
differences in individual CpG methylation in our RRBS data.
Interestingly, we identified hypo-methylation in both intron 5 and
intron 6 of TBC1D16 in obese animals (Yellow boxes in Figure 7A).
Due to poor quality in the annotation of the porcine reference
sequence, and little evidence of the short isoform in the RNAseq
data, it was not possible to directly infer on an alternative TSS located
in intron 5 in the pig. Additional primers were therefore designed to
amplify full-lengths transcripts (amplifyingExon2-Exon3,Amplicon
1, Figure 7A) in order to compare the level of this transcript to the
level of all transcripts target by Amplicon2 (amplifying Exon9 to
Exon11, Figure 7A) to determine whether the small isoform is
present at a higher quantity in the obese state. Both amplicons were
significantly upregulated in obese animals, with equivalent fold-
changes (Figure 7D). However, when calculating the correlation
between expression of Amplicon1 or Amplicon2 and methylation
level of the three CpGs in intron3, intron5, and intron6, we found
stronger correlation with Amplicon1 compared to Amplicon2, as all
3 CpGs were correlated with Amplicon1 expression and only one
CpG (in intron6), was significant correlatedAmplicon2 (Figures 7B,
C and Supplementary Figure S7). Next, we determined TBC1D16
protein levels in adipocytes of obese and lean animals by Western
blotting. A∼ 86 kDa protein (corresponding to the expression of the
large transcripts of TBC1D16), was detected at similar levels in three
lean and three obese animals. Conversely, a protein of ∼ 47 kDa
(corresponding to the short transcript), displayed a trend to behigher
in adipocytes from obese animals, (p = 0.24) which agrees with the
differential expression obtained from both RNAseq and RT-qPCR
results (Figure 7D).

Transcription Binding Site Analyses
To identify transcription factor (TF) networks that could influence
the expression of the identified genes, we used the tool LASAGNA
(Lee and Huang, 2013) to search for putative TF binding sites on
DNA regions showing a significant correlation between the
methylation level at a specific CpG (RRBS) and expression of the
nearest gene.We identifiedputativebinding sites forTFs inall of the
identified correlated RRBS CpGs and also in intron5 of TBC1D16,
where approximately half of the identified methylated CpGs
Frontiers in Genetics | www.frontiersin.org 9
contained putative binding sites for multiple TFs. We established
the predicted TFs presence in the adipocytes (RNAseq data) and
ranked the TFs according to their p-value calculated by the
TRANSFAC TFBSs model. Data for all predictions are presented
in Supplementary Table S4. Figure 8 illustrates how TBC1D16,
PNPLA2, and PPARA contain consensus-binding sites for the 3
TFs; STAT1, HIF1A, and TP53, respectively.
DISCUSSION

We established the genome wide DNA methylation profile of
adipocytes from lean and obese pigs using two different technical
approaches and conducted a comprehensive integrated analysis of
the epigenomic data with the transcriptome from the same
adipocytes. We found that methylation pattern of adipocytes of
obese pigs is altered in 7985 regions, that we assigned to 3529
unique genes. The genomic distribution of the identified DMRs is
consistent with the results reported in similar studies, that is, fewer
near promoter regions and 5′- and 3′UTRs, and the majority in
exons, introns, and intergenic regions (Arner et al., 2015).

Here we identified genes already described as playing a role in
obesity but also, we discovered several new candidate genes that
may be involved in the development of obesity. Interestingly, the
most significant DMR (p = 3.7E–14) in our RRBS data analysis
between obese and lean animals, is localized in exon1 of the SOCS4
gene [SupplementaryTable S1(2)],wheremethylation is increased
by13% inobese animals. TheRNAseqdata revealed that this gene is
also significantly upregulated in obese animals [Supplementary
TableS1(4)].There are eightmammalianSOCSproteins; SOCS1–3
has been linked to regulation of cytokine signaling, whereas
SOCS4–7 has been associated with grow factor receptor signaling
(Trengove andWard, 2013). Since we did not validate and confirm
the SOCS4 expression by qPCR in additional animals, only a subset
of the animals shows that the SOCS4 expression in adipocytes is
reprogrammed by DNAmethylation changes.

Four of the most significant mDNAcap regions are located in
the SNORD116 region, where hypermethylation is seen in the
obese animals [Supplementary Table S1(1)]. Our RNAseq data
also revealed amarked upregulation of the SNORD116 transcripts in
obese animals (FC = 2.2, padj = 2.89E–4, however the expression is
relatively low in the adipocytes [BaseMean = 10.4, Supplementary
Table S1(5)]. The SNORD116 cluster is part of an imprinted
chromosomal segment, that is critical to the development of Prader
FIGURE 6 | Representative illustrations of significant correlations between gene expression and metabolic characteristic. ISLR, LEP, and MOCOS mRNA levels
correlated positively with LDL-cholesterol, retroperitoneal fat and abdomen circumference levels, respectively. r is Pearson's correlation coefficient (See
Supplementary Figures 6) for the 11 correlation analysis).
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Willi syndrome (PWS) (Fontana et al., 2017). PWS is a disorder that
causes, among other dysfunctions, life-threatening obesity. Since
SNORD116 is mainly expressed in the brain, where it is involved in
the regulationoffood intake (Qi et al., 2016), it is unclearwhether this
epigenetic remodeling of SNORD116 in the adipocytes is of great
importance. Several studies have compared methylation patterns in
across tissues and cell types, and found that methylation consistent
profiles, notably between circulating leukocytes and others tissues
Frontiers in Genetics | www.frontiersin.org 10
(Bacos et al., 2016; Crujeiras et al., 2017;Wahl et al., 2017). Whether
SNORD116 is also hypermethylated and upregulated in the brain of
the obese pigs remain to be investigated.

Functional enrichment analysis of DMRs and DE genes shows
that pathways altered in adiposity are similar to what is described in
matching human obesity studies. Genes related tometabolic, cancer,
focal adhesion, MAPK- and insulin signaling are among the most
significant over-represented pathways (Arner et al., 2015; Benton
FIGURE 7 | Focus on the TBC1D16 gene. (A) Schematic representation of the small transcript and full-length of the porcine TBC1D16 gene. Blue boxes represent
the location of the 5 DMRs identified in the gene, and yellow boxes represent the additional differentially methylated regions in intron5 and intron6. (B) Mean
differences in percentage of methylation between the obese and lean animals in 3 DMRs (RRBS), where the methylation levels correlated with TBC1D16 expression
level. Hypermethylation in obese animals are denoted as positive difference, and hypomethylation in obese animals is denoted as negative difference. Each peak
represents a methylated CpG. (C) The correlation between the methylation of 3 CpGs and expression level of the amplicons targeting only the full-length TBC1D16
(Amplicon1) and all TBC1D16 transcripts (Amplicon2), See Supplementary Figures S7 for the correlation analysis. (D) Gene expression and protein expression of
porcine TBC1D16. Lean animals; L and blue columns. Obese animals; O and orange columns. NS, Not significant. ** p < 0.0001, *** p < 0.01.
FIGURE 8 | Illustration of the predicted putative binding sites for the transcriptions factors; STAT1, HIF1A, and TP53 within the differential methylated CpGs located
in the TBC1D16, PNPLA2, and PPARA genes, respectively. The red bases in the sequences correspond to the positions where differential methylation is identified.
For TBC1D16, this position corresponds to position 6 in the STAT1 motif, and for PNPLA2 the differential methylated CpG is localized in position 10 in the HIF1A
motif. The differential methylated CpG in PNPLA2 is localized in position 8 in the TP53 motif. + FC (Fold Change); Upregulated in obesity, − FC; Downregulated in
obesity. DNA methylation; + increase methylation in obesity, − decreased methylation in obesity.
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et al., 2015;Dahlmanet al., 2015;Ronnetal., 2015).Thesefindingsare
also in accordance with a study comparing the differences in adipose
tissuemethylation between a lean pig breed and an obesity prone pig
breed, inwhich the same pathways have been implicated (Yang et al.,
2016). Of interest, in the present study, pathways associated with
inflammation and the immune system were not among the most
significantlyover-representedpathways in the functional enrichment
analysis. This is likely due to the fact that we conducted our
investigation in isolated mature adipocytes, whereas most studies
investigated whole adipose tissue, where infiltrated immune cells
probably have a large impact on the overall methylation profile
(Nilsson et al., 2014; Ronn et al., 2015; Pietiläinen et al., 2016).

We validated 58% (25/43) of the DE genes by high-throughput
RT-qPCR. Several of these genes, likeLEP,PPARA,PPARD,LPIN1,
SREBP1, andADIPOQ are described in obesity in bothhumans and
mice. To our knowledge, theMGMT, andNPEPL1 genes, for which
the gene expression levels correlated significantly withmethylation
level, have not been associated with obesity. Not much is known
about NPEPL1 (aminopeptidase like 1), a gene genomically
localized between STX16 and GNAS. GNAS is an imprinted locus,
and both imprinting inaccuracies in the GNAS locus and
chromosomal deletion of the STX16 gene give rise to the same
disease phenotypes, notably increased adiposity (Grüters-Kieslich
et al., 2017). This observation makes NPEPL1 a potential novel
candidate gene of interest for obesity physiopathology. In addition,
MGMT (O-6-methylguanine-DNA methyltransferase), is known
to participate in the defense against mutagenesis and toxicity from
alkylating agents. Methylation of the MGMT promoter has been
linked to the development of several forms of cancer (Sharma et al.,
2009). We found thatMGMT is upregulated in obese animals, and
we detected a correlation between MGMT expression and
methylation levels, which suggest that methylation of MGMT-
DMR regulates MGMT expression. Given the important increase
in oxidative DNA damage in obesity, upregulation ofMGMTmay
be involved in the repair of DNA damages caused by obesity.

TBC1D16 is also highly associated with the development of
cancer due to hypomethylation in intron 5 of the gene that has
been shown to reactivate a small transcript of TBC1D16
(TBC1D16-47KD), which exacerbates melanoma growth and
metastasis (Vizoso et al., 2015). Interestingly, we also see an
upregulation of the TBC1D16 transcripts and hypomethylation
in the same location as in humans. However, due to both
insufficient coverage of reads and incomplete assembly of the
porcine reference genome in this region, we were not able to
amplify the small transcript (TBC1D16-47KD), which may be
regulated by methylation. Nevertheless, the protein expression of
TBC1D16-47KB indicates a higher level of this isoform in the
obese animals. TBC1D16 is also found significantly differentially
methylated and regulated in obesity in two others studies
(Pietiläinen et al., 2016; Crujeiras et al., 2017), but neither of
these studies investigated the expression level of the small
transcript (TBC1D16-47KD). Given that TBC1D16 is involved
in the canonical PI3K/AKT pathway, which is found deregulated
in both obesity and cancer, the activation of TBC1D16-47KD
might be one of the links between obesity and cancer.
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Here, we found that 13 genes show a correlation between
methylation and gene expression level, of which 10 genes showed
inverse correlations (i.e. increased methylation associated with
decreased expression, or decreased methylation associated with
increased expression, Table 2). Only TBC1D16, DUSP10, IDS, and
PPARA showed positive correlations. The common appreciation is
that methylation in promoter regions represses transcription of the
nearby gene, and that methylation in gene bodies contributes to
higher transcription (Jones, 2012; Yao et al., 2015; Grunert et al.,
2016).The correlationsweestablishedprovide further evidence that
methylation can both stimulate and repress transcription,
depending on the genomic localization of the epigenetic change.
This is for example apparent in PPARA intron2, where both a
positive and a negative correlation is shown, and these two
differential methylated CpGs are only 9 kb apart (Figure 5). For
MGMT,methylationwas found in the genebody (intron2),which is
in line with the higher gene expression levels detected for that gene.

By using LASAGNA to identify potential transcriptional
regulators, we found putative binding sites for TFs in all six genes
inspected. Figure 8 shows three of the potential TFs (STAT1,
HIF1A, and TP53) that may regulate expression of the identified
genes. HIF1A and TP53 are both well-known to regulate several
genes involved in glucose and fatty acid metabolism, and are both
expressed in adipocytes. Of note, binding of bothHIF1A and TP53
have been shown to be methylation-sensitive TFs (Domcke et al.,
2015). Expression of PNPLA2 correlates negatively with the
methylation of a CpG site located within the 3UTR region, which
perfectlymatch with the knowledge that HIF1A is mainly activator
of transcription. The differentialmethylatedCpG in the binding site
is localized in position 10 in the HIF1A motif (Figure 8), which is
one of the most conserved bases in this motif. Thus, increased
methylation in this CpG position could block HIF1A binding, and
thereby repress the transcription of PNPLA2.

We found STAT1 is predicted to bind directly in the
differential methylated CpG in intron 5 of TBC1D16. STAT1 is
regarded as a transcription activator (Satoh and Tabunoki, 2013)
binding of STAT1in promoter region and 5UTRs of TBC1D16 in
obesity could therefore regulate the TBC1D16-47KB transcript
as described earlier; hypomethylation of the STAT1 binding site
could increase the binding of STAT1 and thereby, activate
transcription of the short isoform of TBC1D16. Of potential
interest, comparative mapping of the pig and the human genome
indicates that TBC1D16-DMR in pig corresponds to a region in
the human genome (17:79950940-79950840CRGh38.12), where
both a promoter (ENSR00000565975) and a CTCF binding site
(ENSR00000565978) are annotated. These results support that
differential methylation in this region in the TBC1D16 gene
could have a direct impact on the expression of the small
TBC1D16 transcript.
CONCLUSION

In this study, we have extensively characterized DNAmethylation in
a cell-type specific manner. We show that mature adipocytes differ
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between lean and obese individuals. Our data support that altered
methylation in obesity may play a role in the perturbation of specific
pathways involved in obesity and obesity-related metabolic diseases.
The association between methylation and expression of genes
implicated in obesity and obesity-related metabolic diseases
supports a role of epigenetic remodeling in the development of
obesity. Our cell-type specific analysis, using an animal organism
with strong common physiological characteristics to humans
constitutes a valuable resource for future work investigating further
the role of DNA methylation in the etiology of obesity and
associated disorders.
DATA AVAILABILITY STATEMENT

The datasets generated for this study can be found in the Gene
Expression Omnibus (GEO) database GSE136754.
ETHICS STATEMENT

All research involving both animal and tissue sampling were
conducted according to the Danish “Animal Maintenance Act”
(Act 432 dated 09/06/2004) and with the approval from the
Danish Animal Experimental Board (J.nr 2007/561-1434).
AUTHOR CONTRIBUTIONS

MJ, RB, MF and CJ conceived and designed the study. MJ, SC,
PK-M, CB, CM and MF accomplished the sample collection and
MJ, CM, PK, PL, MG and SC performed the experiments. MJ, JH,
CA, CM, SC, SP, CJ, RB and JG contributed to the analysis and
Frontiers in Genetics | www.frontiersin.org 12
interpretation of data. MJ wrote the manuscript. All authors
revised critically and approved the manuscript.
FUNDING

This study was supported by The Danish Independent Research
Council (FTP 0602-01742B and DFF 1335-00127), The Lundbeck
foundation (R34-A3587), Innovation Fund Denmark (0603-
00320B). The Novo Nordisk Foundation Center for Basic
Metabolic Research (http://www.cbmr.ku.dk) is an independent
research Center at the University of Copenhagen, partially funded
by an unrestricted donation from the Novo Nordisk Foundation.
ACKNOWLEDGMENTS

The authors are grateful to Anne Strandsby (University of
Copenhagen, Denmark) for her invaluable contribution to
sample collection and preparation.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2019.
01268/full#supplementary-material

SUPPLEMENTARY TABLE S1 | mDNAcap, RRBS, and RNAseq.

SUPPLEMENTARY TABLE S2 | Gene Enrichment Analysis.

SUPPLEMENTARY TABLE S3 | QPCR validation data.

SUPPLEMENTARY TABLE S4 | TF binding predictions.
REFERENCES

Ahima, R. S., and Flier, J. S. (2000). Adipose Tissue as an Endocrine Organ. Trends
Endocrinol. Metab. 11, 327–332. doi: 10.1016/S1043-2760(00)00301-5

Albuquerque, D., Stice, E., Rodríguez-López, R., Manco, L., and Nóbrega, C.
(2015). Current review of genetics of human obesity: from molecular
mechanisms to an evolutionary perspective. Mol. Genet. Genomics 290,
1191–1221. doi: 10.1007/s00438-015-1015-9

Arner, P., Sinha, I., Thorell, A., Rydén, M., Dahlman-Wright, K., and Dahlman, I.
(2015). The epigenetic signature of subcutaneous fat cells is linked to altered
expression of genes implicated in lipid metabolism in obese women. Clin.
Epigenetics 7, 93. doi: 10.1186/s13148-015-0126-9

Bacos, K., Gillberg, L., Volkov, P., Olsson, A. H., Hansen, T., Pedersen, O., et al.
(2016). Blood-based biomarkers of age-associated epigenetic changes in
human islets associate with insulin secretion and diabetes. Nat. Commun. 7,
11089. doi: 10.1038/ncomms11089

Benton, M. C., Johnstone, A., Eccles, D., Harmon, B., Hayes, M. T., Lea, R. A., et al.
(2015). An analysis of DNA methylation in human adipose tissue reveals
differential modification of obesity genes before and after gastric bypass and
weight loss. Genome Biol. 16, 8. doi: 10.1186/s13059-014-0569-x

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: A flexible trimmer
for Illumina sequence data. Bioinformatics 30 (15), 2114–2120. doi: 10.1093/
bioinformatics/btu170

Boyle,P.,Clement,K.,Gu,H., Smith,Z.D., Ziller,M., Fostel, J. L., et al. (2012).Gel-free
multiplexed reduced representation bisulfite sequencing for large-scale DNA
methylation profiling. Genome Biol. 13, R92. doi: 10.1186/gb-2012-13-10-r92
Campión, J.,Milagro, F. I., andMartínez, J. A. (2009). Individuality and epigenetics in
obesity. Obes. Rev. 10, 383–392. doi: 10.1111/j.1467-789X.2009.00595.x

Cirera, S. (2013). Highly efficient method for isolation of total RNA from adipose
tissue. BMC Res. Notes 6, 472. doi: 10.1186/1756-0500-6-472

Crujeiras, A. B., Diaz-Lagares, A., Sandoval, J., Milagro, F. I., Navas-Carretero, S.,
Carreira, M. C., et al. (2017). DNA methylation map in circulating leukocytes
mirrors subcutaneous adipose tissuemethylation pattern: a genome-wide analysis
from non-obese and obese patients. Sci. Rep. 7, 41903. doi: 10.1038/srep41903

Dahlman, I., Sinha, I., Gao, H., Brodin, D., Thorell, A., Rydén, M., et al. (2015).
The fat cell epigenetic signature in post-obese women is characterized by global
hypomethylation and differential DNA methylation of adipogenesis genes. Int.
J. Obes. 39, 910–919. doi: 10.1038/ijo.2015.31

Davoodi, S. H., Malek-Shahabi, T., Malekshahi-Moghadam, A., Shahbazi, R., and
Esmaeili, S. (2013). Obesity as an important risk factor for certain types of
cancer. Iran. J. cancer Prev. 6, 186–194.

de Toro-Martín, J., Guénard, F., Tchernof, A., Deshaies, Y., Pérusse, L., Hould, F.-
S., et al. (2016). Methylation quantitative trait loci within the TOMM20 gene
are associated with metabolic syndrome-related lipid alterations in severely
obese subjects. Diabetol. Metab. Syndr. 8, 55. doi: 10.1186/s13098-016-0171-3

Decaunes, P., Estève, D., Zakaroff-Girard, A., Sengenès, C., Galitzky, J., and
Bouloumié, A. (2011). Adipose-derived stromal cells: cytokine expression
and immune cell contaminants. Methods Mol. Biol. 702, 151–161. doi:
10.1007/978-1-61737-960-4_12

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., et al.
(2013). STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29 (1), 15–
21. doi: 10.1093/bioinformatics/bts635
December 2019 | Volume 10 | Article 1268

http://www.cbmr.ku.dk
https://doi.org/10.1016/S1043-2760(00)00301-5
https://doi.org/10.1007/s00438-015-1015-9
https://doi.org/10.1186/s13148-015-0126-9
https://doi.org/10.1038/ncomms11089
https://doi.org/10.1186/s13059-014-0569-x
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1186/gb-2012-13-10-r92
https://doi.org/10.1111/j.1467-789X.2009.00595.x
https://doi.org/10.1186/1756-0500-6-472
https://doi.org/10.1038/srep41903
https://doi.org/10.1038/ijo.2015.31
https://doi.org/10.1186/s13098-016-0171-3
https://doi.org/10.1007/978-1-61737-960-4_12
https://doi.org/10.1093/bioinformatics/bts635
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Jacobsen et al. Epigenetic Signatures of Adipocytes in Obesity
Domcke, S., Bardet, A. F., Adrian Ginno, P., Hartl, D., Burger, L., and Schübeler, D.
(2015). Competition between DNA methylation and transcription factors
determines binding of NRF1. Nature 528, 575–579. doi: 10.1038/nature16462

Drong, A. W., Nicholson, G., Hedman, Å. K., Meduri, E., Grundberg, E., Small, K.
S., et al. (2013). The presence of methylation quantitative trait loci indicates a
direct genetic influence on the level of DNA methylation in adipose tissue.
PLoS One 8, e55923. doi: 10.1371/journal.pone.0055923

Fontana, P., Grasso, M., Acquaviva, F., Gennaro, E., Galli, M. L., Falco, M., et al.
(2017). SNORD116 deletions cause Prader-Willi syndrome with a mild
phenotype and macrocephaly. Clin. Genet. 92, 440–443. doi: 10.1111/cge.13005

Friedewald, W. T., Levy, R. I., and Fredrickson, D. S. (1972). Estimation of the
concentration of low-density lipoprotein cholesterol in plasma, without use of
the preparative ultracentrifuge. Clin. Chem. 18 (6), 499–502.

Grüters-Kieslich, A., Reyes, M., Sharma, A., Demirci, C., DeClue, T. J., Lankes, E.,
et al. (2017). Early-onset obesity: unrecognized first evidence for GNAS
mutations and methylation changes. J. Clin. Endocrinol. Metab. 102, 2670–
2677. doi: 10.1210/jc.2017-00395

Grundberg, E., Meduri, E., Sandling, J. K., Hedman, Å. K., Keildson, S., Buil, A.,
et al. (2013). Global analysis of DNA methylation variation in adipose tissue
from twins reveals links to disease-associated variants in distal regulatory
elements. Am. J. Hum. Genet. 93, 876–890. doi: 10.1016/j.ajhg.2013.10.004

Grunert, M., Dorn, C., Cui, H., Dunkel, I., Schulz, K., Schoenhals, S., et al. (2016).
Comparative DNA methylation and gene expression analysis identifies novel
genes for structural congenital heart diseases. Cardiovasc. Res. 112, 464–477.
doi: 10.1093/cvr/cvw195

Guénard, F., Tchernof, A., Deshaies, Y., Biron, S., Lescelleur, O., Biertho, L., et al.
(2017). Genetic regulation of differentially methylated genes in visceral adipose
tissue of severely obese men discordant for the metabolic syndrome. Transl.
Res. 184, 1–11.e2. doi: 10.1016/j.trsl.2017.01.002

Hoffmann, S., Otto, C., Kurtz, S., Sharma, C.M., Khaitovich, P., Vogel, J., et al. (2009).
Fast mapping of short sequences withmismatches, insertions and deletions using
index structures. PLoS Comput. Biol. 5 (9), e1000502. doi: 10.1371/
journal.pcbi.1000502

Hopkins, B. D., Goncalves, M. D., and Cantley, L. C. (2016). Obesity and cancer
mechanisms: cancer metabolism. J. Clin. Oncol. 34, 4277–4283. doi: 10.1200/
JCO.2016.679712

Jühling, F., Kretzmer, H., Bernhart, S. H., Otto, C., Stadler, P. F., and Hoffmann, S.
(2016).Metilene: fast and sensitive calling of differentiallymethylated regions from
bisulfite sequencing data. Genome Res. 26, 256–262. doi: 10.1101/gr.196394.115

Jones, P. A. (2012). Functions of DNAmethylation: islands, start sites, gene bodies
and beyond. Nat. Rev. Genet. 13, 484–492. doi: 10.1038/nrg3230

Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., et al. (2007).
KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36,
D480–D484. doi: 10.1093/nar/gkm882

Kogelman, L. J. A., Kadarmideen, H. N., Mark, T., Karlskov-Mortensen, P., Bruun,
C. S., Cirera, S., et al. (2012). An F2 pig resource population as a model for
genetic studies of obesity and obesity-related diseases in humans: design and
genetic parameters. Genome Biol. 13, R92. doi: 10.3389/fgene.2013.00029

Krueger, F., and Andrews, S. R. (2011). Bismark: a flexible aligner and methylation
caller for Bisulfite-Seq applications. Bioinformatics 27 (11), 1571–1578. doi:
10.1093/bioinformatics/btr167

Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie
2. Nat. Methods 9 (4), 357–359. doi: 10.1038/nmeth1923

Lee, C., and Huang, C.-H. (2013). LASAGNA-Search: an integrated web tool for
transcription factor binding site search and visualization. Biotechniques 54 (3),
141–153. doi: 10.2144/000113999

Matys, V., Kel-Margoulis, O. V., Fricke, E., Liebich, I., Land, S., Barre-Dirrie, A.,
et al. (2006). TRANSFAC(R) and its module TRANSCompel(R):
transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 34, D108–
D110. doi: 10.1093/nar/gkj143

Nilsson, E., Jansson, P. A., Perfilyev, A., Volkov, P., Pedersen, M., Svensson, M. K.,
et al. (2014). Altered DNA methylation and differential expression of genes
influencing metabolism and inflammation in adipose tissue from subjects with
type 2 diabetes. Diabetes 63, 2962–2976. doi: 10.2337/db13-1459

Pedersen, S. D. (2013). Metabolic complications of obesity. Best Pract. Res. Clin.
Endocrinol. Metab. 27, 179–193. doi: 10.1016/j.beem.2013.02.004
Frontiers in Genetics | www.frontiersin.org 13
Pietiläinen, K. H., Ismail, K., Järvinen, E., Heinonen, S., Tummers, M., Bollepalli, S.,
et al. (2016). DNA methylation and gene expression patterns in adipose tissue
differ significantly within young adult monozygotic BMI-discordant twin pairs.
Int. J. Obes. 40, 654–661. doi: 10.1038/ijo.2015.221

Qi, Y., Purtell, L., Fu, M., Lee, N. J., Aepler, J., Zhang, L., et al. (2016). Snord116 is
critical in the regulation of food intake and body weight. Sci. Rep. 6, 18614. doi:
10.1038/srep18614

Radford, E. J., Ito, M., Shi, H., Corish, J. A., Yamazawa, K., Isganaitis, E., et al.
(2014). In utero effects. In utero undernourishment perturbs the adult sperm
methylome and intergenerational metabolism. Science 345, 1255903. doi:
10.1126/science.1255903

Reilly, S. M., and Saltiel, A. R. (2017). Adapting to obesity with adipose tissue
inflammation. Nat. Rev. Endocrinol. 13, 633–643. doi: 10.1038/nrendo.2017.90

Ronn, T., Volkov, P., Gillberg, L., Kokosar, M., Perfilyev, A., Jacobsen, A. L., et al.
(2015). Impact of age, BMI and HbA1c levels on the genome-wide DNA
methylation and mRNA expression patterns in human adipose tissue and
identification of epigenetic biomarkers in blood. Hum. Mol. Genet. 24, 3792–
3813. doi: 10.1093/hmg/ddv124

Satoh, J.-I., and Tabunoki, H. (2013). A comprehensive profile of ChIP-Seq-based
STAT1 target genes suggests the complexity of STAT1-mediated gene regulatory
mechanisms. Gene Regul. Syst. Bio. 7, 41–56. doi: 10.4137/GRSB.S11433

Sharma, S., Salehi, F., Scheithauer, B. W., Rotondo, F., Syro, L. V., and Kovacs, K.
(2009). Role of MGMT in tumor development, progression, diagnosis,
treatment and prognosis. Anticancer Res. 29, 3759–3768.

Shen, L., Shao, N.-Y., Liu, X., Maze, I., Feng, J., and Nestler, E. J. (2013).
diffReps: detecting differential chromatin modification sites from ChIP-seq
data with biological replicates. PLoS One 8, e65598. doi: 10.1371/journal.
pone.0065598

Trapnell, C., Hendrickson, D. G., Sauvageau, M., Goff, L., Rinn, J. L., and Pachter,
L. (2013). Differential analysis of gene regulation at transcript resolution with
RNA-seq. Nat. Biotechnol. 31 (1), 46–53. doi: 10.1038/nbt2450

Trengove, M. C., and Ward, A. C. (2013). Review Article SOCS proteins in
development and disease. Amer. J. Clin. Exp. Immunol. 2, 1–29.

Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A.,
et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by
geometric averaging of multiple internal control genes. Genome Biol. 3 (7). doi:
10.1186/gb-2002-3-7-research0034

Vizoso, M., Ferreira, H. J., Lopez-Serra, P., Carmona, F. J., Martínez-Cardús, A.,
Girotti, M. R., et al. (2015). Epigenetic activation of a cryptic TBC1D16
transcript enhances melanoma progression by targeting EGFR. Nat. Med. 21,
741–750. doi: 10.1038/nm3863

Wahl, S., Drong, A., Lehne, B., Loh, M., Scott, W. R., Kunze, S., et al. (2017).
Epigenome-wide association study of body mass index, and the adverse
outcomes of adiposity. Nat. Publ. Gr. 541, 81–86. doi: 10.1038/nature20784

Yang, Y., Zhou, R., Mu, Y., Hou, X., Tang, Z., and Li, K. (2016). Genome-wide
analysis of DNA methylation in obese, lean, and miniature pig breeds. Sci. Rep.
6, 30160. doi: 10.1038/srep30160

Yao, L., Shen, H., Laird, P. W., Farnham, P. J., and Berman, B. P. (2015). Inferring
regulatory element landscapes and transcription factor networks from cancer
methylomes. Genome Biol. 16, 105. doi: 10.1186/s13059-015-0668-3

Zhang, B., Kirov, S., and Snoddy, J. (2005). WebGestalt: an integrated system for
exploring gene sets in various biological contexts. Nucleic Acids Res. 33, W741–
W748. doi: 10.1093/nar/gki475

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2019 Jacobsen, Havgaard, Anthon, Mentzel, Cirera, Krogh, Pundhir,
Karlskov-Mortensen, Bruun, Lesnik, Guerin, Gorodkin, Jørgensen, Fredholm and
Barrès. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner
(s) are credited and that the original publication in this journal is cited, in accor-
dance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.
December 2019 | Volume 10 | Article 1268

https://doi.org/10.1038/nature16462
https://doi.org/10.1371/journal.pone.0055923
https://doi.org/10.1111/cge.13005
https://doi.org/10.1210/jc.2017-00395
https://doi.org/10.1016/j.ajhg.2013.10.004
https://doi.org/10.1093/cvr/cvw195
https://doi.org/10.1016/j.trsl.2017.01.002
https://doi.org/10.1371/journal.pcbi.1000502
https://doi.org/10.1371/journal.pcbi.1000502
https://doi.org/10.1200/JCO.2016.679712
https://doi.org/10.1200/JCO.2016.679712
https://doi.org/10.1101/gr.196394.115
https://doi.org/10.1038/nrg3230
https://doi.org/10.1093/nar/gkm882
https://doi.org/10.3389/fgene.2013.00029
https://doi.org/10.1093/bioinformatics/btr167
https://doi.org/10.1038/nmeth1923
https://doi.org/10.2144/000113999
https://doi.org/10.1093/nar/gkj143
https://doi.org/10.2337/db13-1459
https://doi.org/10.1016/j.beem.2013.02.004
https://doi.org/10.1038/ijo.2015.221
https://doi.org/10.1038/srep18614
https://doi.org/10.1126/science.1255903
https://doi.org/10.1038/nrendo.2017.90
https://doi.org/10.1093/hmg/ddv124
https://doi.org/10.4137/GRSB.S11433
https://doi.org/10.1371/journal.pone.0065598
https://doi.org/10.1371/journal.pone.0065598
https://doi.org/10.1038/nbt2450
https://doi.org/10.1186/gb-2002-3-7-research0034
https://doi.org/10.1038/nm3863
https://doi.org/10.1038/nature20784
https://doi.org/10.1038/srep30160
https://doi.org/10.1186/s13059-015-0668-3
https://doi.org/10.1093/nar/gki475
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Epigenetic and Transcriptomic Characterization of Pure Adipocyte Fractions From Obese Pigs Identifies Candidate Pathways Controlling Metabolism
	Introduction
	Materials and Methods
	Animals and Collection of Cells
	Plasma Lipids
	Cell Isolation
	RNA and DNA Extraction
	DNA Methylation Immunoprecipitation Sequencing (mDNAcap)
	Reduced Representation Bisulfite Sequencing (RRBS)
	RNA Sequencing
	Pathway Analysis
	Quantitative Real-Time PCR (qPCR)
	Immunoblot Analysis
	Predicted Transcription Factor Binding Sites
	Statistical Analysis

	Results
	Metabolic Characteristics of Studied Animals
	DNA Methylation Is Altered in Adipocytes From Obese Pigs
	Gene Expression Is Remodeled in Adipocytes From Obese Pigs
	Integration of Epigenomic and Transcriptomic Data Sets
	Validation of Differential Expression
	Association Between DNA Methylation and Gene Expression
	Further Analysis of the TBC1D16 Gene
	Transcription Binding Site Analyses

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


