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Abstract: Scaffolds are considered promising materials for tissue engineering applications due to
their unique physiochemical properties. The high porosity and adequate mechanical properties of the
scaffolds facilitate greater cell adhesion, proliferation, and differentiation. Stem cells are frequently
applied in tissue engineering applications due to their excellent potential. It has been noted that
cell functions are profoundly affected by the nature of the extracellular matrix (ECM). Naturally
derived ECM contains the bioactive motif that also influences the immune response of the organism.
The properties of polymer scaffolds mean they can resemble the native ECM and can regulate cellular
responses. Various techniques such as electrospinning and 3D printing, among others, are frequently
used to fabricate polymer scaffolds, and their cellular responses are different with each technique.
Furthermore, enhanced cell viability, as well as the differentiation ability of stem cells on the surface
of scaffolds, opens a fascinating approach to the formation of ECM-like environments for tissue
engineering applications.

Keywords: scaffolds; extracellular matrices; cell functions; stem cells; tissue engineering

1. Introduction

Stem cells have received a great amount of attention from academia as well as industry for tissue
engineering and regenerative medicine applications due to their exclusive differentiation potential and
pluripotency [1–4]. Pluripotent stem cells (PSCs) have the ability to self-renew and they can generate
all the types of cell in the body. Embryonic stem cells (ESCs) and induced pluripotent stem cells
(iPSCs) are the types of PSCs which are utilized in the field of tissue engineering. The potential of these
types of stem cells is governed by their surrounding microenvironments [5]. Several factors such as
hormones, growth factors, chemical moieties, and the extracellular matrix (ECM) conditions have wide
influence on the differentiation and pluripotency of stem cells [6–11]. Figure 1 represents the different
interactions of stem cells with their surrounding microenvironments, which determine their fate [5].

The ECM provides the required physical, chemical, and mechanical support to the cells for
better growth and differentiation [12]. The interactions between ECM and cells are extremely affected
by the surface morphology of the ECM [13]. These materials have drawn a significant amount of
interest regarding cellular activities owing to their similarity in intrinsic morphology with native
ECM [14]. Notably, better cell proliferation and differentiation were observed on the surface of
scaffolds due to their porosity and adequate mechanical properties which facilitate the easy transport
of gases, nutrients, and other regulatory factors [15]. The chemical composition, surface chemistry,
porosity, degradation behavior, and mechanical strength of an ECM play very important roles in
determining stem cell fate [16]. These materials can be biological or synthetic and degradable or
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nondegradable in nature [17]. The biological scaffolds are derived from living sources, such as human
and animal tissues, whereas synthetic scaffolds are prepared from various biocompatible polymers [18].
It is well known that for tissue engineering applications, materials should be biocompatible and
biodegradable in nature. Additionally, materials should also have adequate mechanical strength to
support cellular activities [19]. The synthetic biodegradable polymer scaffolds have an additional
benefit over nondegradable materials—they do not require extra attention to be removed from the
biological conditions. Several biodegradable synthetic polymers, such as polycaprolactone (PCL),
poly-l-lactic acid (PLA), and polybutylene terephthalate (PBT), among others, are frequently used to
fabricate porous scaffold materials for tissue engineering applications [20–22]. The biodegradability
of the scaffold materials can be tuned by using a suitable filler/additive in their matrices or blending
with other polymers. Different metals and their oxides and carbon in various forms, such as graphene,
carbon nanotubes (CNTs), fullerene, clay or modified clay, and zeolites, are intensively used to alter the
properties of the pure polymers [23–26]. These nanomaterials have different kinds of morphology as
well as orientation (1D, 2D, and 3D) that considerably influence the interactions between the polymer
and nanomaterials, and consequently, cellular activities [27]. Although there are several reports
available where scaffold materials have been utilized in the field of tissue engineering for medicine,
surgery, and dental applications, their results exhibited that rapid regeneration of the damaged tissues,
namely enamel, pulpodentin complex, periodontal apparatus, and teeth, occurred in the presence of
the scaffold materials. It has been seen that the hard scaffolds are suitable for bone tissues, whereas
soft and injectable scaffolds are more useful for pulpodentin and periodontal complexes. Stem cells in
combination with scaffolds and signaling molecules, have been already developed for the regeneration
of damaged dental tissues. However, several concerns, such as the safety and standardization of
the techniques, still have to be resolved for clinical application in humans [28,29]. Herein, we have
briefly described the major classes of the biodegradable polymer scaffolds and their effects on stem
cell functions. We have also mentioned some common techniques of scaffold fabrication and their
application. Moreover, we have endeavored to explain the effects of the different types of naturally
derived ECM on immune responses. This review is focused on the different kinds of polymer scaffolds
and their tissue engineering applications using stem cells.

 
Figure 1. Schematic representation of the microenvironments and niches of stem cells and their 
regulation by the following factors: soluble factors, such as growth factors or cytokines, nutrients, and 
bioactive molecules; cell–cell interactions; and cell–biomaterial interactions. Physical properties of 
biomaterials also regulate the stem cell fate. Reproduced with permission from reference [5]; 
Copyright 2015, Royal Society of Chemistry. 
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2. Types of Polymer Scaffolds

The scaffold materials are extensively used in tissue engineering fields due to their superior
physiochemical properties. The physiochemical behaviors such as external geometry, surface properties,
degradable nature, porosity and pore size, mechanical strength, biodegradability, and biocompatibility
of the scaffolds play very important roles in cell adhesion and proliferation [30]. Figure 2 shows the
flowchart for the generation of active tissues from biomaterials [31]. Here, we have described some
common types of scaffolds and their advantages for tissue engineering.
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surfaces, rapid building, good mechanical strength between the layers, and efficacy in printing clear 
objects, which are not achievable with the conventional 2D model [33]. It has been noted that the cell 
responses were different in the 3D microenvironments compared to those of 2D models [34]. The 
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used in the aerospace industry for the manufacturing of lightweight complex structures, the 
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2.1. Three-Dimensional (3D) Polymer Scaffolds

Three-dimensional (3D) printing techniques have received a great amount of attention in the
field of tissue engineering owing to their ability to design and fabricate complex structures with high
accuracy. In this process, the materials are deposited in a layer-by-layer fashion to form objects from
3D model data [32]. This is an attractive technique due to the high levels of build resolution, smooth
surfaces, rapid building, good mechanical strength between the layers, and efficacy in printing clear
objects, which are not achievable with the conventional 2D model [33]. It has been noted that the cell
responses were different in the 3D microenvironments compared to those of 2D models [34]. The porous
3D scaffolds facilitate better cell–cell and cell–matrix interactions and lead to a significant enhancement
of the cell densities compared to the 2D conditions [35]. Notably, better growth of blood vessels
with increased nutrient, oxygen, and waste diffusion is possible in the 3D microenvironments [36–38].
Polylactic acid (PLA); polycarbonate (PC); acrylonitrile butadiene styrene; oligo-propylene fumarates;
pluronic, alginate, gelatin, and hyaluronic acid; epoxy resins, etc. are frequently used in 3D-printing
techniques for different applications [39–41]. The 3D-printed polymer materials can be used in the
aerospace industry for the manufacturing of lightweight complex structures, the architectural industry
for structural models, and also in artistic disciplines for artifact replication [42,43]. However, the weak
mechanical strength of the 3D-printed polymer materials restricts it to use in load-bearing functional
applications. The mechanical strength of printed materials can be improved by using a suitable filler in
their matrix.

2.2. Hydrogel Scaffolds

Hydrogel scaffolds have acquired significant attention from researchers for their use as biomaterials
for tissue engineering applications. The hydrogel can enable molecularly tuned biofunctions and
adequate mechanical strength, as well as ECM-like conditions for better cellular activity. Hydrogel
scaffold is the kind of structural support made by the bioactive compounds. Hydrogels are composed
of the crosslinked networks of the polymer chains that are formed in the presence of water or a
physiological medium [44]. This network structure gives the hydrogels a unique swelling potential
and 3D skeleton. This network structure can be formed through the chemical interactions between the
different functional groups present in the matrix or through physical interactions [45–47]. Depending on
this structure, hydrogels may be chemically stable or unstable in nature, which influences the solubility
of hydrogels in various solvents. The unstable gels are known as a reversible or physical gel and they
are inhomogeneous in nature [48]. Different synthetic and natural polymers are often used for hydrogel
synthesis. Hydrogels synthesized from the common synthetic and natural polymers are represented in
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Table 1 [49]. Naturally derived hydrogels have several advantages over synthetic polymer scaffolds
in terms of their biocompatibility, cellular interactions, and degradation [49]. However, owing to
their weak mechanical strength, hydrogel applications are restricted to limited fields. This drawback
can be resolved for synthetic polymer-based hydrogels by controlling the structure or functional
moieties of the polymer chains or by incorporating appropriate fillers/additives [15]. Biocompatible
hydrogels are widely utilized in tissue engineering applications for wound healing, bone regeneration,
drug transport, etc. [50]. Besides, hydrogels facilitate the development and differentiation of cells in
newly developed tissues in the presence of growth factors [51]. Hydrogels also enable rapid nutrient
exchange, cell migration, and angiogenesis [52].
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Table 1. Some common synthetic and natural polymers used for hydrogel synthesis. Reproduced with permission from reference [49]; Copyright 2012, Elsevier.

Natural Polymers and Their Derivatives (±Crosslinkers) Synthetic Polymers (±Crosslinker)
Polyesters Other Polymers Combinations of Natural and

Synthetic Polymers

Anionic polymers:
Hyaluronic acid (HA),

alginic acid, pectin,
carrageenan, chondroitin

sulfate, dextran sulfate

Cationic
polymers:
Chitosan,

polylysine

Amphipathic
polymers:

Collagen (and
gelatin),

carboxymethyl chitin,
fibrin

Neutral
polymers:
Dextran,
agarose,
pullulan

poly(ethylene glycol)– poly(lactic
acid)– poly(ethylene glycol)

(PEG–PLA–PEG), PEG–
poly(lactic-co-glycolic acid)

(PLGA)–PEG, PEG–polycaprolactone
(PCL) –PEG, PLA–PEG– PLA,
poly(hydroxy butyrate) (PHB),

poly(propylene fumarate)-co-(ethylene
glycol) (P(PF-co-EG)) ± acrylate end
groups, PEG–poly(butylene oxide)

(PBO) terephthalate

PEG–bis-(PLA-acrylate), PEG ±
cyclodextrin (CD), PEG–g-

poly(acrylamide(AAm)-co-Vamine),
poly(N- isopropylacrylamide-co-

acrylic acid) P(NIPAAm-co- AAc),
P(NIPAAm-co-ethyl methacrylate

(EMA), poly(vinyl acetate)–
poly(vinyl alcohol) (PVAc– PVA),

poly(N-vinyl pyrrolidone) (PNVP),
poly(methyl methacrylate-co-
hydroxyethyl methacrylate)

(PMMA-co-MEHA),
poly(acrylonitrile-co-allyl sulfonate),

poly(biscarboxy-
phenoxy-phosphazene),

poly(glucosylethylmethacrylate)
P(GEMA-sulfate)

P(PEG-co-peptides),
alginate–g-poly(ethylene
oxide)–poly(propylene

oxide)–poly(ethylene oxide)
(alginate–g-PEO– PPO–PEO),
P(PLGA-co- serine), collagen

acrylate, alginate acrylate,
poly(hydroxypropyl

methacrylamide-g-peptide)
P(HPMA-g-peptide),
poly(hydroxyethyl

methacrylate-Matrigel®)
P(HEMA-Matrigel®), HA-g-

NIPAAm
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2.3. Fibrous and Porous Scaffolds

Fibrous scaffolds are another important category of scaffolds and have gathered a lot of interest
in tissue engineering applications for neural tissue engineering, bone, cartilage, skeletal muscle,
and controlled delivery of small molecules such as drugs, DNA, and proteins [53]. The high aspect ratio
of fibrous scaffolds with their intrinsic structure confers better cell adhesion, proliferation, migration,
and differentiation [54,55]. Electrospinning, self-assembly, and phase separation techniques are used to
fabricate the fibrous scaffolds. Among them, electrospinning is the most versatile technique used for the
fabrication of nanofibers [56]. Various synthetic and natural polymers, such as PLA, polyurethane (PU),
PCL, poly(lactic-co-glycolic acid) (PLGA), and collagen, among others [57–62], are commonly employed
for nanofiber fabrication for different applications. The properties of fabricated nanofibers can be tuned
by changing the functional groups of the pure polymer or blending with other materials. Fabrication of
the small molecule-loaded nanofibers can be accomplished by direct mixing of the targeted molecules
into the polymer solution [63]. Porous scaffolds, such as foam, with homogenous interconnected
pore networks are also considered to be useful ECM platforms for biomedical applications [20].
The porous structure of the scaffold has an auxiliary advantage in cell adhesion and proliferation
processes. This structure facilitates proper nutrient transport within the network structure and limits
the cluster size to the pore size of the scaffolds. Moreover, the pore architectures can be optimized
by exploiting a suitable solvent and phase separating conditions [64]. PLGA, PCL, poly(d,l-lactic
acid) (PDLLA), and PBT are some of the synthetic polymers commonly applied for the fabrication of
porous scaffolds [21,22,65]. Table 2 represents several common scaffold fabrication techniques and
their applications in different fields. For naturally derived ECM, top-down as well as bottom-up
approaches have been utilized, including ECM proteins and immunomodulatory domains, such as
matrix metalloproteinase (MMP)-sensitive peptides, respectively.

Table 2. Common scaffold fabrication techniques and their applications.

Method/Scaffold Polymers Used Applications References

For gel scaffold fabrication

Emulsification technique Collagen, gelatin, and hyaluronic acid
(HA) Controlled drug delivery [50,66,67]

Micromolding process Poly(ethylene glycol) (PEG), HA, alginate,
poly(methyl methacrylate) (PMMA)

Delivery of
small-molecule-like
drugs and insulin

[68–70]

Microfluidics process Calcium alginate, PEG, silicon,
poly(dimethyl siloxane) (PDMS)

Sensing, cell separation,
and controlled
microreactors

[71–73]

Photolithography
technique

Chitosan, PMMA, PEG,
Poly(2-(trimethylamino)ethyl

methacrylate (PDMAEM)

Cell–cell interactions,
biosensors, microdevices [74–76]

Injectable gel scaffold

Copolymers of poly(lactic acid) (PLA),
poly(glycolic acid) (PGA), PEG,

poly(lactic-co-glycolic acid) (PLGA),
copolymers of poly(ethylene oxide)
(PEO), chitosan, collagen, and HA

Cartilage and bone tissue
engineering, drug

delivery
[77–79]

For porous scaffold fabrication

Solvent casting/salt
leaching technique

Collagen, PLGA, poly(l-lactic acid)
(PLLA)

Cartilage and bone tissue
engineering, [80–82]

Gas foaming/salt
leaching technique

PLLA, PLGA, poly(d,l-lactic acid)
(PDLLA)

Delivery of small
molecules such as drugs,

tissue engineering
[83–85]

Ice particle leaching
technique PLLA and PLGA Bone tissue engineering [86–88]
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3. Impact of Scaffolds on Stem Cell Functions

Scaffolds prepared from different techniques have different physiochemical properties, ranging
from porous to fibrous, irregular to regular, and nanofibrous to microfibrous architectures, which have
a great impact on stem cell functions, since the different structure, porosity, and surface roughness of
each fabricated scaffold has a direct influence on cell growth and tissue regeneration. In this section,
we have described the stem cell fate in the presence of different kinds of scaffolds by considering
some common examples with good results. The surface topography from the micro- to nanoscale
has a great influence on cell behavior, which can induce the direct osteogenesis of stem cells [89–91].
Kumar et al. fabricated PCL-based scaffolds with various structures, such as salt-leached scaffolds,
gas-foamed scaffolds, gas-foamed phase-separated scaffolds, nanofiber scaffolds, and spin-coated
films, and evaluated their topographical effects on stem cell fate. It was observed that only the
nanofibrous scaffolds had the potential to drive human bone marrow stromal cells (hBMSCs) towards
osteogenesis without any additional osteogenic supplements. Furthermore, the cell shape was also
different on these scaffolds’ surfaces. More elongated and highly branched cell morphologies were
observed on nanofibrous surfaces in the absence of osteogenic supplements, whereas rounded and
less branched morphologies appeared on the flat surface of the scaffolds in the absence of osteogenic
supplements. This was due to the greater adhesion of hBMSCs to the nanofibrous surface that facilitates
the osteogenesis and elongated, branched morphology. Figure 3 represents the cell morphologies
cultured on different scaffold surfaces. These results indicate that cell behavior is highly influenced
by the surface topography of the fabricated scaffolds and the scaffolds’ potential can be altered by
changing the scaffold structure [92].
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Figure 3. (a–c) Effect of different types of scaffolds on the morphology of human bone marrow stromal 
cells (hBMSC) (400×) after 1 day of culturing. (a) PCL_BNF: big nanofiber scaffolds ~900 nm in 
diameter, (b) PCL_SC: thin film of PCL polymer produced through spin coating, and (c) PCL_SC+OS: 
thin film with osteogenic supplements, and 1_d: 1 day. Reproduced with permission from references 
[92]; Copyright 2011, Elsevier. 

Altering the properties of the 3D scaffolds to improve tissue regeneration is a fundamental task 
for tissue engineering applications. It is well known that the fabrication of functionalized scaffold 
devices with biomolecules or with growth factors is expensive, and their life span is also limited [93]. 
Therefore, development of a stable, inexpensive scaffold device is an interesting goal for rapid tissue 
regeneration. It was noted that the open pore structure of freeform fabricated (FFF) scaffolds 
supported the rapid proliferation of hBMSCs, but limited osteogenic differentiation. However, 
electrospun nanofibers have the opposite effect. A combination of FFF and nanofiber scaffold 

Figure 3. (a–c) Effect of different types of scaffolds on the morphology of human bone marrow stromal
cells (hBMSC) (400×) after 1 day of culturing. (a) PCL_BNF: big nanofiber scaffolds ~900 nm in diameter,
(b) PCL_SC: thin film of PCL polymer produced through spin coating, and (c) PCL_SC+OS: thin film
with osteogenic supplements, and 1_d: 1 day. Reproduced with permission from references [92];
Copyright 2011, Elsevier.

Altering the properties of the 3D scaffolds to improve tissue regeneration is a fundamental
task for tissue engineering applications. It is well known that the fabrication of functionalized
scaffold devices with biomolecules or with growth factors is expensive, and their life span is also
limited [93]. Therefore, development of a stable, inexpensive scaffold device is an interesting goal
for rapid tissue regeneration. It was noted that the open pore structure of freeform fabricated (FFF)
scaffolds supported the rapid proliferation of hBMSCs, but limited osteogenic differentiation. However,
electrospun nanofibers have the opposite effect. A combination of FFF and nanofiber scaffold properties
will provide a suitable platform for the rapid proliferation as well as differentiation of stem cells.
In another study, Kumar and coworkers fabricated FFF scaffolds of poly(ε-caprolactone) (PCL) polymer
with roughened struts and evaluated their effects on stem cell proliferation and differentiation in
a controlled fashion. They increased the surface roughness of developed FFF scaffolds through a
solvent etching technique. It was interesting to note that the etched scaffolds appeared to induce
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the osteogenic differentiation of stem cells to a greater extent compared to the unetched scaffolds.
Moreover, the proliferation potential was the same in both scaffolds. The cells were highly spread on
the unetched scaffold’s surface, while more rounded morphology was observed on the etched scaffold’s
surface. This indicates that stem cell fate is deeply affected by the roughness of the scaffolds [93]. Since it
is well established that stem cells have the potential to differentiate into other types of cell, this potential
can be utilized in the field of tissue engineering to solve the shortage of bone and cartilage tissues.
Scaffolds play crucial roles in the adhesion, proliferation, and differentiation of stem cells. The chemical
composition and physical structure are the important factors of the scaffolds, which suggest their
range of applications. Various metals have excellent mechanical strength, which makes them suitable
materials for tissue engineering. However, the lack of degradability under biological conditions restricts
their wide applicability. Moreover, some ceramic materials such as calcium phosphate, hydroxyapatite,
etc. possess superior differentiation potential, but due to poor mechanical strength, their applications
are also limited. In contrast, the properties of polymers can be easily modified and they can be used
for the fabrication of biomimetic scaffolds for tissue regeneration [94].

The most important challenge in the field of tissue engineering is the fabrication of scaffold devices
that have adequate mechanical strength while helping to speed up the recovery of defective bone tissues.
The effects of the highly porous 3D nanofibrous poly(l-lactic acid) (PLLA) scaffolds fabricated by a
phase separation technique on hMSCs have been studied by Hu et al. Histological analysis and calcium
content quantification results revealed that differentiation of hMSCs occurred on the nanofibrous
scaffold surface. Detailed study indicated that nanofibrous scaffolds facilitated the development of
both bone and cartilage tissues and had the potential for osteochondral construction [95]. It has
been noted that the hard tissues such as bone and dentine have a rich source of collagen type I
fibrous protein, which consists of ~80–90% organic moieties and is frequently utilized as an ECM for
these cells [96]. Pathogen transmission, immune response, and weak mechanical properties restrict
its use as an ideal material for tissue engineering. These concerns can be resolved by using the
synthetic polymer scaffolds which have suitable mechanical strength, flexible structures, and controlled
degradation [97,98]. Dental pulp stem cells (DPSCs) have been considered a suitable cell source for
dental tissue regeneration due to their ability to self-renew and excellent proliferation as well as
differentiation potential [99,100]. A comparative study was done to evaluate the fate of DPSCs in the
presence of nanofibrous (NF) and solid-walled (SW) poly(l-lactic acid) (PLLA) scaffolds. Notably, better
cell adhesion, proliferation, and differentiation of DPSCs were reported on the NF scaffolds compared
to those of the SW scaffolds. Significant enhancement in alkaline phosphatase (ALP) activity and
odontogenic-related genes was observed in the presence of NF scaffolds compared to those of the SW
scaffolds. Additionally, higher mineralization was reported in the NF scaffold condition. Furthermore,
enhanced odontogenic differentiation and hard tissue formations were observed on the NF scaffolds
compared to the SW scaffolds in nude mice after 8 weeks of transplantation [101]. This is attributed to
the biomimetic porous structure of the scaffolds that provides the natural ECM microenvironment
to the dentine tissue for proper cell attachment, proliferation, and tissue neogenesis [93]. Figure 4
represents the growth of DPSCs on NF and SW PLLA scaffolds at different time intervals. This result
clearly indicates the presence of greater cell densities on NF scaffolds than SW scaffolds. NF scaffolds
conferred better ECM conditions for cell attachment and differentiation compared to SW scaffolds [101].
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Figure 4. Hematoxylin and Eosin (H&E) staining of human dental pulp stem cells (DPSCs) cultured 
on solid-walled (SW) and nanofibrous (NF) poly(L-lactic acid) (PLLA) scaffolds in odontogenic media: 
(A) on SW-PLLA scaffolds for 4 weeks; (B) on NF-PLLA scaffolds for 4 weeks; (C) on SW-PLLA 
scaffolds for 8 weeks; (D) on NF-PLLA scaffolds for 8 weeks. Scale bars represent 100 mm. 
Reproduced with permission from reference [101]; Copyright 2011, Elsevier. 
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which facilitated the better cell attachment through interactions with different binding sites. 
Furthermore, an enhanced cell distribution was also observed in type II collagen- coated chitosan 
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solid-walled (SW) and nanofibrous (NF) poly(l-lactic acid) (PLLA) scaffolds in odontogenic media:
(A) on SW-PLLA scaffolds for 4 weeks; (B) on NF-PLLA scaffolds for 4 weeks; (C) on SW-PLLA scaffolds
for 8 weeks; (D) on NF-PLLA scaffolds for 8 weeks. Scale bars represent 100 mm. Reproduced with
permission from reference [101]; Copyright 2011, Elsevier.

Chitosan, a natural biomaterial, is employed as an ECM platform for tissue engineering applications
due to its superior physiochemical properties and excellent biocompatibility. It has been noted that
induced chondrogenesis was observed in the presence of pure chitosan scaffolds. Ragetly et al.
prepared type II collagen-coated chitosan fibrous scaffolds through a wet- spinning process and
evaluated their effects on mesenchymal stem cells (MSCs) in terms of cell adhesion and chondrogenesis.
The cell attachment is widely affected by the presence of type II collagen. Type I collagen has been
more extensively applied for tissue engineering applications than type II collagen, so the utilization of
type II collagen is more fascinating for the development of biomimetic scaffolds in the field of tissue
engineering. An enhancement in cell adhesion as well as chondrogenesis was observed in the presence
of the developed biomimetic scaffolds compared to the pure chitosan scaffolds. This improvement
was due to the presence of type II collagen in biomimetic scaffolds, which facilitated the better cell
attachment through interactions with different binding sites. Furthermore, an enhanced cell distribution
was also observed in type II collagen- coated chitosan scaffolds. An improved amount and quality of
the ECM was noted in type II collagen-coated scaffolds after 21 days of treatment compared to the pure
chitosan scaffolds. This enhancement in ECM content is responsible for better cellular activity [102].
Biomaterial scaffolds play a critical role in the regulation of cell growth and differentiation through
their mechanical support as well as geometry. Native ECM contains attractive materials for scaffold
fabrication, such as alginate, collagen, etc., because of their specific cell proliferation and differentiation
abilities [103–105]. Rowland and coworkers evaluated the effects of the different crosslinking agents
on the chondrogenic differentiation of MSCs in the presence of cartilage-derived matrix (CDM)
scaffolds. It was observed that the scaffolds developed from CDM conferred a chondroinductive
microenvironment that facilitated cartilaginous matrix synthesis in the cells. However, the tendency of
CDM to shrink in the cultured media restricts its potential broad application. The authors applied
dehydrothermal (DHT) and ultraviolet light (UV) treatment and the chemical crosslinker carbodiimide
(CAR) on the CDM scaffolds. It was interesting to note that the original shape of the CDM scaffolds was
maintained despite these treatments. DHT and UV treatments facilitate cell attachment, while CAR
treatment inhibits cell adhesion. Furthermore, the chondrogenic differentiation of MSCs is prominently
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affected by these treatments [106]. Cellular behavior is also affected by the surface properties such
as the wettability, roughness, etc. of polymers, and this can be altered by changing the chemical
components or by incorporating suitable fillers. Poly(caprolactone) (PCL) has gained a considerable
amount of attention for use as a 3D-printed material for tissue engineering applications owing to
its superior mechanical strength and biocompatibility [107,108]. Despite this promising potential,
PCL is hydrophobic in nature, which may limit its range of applications. Rashad and coworkers
fabricated PCL/cellulose nanofibril (CNF) 3D-printed scaffolds and evaluated the cellular responses
using MSCs. The hydrophobic nature of the PCL polymer was tuned by incorporating the desired
amount of multiscale hydrophilic and biocompatible CNF filler into the matrix. The significant
enhancement in the hydrophilic properties of PCL scaffolds was observed in the presence of CNF.
Live/dead staining and dehydrogenase release assay indicated that CNFs have no adverse effects on
MSCs. An enhancement in cell viability, attachment, proliferation, and osteogenic differentiation of
MSCs occurred in the presence of the PCL/CNF-based 3D-printed scaffolds compared to the pure PCL
scaffolds. Furthermore, enhanced alkaline phosphatase (ALP) activity and collagen type I and mineral
formations were observed in CNF-coated scaffolds. This enhancement was due to the wrapping of the
hydrophilic CNFs by hydrophobic PCL layers, which provides a suitable platform for enhanced cellular
activities. Figure 5 represents CNF-coated 3D scaffolds of PCL and their effects on MSC fate [109].
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Figure 5. (i) Structural characterization of the 3D-printed PCL scaffolds. (A) Stereomicroscope images
of the printed four layers with orientations of 0◦–45◦–90◦–135◦ and strand spacing of 1 mm (scale
bar: 5 mm). (B) Stereomicroscope images of the 3D-printed PCL before and after coating with
CNF, showing the cellulose fibers between the PCL strands. (ii) collagen type I production and
actin cytoskeleton organization of cells after 14 and 21 days. Reproduced with permission from
reference [109]; Copyright 2018, American Chemical Society.
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These results clearly indicate that the collagen type I production was higher in CNF-coated
conditions than in the control. The proliferation and differentiation potential of hMSCs are highly
governed by the material’s nature, signaling patterns, and other external factors such as the magnetic
and electric fields [110–113]. Hence, it is necessary to prepare the scaffolds with proper features that
provide a better microenvironment for MSC growth. Jin et al. fabricated highly aligned nanofibers of
poly(l-lactic acid) (PLLA) through an electrospinning technique, followed by surface polymerization
with a conductive monomer of 3,4-ethoxylene dioxythiophene (EDOT), and evaluated their effects
on MSCs under electric fields. Notably, better cell adhesion and proliferation were observed on the
surface of fabricated nanofibers [114]. Impact of other scaffolds on stem cell functions is summarized
in Table 3.

Table 3. Impact of other scaffolds materials on stem cell fate.

Materials Nature of Scaffold Impact on Different Stem
Cells References

Calcium phosphate– chitosan
composite
Chitosan

Injectable scaffolds
Fibrous scaffolds

Cell proliferation and
osteogenic differentiation

Chondrogenesis
[115,116]

Poly(caprolactone) (PCL)
Poly(l-lactic acid)-co-

poly(3-caprolactone)/ collagen
PCL/hydroxyapatite

PCL
PCL/polydopamine

Freeform fabricated (FFF)
scaffolds

Nanofibrous scaffolds
Coiled scaffolds

Microfibrous scaffolds

Cell proliferation and
differentiation

Hepatic trans-differentiation
Osteogenesis
Osteogenesis

Mild myofibroblastic
differentiation

[96,117–120]

Polyethylene oxide and poly(3-
hydroxybutyrate-co-3-

hydroxyvalerate)
Nanofibrous scaffolds Neuronal differentiation and

peripheral nerve regeneration [121]

Cartilage-derived
Collagen/gold-coated collagen

Starch
Fibrin

Nanostructured
tendon-derived biomaterials

Crosslinked scaffolds
Crosslinked scaffolds

Nanofibers
3D scaffolds

Nanofibrous scaffolds

Chondrogenesis
Chondrogenesis and

osteogenesis
Enhanced differentiation and

proliferation
Osteogenesis

Neuronal differentiation
Enhanced osteogenesis

[122–127]

Poly(lactic acid)/silk fibroin Nanofibrous scaffolds Neuronal differentiation [128]

Gelatin methacrylate
Gelatin

Hyaluronic acid (HA)
Poly(ethylene glycol) (PEG)

Hydrogels
Neuronal differentiation
Enhanced osteogenesis

Cell differentiation
[129–132]

Graphene foam
Polyurethane foam 3D porous structure

Enhanced neuronal
differentiation

Promoted hepatogenesis
[133,134]

Conducting polymer
(CP)-based biomaterials Thin film/nanofibers/scaffolds Enhanced osteogenesis [135–140]

It is well established that the scaffold materials closely resemble the native ECM and are
frequently used in tissue engineering applications for replacing damaged or diseased tissues. Wang
and coworkers developed the 3D-printed porous scaffolds from a poly(propylene fumarate) (PPF)
resin and evaluated the cytotoxicity of the degraded scaffolds through (XTT assay). XTT (sodium
3′-[1-[(phenylamino)-carbonyl]-3, 4-tetrazolium]-bis (4-methoxy-6-nitro) benzene sulfonic acid hydrate
is a tetrazolium salt, which form water-soluble formazan on bioreduction. Degradation is an important
parameter of the polymer scaffolds, which indicates their durability. PPF has ester groups in its
structure and can be hydrolyzed into fumaric acid and propylene glycol. It was seen that over a 224-day
period, the 3D-printed polymer scaffolds were hydrolytically degraded and changes in their physical
appearance, such as porosity and pore size, occurred. No significant decrease in fibroblast cell viability
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was observed in the presence of degraded scaffolds, indicating their biocompatibility. This result
suggests that degradable, 3D-printed PPF scaffolds are an ideal material for tissue engineering,
especially for bone tissues [141]. The effect of nanohydroxyapatite, antibiotic, and mucosal defensive
agents on the mechanical and thermal properties of glass ionomer cement was evaluated by Chieruzzi
et al. for clinical purposes. They noted the mechanical and thermal responses were deeply affected
by the filler content [142]. Sometimes, inflammation has also been noted near the implantation site
in the host [143]. Therefore, it is necessary to design materials that have the potential to regulate the
host immune response directly [144]. Furthermore, many ECM has immunomodulatory domains
that directly bind to the immune cells and regulate their functions [145]. An immunomodulatory
response of naturally derived ECM materials is summarized in Table 4. A schematic representation of
interactions between the ECM and immune cells is shown in Figure 6.

Table 4. Immunomodulatory impact of naturally derived ECM.

Materials Immunomodulatory Effect of the ECM References

Collagen/chemically modified
collagen/denatured collagen (gelatin)

Degranulation of peripheral basophils and
suppressed immune cell activity/lower

inflammatory response/anti-inflammatory
response

[146–149]

Fibrin-based materials Inflammatory anti-inflammatory effects [150]

Hyaluronic acid (HA)

Dependent upon the molecular weight
(MW) of HA; high-MW HG was shown to

be inert or immunosuppressive, and
lower-MW HA provoked the inflammatory

response

[151–154]

Decellularized matrices Anti-inflammatory [155–159]

Engineered ECM peptide-mimetic
materials

Both anti-inflammatory and inflammatory
responses [160–166]

 
Figure 6. Schematic representation of ECM–immune cell interactions. Interactions include the LAIR1–
collagen interaction that inhibits inflammatory signaling, matrix metalloproteinases (MMPs) that 
drive matrix degradation at cleavage motifs, and RGD (Arginylglycylaspartic acid) that facilitates 
cellular adhesion to ECM via integrin binding [150]; Copyright 2019, John Wiley and Sons. 

4. Conclusions 

Several studies have been conducted to investigate the impact of scaffold materials on stem cell 
function. Synthetic as well as natural polymer scaffolds provide suitable microenvironments to the 
cells, enabling better attachment, proliferation, and differentiation. Modifications of natural or 
synthetic polymer scaffolds are required to meet the desired criteria of an ECM for enhanced cellular 
responses. Notably, better cell attachment, proliferation, and differentiation were observed on rough 
surfaces of scaffolds compared to smooth surfaces. In this review, we have described different kinds 
of scaffolds and their impact on stem cell activities. We hope that scaffold materials will become very 
practical and attractive tools for regenerative tissue engineering. 
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Figure 6. Schematic representation of ECM–immune cell interactions. Interactions include the
LAIR1–collagen interaction that inhibits inflammatory signaling, matrix metalloproteinases (MMPs)
that drive matrix degradation at cleavage motifs, and RGD (Arginylglycylaspartic acid) that facilitates
cellular adhesion to ECM via integrin binding [150]; Copyright 2019, John Wiley and Sons.
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4. Conclusions

Several studies have been conducted to investigate the impact of scaffold materials on stem
cell function. Synthetic as well as natural polymer scaffolds provide suitable microenvironments to
the cells, enabling better attachment, proliferation, and differentiation. Modifications of natural or
synthetic polymer scaffolds are required to meet the desired criteria of an ECM for enhanced cellular
responses. Notably, better cell attachment, proliferation, and differentiation were observed on rough
surfaces of scaffolds compared to smooth surfaces. In this review, we have described different kinds of
scaffolds and their impact on stem cell activities. We hope that scaffold materials will become very
practical and attractive tools for regenerative tissue engineering.
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