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COVID‑19 waves: variant dynamics 
and control
Abhishek Dutta

The waves of COVID‑19 infections driven by its variants continue to nullify the success we achieved 
through efficacious vaccines, social restrictions, testing and quarantine policies. This paper models 
the two major variants‑driven waves by two sets of susceptible‑infected‑quarantined‑recovered‑
vaccinated‑deceased coupled dynamics that are modulated by the three main interventions: 
vaccination, quarantine and restrictions. This SI2Q2

R
2

VD system is used to demonstrate that the 
second major novel coronavirus wave in the US is caused by the delta variant and the corresponding 
rapid surge in infectious cases is driven by the unvaccinated pool of the populace. Next, a feedback 
control based planned vaccination strategy is derived and is shown to be able to suppress the surge in 
infections effectively.

The major waves of COVID-19 infections, after the initial onset, are largely caused by the emerging variants 
of  concern1. They prolong the persistence of infections inflicting loss to human lives, economies and continue 
to strain the public health  infrastructure2. The development of highly efficacious vaccines against COVID-19 
and its variants have indeed proven to be effective in averting symptomatic infections and  illnesses3. However, 
despite the availability of these vaccines and repurposed antiviral  therapies4, the recent COVID-19 wave of 
infections have wreaked havoc. Recent studies have analyzed the second surge behavior of COVID-19 in the 
US  states5 and associated mortality in the US and  Europe6. The alarming rise of novel coronavirus variants 
necessitates genomic surveillance for early anticipation and initiation of mitigation strategies to contain such 
 outbreaks7 . Problems connected with vaccine hesitancy and the availability and distribution of vaccines in the 
poorest countries must be countered with systematic vaccination policies and  plans8,9. Therefore, it is important 
to mathematically and objectively analyze the underlying factors that fuel these subsequent surges in infections 
and possible mitigation strategies.

Nonlinear dynamical models involving some combination of susceptible/S, infected/I, recovered/R together 
with some additional compartments have been utilized to predict the initial evolution of this  pandemic10,11. 
Early mitigation strategies based on feedback control were developed to achieve a decay in infections through 
planned interventions in terms of levels of social  restrictions12 and number of tests and  quarantine13. However, 
once efficacious vaccines were being developed and administered, these models needed to be adapted to include 
the vaccination rates and states. So, age structured vaccinated/V compartments were added to evaluate age group 
prioritized vaccination  strategies14 whereas the effect of two vaccine doses was modeled with two V  states15. Two 
additional states of quarantined/Q and deceased/D were included followed by an ensemble Kalman filter design 
to estimate the evolution of  infections16. A simple SIR model plus exposed/E state with prophylactic and thera-
peutic interventions was considered to analyze the stability of the  pandemic17. A similar model was simulated 
with stochastic transmission and recovery  rates18 and analyzed in a discrete time setting with auto-regressive 
transmission  rate19.

Early optimal control based vaccine administration by minimizing number of infections over a time horizon 
have been formulated with constraints on daily vaccination  rate20. Optimal control strategy based on age-struc-
tured  administration21 and together with regional  dynamics22 were also explored. Optimal vaccination polices 
that aim to decrease the reproduction number were  examined23 together with the addition of plasma transfusion 
as control  variable24. However, this body of work did not consider the added complexities posed by the emergent 
variants of SARS-CoV-2. Some of the recent work that consider variants include multiple transmissions rates 
corresponding to the different  strains15 and use multiple sets of SIRV states to track the evolution of the respec-
tive viral infection strains and analyze  stability25. Optimal control has recently been applied to variant models 
to compute an effective restriction  policy26,27.

In spite of these developments, what is lacking is a systemic analysis of the major waves, their underlying 
cause and an effective mitigation policy. In this paper, a SI2Q2R2VD system is introduced to explain the evolution 
of the two variants and establish the delta variant as the driver of the second major wave in the US (peaking in 
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September, 2021). The variant-specific rates of transmission, along side recovery, mortality, test and quarantine, 
vaccination rates are all learnt from reported  data28 for the US during January 22, 2020 to November 30, 2021 
by gradient-free stochastic optimization. From here, the unvaccinated pool of people driving the second wave 
of surge in infections is established. Finally, feedback control based planned vaccination strategies are shown to 
be able to suppress the number of cases and mortality along with the duration of the pandemic.

Methods
The initial havoc caused by the novel coronavirus in terms of mortality, mental and economic health in the year 
2020 was coming under control by the development and administration of efficacious vaccines through early 
2021, until the devastation caused by the emerging variants of interest. Therefore, the epidemic models, controls 
and analysis which revolve around a single strain need to be adapted to explain the recurrent waves associated 
with the dominant strains.

Variant dynamics. Here, the SI2Q2R2VD nonlinear coupled dynamical system is introduced to model the 
two dominant variants and associated waves in the US, see Fig. 1. The susceptible/S can be infected initially by 
the dominant strain with a rate of transmission βt and later with the other dominant variant with a multiplier 
βv to accommodate more/less infectious nature of the second variant, to end up in the infected pools I1, I2 
respectively. These infected are actively tested and quarantined with rate τ and pushed to compartments Q1,Q2 , 
respectively.

Meanwhile, the infected and quarantined populace can recover with rate ρ to end up in R1,R2 correspond-
ing to dominant strains 1, 2 respectively. Vaccines are actively administered at rate αf  to the susceptible and 
recovered, who then make up the vaccinated/V compartment. Those who succumb to the disease move from 
quarantine to deceased/D with mortality rate δ . The key here is that this model accommodates the fact that peo-
ple who recover from the alpha strain and remain unvaccinated can be infected by the second strain. The full 
SI2Q2R2VD system is formulated through equations (1)–(9), with N the total population.

(1)Ṡ = −(1− αf )
βtS(I1 + I2βv)

N
− αf S

(2)İ1 = (1− αf )
βtSI1

N
− (τ + ρ)I1

(3)İ2 = (1− αf )
βt(S + R1)I2βv

N
− (τ + ρ)I2

(4)Q̇1 = τ I1 − (ρ + δ)Q1

Figure 1.  The SI2Q2R2VD dynamics governed by βt ,βv ,αf , τ , ρ, δ rate parameters.
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Note that, the baseline rate of transmission βt needs to be time-varying to reflect continued gradual relaxa-
tion of social restrictions after imposing a severe lockdown, that can be accommodated by a sigmoid function 
of (18) with lower, upper limits of β , β̄ respectively. Since the vaccines and delta variant were introduced in the 
middle of the pandemic, they can be modeled by step functions of (19) with v, f denoting the respective start of 
the delta variant and fully vaccinated individuals. The disease free equilibrium/DFE can be obtained by equating 
all the derivatives in (1)–(9) to the zero vector, to be

where the superscript ·0 denotes the DFE. The time-varying rates of reproduction of the variants, R0
t  (alpha 

variant) during the first wave and Rv
t  (delta variant) during the second wave, can be derived from (16) to be

with the overall time-varying rate of reproduction of the pandemic given by Rt = max(R0
t ,R

v
t ).

Parameter tdentification. The SI2Q2R2VD system is modeled as per the set of coupled nonlinear dif-
ferential equations of (1)–(9) with I1,Q1,R1 and I2,Q2,R2 corresponding to the two major variant-driven waves. 
The reported number of confirmed cases, recovered, fully vaccinated and deceased over the span of the pan-
demic are recorded in vectors Ir ,Rr ,Vr ,Dr respectively from the Johns Hopkins public  repository28. The various 
underlying epidemic rate and intervention parameters are learnt from this data by solving the optimization 
problem of (13) that minimizes its difference to the model predictions,

constrained to the dynamics of the SI2Q2R2VD system (1)–(9), where the output of the integrals are computed 
daily ·|d and || · ||22 are the squared l2 norm. The limit of integration for infections, deceased and fully vaccinated 
run through the span of the pandemic or the interval of analysis T. The lack of recovery data after Tr is reflected 
by the corresponding upper limit. The minimization problem of (13) being constrained to the underlying non-
linear dynamics of the SI2Q2R2VD system of (1)–(9), makes it hard to compute the gradient of the cost func-
tion J analytically. Therefore, a derivative-free stochastic optimization technique based on Nelder and  Mead29 
based on evolving simplexes of solutions is used to find the best set of rate parameters β , β̄ , v,βv ,αf , τ , ρ, δ , the 
algorithm follows: 

Initialize:  An n+ 1 dimensional simplex is formed around the seed value of p = [β , β̄ , v,βv ,αf , τ , ρ, δ] , with 
associated cost J(p) from (13). Here, the number of dimensions n = 8.

Order:  Evaluate the cost function at vertices by numerically integration and sort J(p1) ≤ . . . J(pn) ≤ J(pn+1) 
and compute the centroid p0 = 1

n

∑n
1 pi.

Terminate:  If standard deviation of simplex vertices is within specified tolerance, output optimal set of param-
eters as p∗ = p1.

Reflect:  Compute pr = p0 + η(p0 − pn+1) with η > 0 . If J(p1) ≤ J(pr) < J(pn) , then pn+1 = pr , go to 
Order.

Expand:  If J(pr) < J(p1) , then pe = p0 + µ(pr − p0) . Further if J(pe) < J(pr) , then pn+1 = pe and go to 
Order, else pn+1 = pr and go to Order.

Contract:  Here J(pr) ≥ J(pn) , so pc = p0 + ρ(pn+1 − p0) . Further if J(pc) < J(pn+1) , then pn+1 = pc and 
go to Order.

Shrink:  Here J(pc) > J(pn+1) , replace pi = p1 + σ(pi − p1) for all i ∈ [2, n+ 1] and go to Order.

(5)Q̇2 = τ I2 − (ρ + δ)Q2

(6)Ṙ1 = ρ(I1 + Q1)− αf R1 − (1− αf )
βtR1I2βv

N

(7)Ṙ2 = ρ(I2 + Q2)− αf R2

(8)V̇ = αf (S + R1 + R2)

(9)Ḋ = δ(Q1 + Q2)

(10)
DFE ≡ {S0, I01 , I

0
2 ,Q

0
1,Q

0
2,R

0
1,R

0
2,V

0
,D0} ∈ R9

+ : I01 = I02 = Q0
1 = Q0

2 = 0, S0 + R0
1 + R0

2 + V0 + D0 = N ,

(11)R
0
t =

(1− αf )Sβt

(ρ + τ)N
,

(12)R
v
t =

(1− αf )βt(S + R1)βv

(ρ + τ)N
,

(13)

min
{a,b,v,βv ,αf ,τ ,ρ,δ}∈R

8
+

J = ||τ

∫ T

0

(I1 + I2)dt|d − Ir ||
2
2 + ||

∫ Tr

0

Rdt|d − Rr ||
2
2 + ||

∫ T

T
Vdt|d − Vr ||

2
2 + ||

∫ T

0

Ddt|d − Dr ||
2
2,
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 Note η,µ, ρ, σ are respectively the reflection, expansion, contraction and shrink coefficients and their standard 
values are η = 1,µ = 2, ρ = 0.5, σ = 0.5 . The algorithm terminates with the optimized values of the SI2Q2R2VD 
parameters p that justify the recorded observations.

Controlled vaccination. Here the aim is to find a model based feedback control strategy that leads to a 
steady decrease in number of infections by systematically modulating the daily rate of fully vaccinated. The 
dynamics of the infectious variants can be written in a matrix form as follows

Now consider a positive semi-definite function V equivalent to the energy of the infectious pandemic,

which is positive everywhere in R2 except at the DFE where it has 0 energy. Therefore, in order to stop the epi-
demic, a series of control actions must be executed that asymptotically reduce this infectious energy to 0 thus 
stabilizing at the DFE. This is equivalent to setting the gradient of the energy V to be negative semi-definite to 
obtain,

which is negative everywhere in R2 except at the DFE where it is 0. The two eigenvalues of the coefficient matrix 
in (16) appear on its main diagonal and correspond to the dynamics of the primary and the delta variant of the 
pandemic in the US. In order to enforce the negativity condition on both, the time-varying controlled vaccina-
tion rate parameter αf  must be given by (17) that asymptotically stabilizes the pandemic.

This ensures the respective rate of reproductions are less than 1 so that the net infections decelerate; if not, 
they keep rising.

Results
The COVID-19 pandemic dynamics are modeled by the SI2Q2R2VD system of (1)–(9) as a basis for analyzing 
the evolution of the two dominant waves in the US largely driven by the dominant variants of SARS-CoV-2. We 
refer to the large spike in reported cases in January 2021 as the first major wave in the US and the large spike in 
reported cases in September 2021 as the second major wave in the US. The intervention parameters are learnt 
from the reported data on daily  cases28 and used to interpret the two major waves to be driven by the two major 
variants and the unvaccinated pool of people driving the second surge in infections.

Model analysis. The baseline transmission rate βt is designed by the following sigmoid function,

The rates of fully vaccinated and delta variant are modeled by the following step function,

The nine states of the SI2Q2R2VD system {S, I1, I2,Q1,Q2,R1,R2,V ,D} , with non-negative initial conditions, 
always evolve with non-negative values and belong to R9

+ . This follows from the property that Ṡ ≥ 0 when initial 
S0 = 0 in Eq. (1). Similarly {İ1, İ2, Q̇1, Q̇2, Ṙ1, Ṙ2, V̇ , Ḋ} ≥ 0 for their initial values {I01 , I

0
2 ,Q

0
1,Q

0
2,R

0
1,R

0
2,V

0,D0} = 0 
substituted out their respective differential equations of (2)–(9). Summing equations (1)–(9) yields 
Ṡ + İ1, İ2, Q̇1, Q̇2, Ṙ1, Ṙ2, V̇ , Ḋ = 0 , which implies the solutions of the SI2Q2R2VD system are invariant in the 
set given by {S, I1, I2,Q1,Q2,R1,R2,V ,D} ∈ R9

+ : S + I1 + I2 + Q1 + Q2 + R1 + R2 + V + D = N.
Note that although, we have used the same mortality rate for both the variants, distinct ones can be easily 

incorporated in the model, if necessary.

System identification. The unknown parameters of the SI2Q2R2VD system include β , β̄ , v,βv ,αf , τ , ρ, δ 
and are to be learned from the publicly available reported  cases28. Daily cumulative infections and number of 
recovered, deceased and fully vaccinated between January 22, 2020 to November 30, 2021 are recorded in vec-
tors Ir ,Rr ,Vr ,Dr respectively. Now, the best set of pandemic parameters are the ones for which the SI2Q2R2VD 
model predictions most closely match the reported cases. The minimization problem of (13) is constrained to 
the coupled dynamics of the nonlinear SI2Q2R2VD equations (1)–(9), that cannot be integrated analytically, 
hence neither could the gradients of the cost function be computed. Therefore, a derivative free stochastic opti-
mization technique of Nelder and  Mead29 is adapted to solve the nonlinear optimization problem. The results 
plotted in Fig. 2 show a very good match between the SI2Q2R2VD model predictions and the reported data in 
terms of infected, recovered, vaccinated and deceased. Besides finding the baseline time-varying sigmoid trans-

(14)
(

İ1
İ2

)

=

(

(1− αf )
βt S
N − (τ + ρ) 0

0 (1− αf )
βt (S+R1)βv

N − (τ + ρ)

)

(

I1
I2

)

.

(15)V = (I1, I2)
T · (I1, I2) � 0

(16)V̇ = (I1 I2)

(

2(1− αf )
βt S
N − 2(τ + ρ) 0

0 2(1− αf )
βt (S+R1)βv

N − 2(τ + ρ)

)

(

I1
I2

)

� 0,

(17)αf ≥ max(1−
(ρ + τ)N

βtS
, 1−

(ρ + τ)N

βt(S + R1)βv
)

(18)βt = ((β + β̄)+ (β̄ − β) ∗ tanh((t − 300)/100))/2.

(19)αf ,βv ∈ R+
0 : αf = 0, ∀t < f ,βv = 0, ∀t < v.



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9332  | https://doi.org/10.1038/s41598-022-13371-2

www.nature.com/scientificreports/

mission parameters and the test/quarantine, recovery and death rates, it also deduces the start and rate of the 
second major wave and projects the recovered cases for the rest of 2021 where no data was available.

Analysis of waves and variants. Based on the optimal set of parameters β , β̄ , v,βv ,αf , τ , ρ, δ learnt for 
the SI2Q2R2VD system that match the reported data on number of cumulative infections, recovered, vaccinated 
and deceased, these very variables are now seamlessly projected into the future to track their evolution. These 
results are plotted in Fig. 3 and give us an immediate sense of the course of the pandemic with the current rates 
of transmission, recovery and mortality and current rate of interventions of vaccination alongside continuous 
test and quarantine. Next we want to leverage the development of the SI2Q2R2VD system together with the opti-
mized set of parameters β , β̄ , v,βv ,αf , τ , ρ, δ to motivate the necessity of the delta variant to drive the second 
wave. To do so, all the nine states including susceptible, vaccinated, deceased and the two sets of infected, quar-
antined, recovered of (1)–(9) are solved for by inserting the optimized rates of transmissions, test/quarantine, 
recovery, vaccination and mortality. The two distinct waves are now clear from the results plotted in Fig. 4. A 
careful examination reveals that the alpha infectious variant I1 is the driver for the first wave and its delta variant 
I2 is the driver for the second wave. The reason can be noted from the rate of reproductions of the two variants 
plotted in Fig. 5, with R0

t > 1 (alpha variant) during the first wave and Rv
t ≫ 1 (delta variant) during the sec-

ond wave. Further, the impossibility of the alpha variant causing a second major wave stems from the fact that, 
beyond the first major wave, the minimum number of susceptible/S are insufficient to cause a surge,

Figure 2.  The SI2Q2R2VD system response with optimized parameters β , β̄ , v,βv ,αf , τ , ρ, δ closely matches 
the reported COVID-19 data.

Figure 3.  The SI2Q2R2VD system projections with optimized parameters β , β̄ , v,βv ,αf , τ , ρ, δ learned over 
historical COVID-19 data.
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(M stands for million) as evident from the low numbers of S in Fig. 4 during the year 2021. The inequality itself 
is derived from the condition on reproduction rate (11). Also, the highly contagious nature of the delta variant, 
widely reported in  literature30 can be verified through Fig. 5.

Wave of unvaccinated. Now that we demonstrated the second wave could not have been caused by the 
alpha strain of SARS-CoV-2 and that another variant, in this case delta was necessary, the next step is to rea-
son out what caused this surge in spite of administration of efficacious vaccines. Note that during the surge of 
infections causing the second wave, the susceptible/S alone could not have caused it as explained through (20). 
The only other possibility entails addition of the large pool of people that recovered from the alpha strain but 
remained unvaccinated i.e. R1 , which then satisfies the condition,

(20)S ≯
(ρ + τ)N

(1− αf )βt
≈ 13M.

(21)S + R1 ≫
(ρ + τ)N

(1− αf )βtβv
≈ 13M.

Figure 4.  The optimized SI2Q2R2VD system reveals the underlying dynamics of the two major variant-driven 
waves.

Figure 5.  The time-varying rate of reproduction for the two dominant variants reveals a delta wave to be more 
contagious.
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derived from the condition on variant reproduction rate (12). Indeed, the growth of R1 is supported by the 
investigation in Fig. 5, which follows from the flow in Fig. 1. However, an increase in the rate of vaccination 
uptake would certainly have reduced the R1 pool, pushing them to fully vaccinated/V pool, thereby decreasing 
variant reproduction rate Rv

t  and its corresponding surge. Finally the optimized set of pandemic parameters 
β , β̄ , v,βv ,αf , τ , ρ, δ can be used to project the possible course of the pandemic in the US by integrating the 
SI2Q2R2VD system of (1)–(9). The results are plotted in Fig. 6.

Note that this analysis also justifies the usage of same rate of infection by the second variant of susceptible 
and those that recovered from the first strain, as the number of recovered gradually outnumber the susceptible; 
therefore, adding another parameter may just further complicate the optimization problem.

Discussion
The SI2Q2R2VD system projections based on optimized parameters β , β̄ , v,βv ,αf , τ , ρ, δ obtained by derivative-
free stochastic optimization matched well with the recorded data as seen in Figs. 2 and 3. Further, with this as 
basis, two crucial properties: the necessity of the two major variants driving the two major waves and the growing 
population of recovered from the alpha strain who remained unvaccinated driving the second surge in infections 
were proven through Eqs. (20)–(21) and supported by Figs. 4 and 5. The very high number of mortality caused 
by the the major waves are evident from Fig. 6 and is a matter of grave concern. The question naturally arises, 
if it was possible to suppress the second wave in particular, thereby reducing the fatalities, by systematically 
modulating the vaccine administration.

The answer lies in systematically regulating the daily rate of fully vaccinated by using the principles of feed-
back control. A time-varying control law αf  is derived in (17), that guarantees a negative gradient of the infectious 
energy of the pandemic, asymptotically leading to disease free equilibrium/DFE. During the first major wave, 
R

0
t  corresponding to the alpha strain will dominate and during the second major wave Rv

t  corresponding to the 
delta strain will dominate.

In the first scenario, this control law αf  is applied to the SI2Q2R2VD pandemic system in the early stages 
of the second wave (July 2021), reacting to the widely detected emergence of the delta variant, when vaccines 
were widely made available. From the results plotted in Fig. 7, one can conclude that the second wave could be 
largely avoided leading to a substantial decrease in mortality (reduction by 3M). The time-varying control of 
αf  suggests a higher percolation of rate of fully vaccinated/V as a necessary step towards attaining the target of 
suppressing the second wave.

In the next scenario, a time-invariant controlled vaccination rate parameter αf  can be derived from (17) that 
considers the supremum of the time-varying policies to give (22) where βv ≥ 1 and β̄ corresponds to maximum 
transmission with no social restrictions.

The results plotted in Fig. 8 reveal that this feedback control based vaccination approach, even with a delayed 
application (from August 2021), could suppress the peak of the second wave leading to reduced mortality (reduc-
tion by 2M). A comparison of Figs. 7 with 8 reveals the importance of timing of adopting feedback control based 
vaccination policy i.e. early application can suppress the pandemic wave more effectively and save many more 
lives.

(22)αf = 1−
(ρ + τ)

β̄βv

Figure 6.  The optimized SI2Q2R2VD system projections reveal the evolution of the variant-driven waves.
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