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Lung cancer is the most common cancer worldwide, leading to
highmortality each year. Metabolic pathways play a vital role in
the initiation and progression of lung cancer. We aimed to
establish a prognostic prediction model for lung adenocarci-
noma (LUAD) patients based on a metabolism-associated
gene (MTG) signature. Differentially expressed (DE)-MTGs
were screened from The Cancer Genome Atlas (TCGA)
LUAD cohorts. Univariate Cox regression analysis was per-
formed on these DE-MTGs to identify genes significantly corre-
lated with prognosis. Least absolute shrinkage and selection
operator (LASSO) regression was performed on the resulting
genes to establish an optimal risk model. Survival analysis
was used to assess the prognostic ability of themodel. The prog-
nostic value of the gene signature was further validated in inde-
pendent Gene Expression Omnibus (GEO) datasets. A gene
signature with 13metabolic genes was identified as an indepen-
dent prognostic factor. Kaplan-Meier survival analysis demon-
strated the good performance of the risk model in both TCGA
training and GEO validation cohorts. Finally, a nomogram
incorporating clinical parameters and the metabolic gene
signature was constructed to help individualize outcome pre-
dictions. The calibration curves showed excellent agreement
between the actual and predicted survival.

INTRODUCTION
Lung cancer is the most prevalent cancer in the world. Non-small cell
lung cancer (NSCLC), including adenocarcinoma, squamous cell car-
cinoma, bronchioloalveolar carcinoma, and large cell carcinoma,
comprises 85% of primary lung cancer cases. It is estimated that 1.4
million patients die of lung cancer each year, the mortality of which
is among the highest of all types of cancers.1 The major reason for
the high mortality is that lung cancer is diagnosed at advanced stages
in themajority of patients. Traditional prognostic approaches, such as
histopathological diagnosis and tumor staging systems, have limited
usefulness, and early detection continues to be an elusive goal.
With the development of biomedical technology in recent years, we
have obtained a better understanding of tumor biology.
Molecular Th
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Metabolism refers to the ordered chemical reactions that occur in an
organism to sustain life. Metabolic pathways show evolutionarily
conserved features in cells. Past studies have revealed that the integra-
tion of metabolic pathways with diverse signal transduction pathways
plays a central role in many disorders.2 Otto Warburg first proposed
the concept of metabolic reprogramming in solid tumors in 1924.3

With advances inmodern science, we have gone further in the research
area of the intersections between metabolism and tumor biology.
Transformed cells adapt their metabolism to support the biological
process of neoplasia. Specific metabolic pathways directly participate
in transformation and tumor progression. The blocking of these path-
ways or restoration of altered metabolic pathways has been proven to
be promising therapeutic target strategies.4 The phosphatidylinositol
3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapa-
mycin (mTOR) and mitogen-activated protein kinase kinase (MEK)/
extracellular-regulated protein kinase (ERK)/50 AMP-activated protein
kinase (AMPK) pathways participate in the metabolic reprogramming
of lung cancer, affecting endogenous fatty acid metabolism, glycolysis,
and the tricarboxylic acid cycle and activating the proliferation, inva-
sion, and metastasis of lung cancer as a result.5,6 Metabolic reprogram-
ming is becoming an important feature of tumor biology.

Metabolism is a complicated process involving multiple genes. A
model based on multiple metabolism-related genes should perform
better than a single gene in prognosis prediction. With the develop-
ment of large-scale genome sequencing technologies, the integration
of prognosis-associated gene signatures and traditional clinical pa-
rameters show advantages in improving the accuracy of early
diagnosis for cancers. In this study, we screened prognosis-related
metabolic genes from The Cancer Genome Atlas (TCGA) lung
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adenocarcinoma (LUAD) cohorts, the most common histological
subtype of primary lung cancer. A metabolism-related multiple
gene signature was established, and its prognostic value was validated
in LUAD patients. We also constructed a nomogram based on the
integration of the metabolic gene signature and clinical characteristics
to predict individual overall survival (OS). In conclusion, our work
might contribute to the early diagnosis of LUAD patients.

RESULTS
Identification of Differentially Expressed (DE)-Metabolism-

Associated Genes (MTGs) and Functional Analysis

We conducted our study as illustrated in the flow chart (Figure 1).
TCGA cohorts consisted of 499 LUAD patients with survival statistics
(Table S1). The Kaplan-Meier (K-M) survival curves and log-rank
test for clinicopathological parameters, including tumour (T), node
(N), metastasis (M), and overall stage, are shown in Figure S1. A total
of 1,857 MTGs with a relevance score >8 was identified from the
GeneCards website, 86 of which were DE in TCGA cohorts, as shown
in the volcano plot (Figure 2A). The intersection of DE genes (DEGs)
and MTGs is visualized in a Venn diagram (Figure 2B).

These 86 DE-MTGs were selected for functional analysis, including
Gene Ontology and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analysis. In the KEGG pathway analysis, the DE-MTGs were
mainly enriched in malaria, the peroxisome proliferator-activated re-
ceptor (PPAR) signalingpathway, and the advancedglycation endprod-
uct (AGE)-receptor for AGE (RAGE) signaling pathway in diabetic
complications (Figure S2A). GeneOntology revealed that in the cellular
component category, the DE-MTGs weremainly enriched in the apical
plasma membrane, apical part of the cell, and membrane raft (Fig-
ure S2B). In biological processes, the DE-MTGs were mainly enriched
in transcytosis, regulation ofmonocyte extravasation, andpositive regu-
lation of dendritic cell differentiation (Figure S2C). Regarding molecu-
lar function, the DE-MTGs were mainly enriched in amide binding,
peptide binding, and amyloid-beta binding (Figure S2D).

Construction of a Prognostic Gene Signature in TCGA Training

Cohorts

Univariate Cox regression analysis identified 37 DE-MTGs signifi-
cantly associated with OS (Figure 2C; risk genes are in red and pro-
tective genes in green). The differential expression of these genes be-
tween normal subjects and LUAD patients is visualized in Figures 2D
and 2E. These significant genes were subjected to least absolute
shrinkage and selection operator (LASSO) Cox regression analysis
to construct the prognostic model. The calculation of the regression
coefficient is visualized in Figure 3A. The prognostic model per-
formed best when 13 genes were included (Figure 3B). The functions
of the genes in the prognostic gene signature involved glycometabo-
lism, lipid metabolism, and vitamin metabolism (Table 1).

We checked the genetic alterations of the 13 genes in TCGA cohorts
via the cBioPortal for Cancer Genomics (http://www.cbioportal.org/)
website. These genes were altered in 119 (23%) of 507 patients in the
PanCancer Atlas for the LUAD dataset (Figure 3C). The Firehose
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Legacy for the LUAD dataset also showed that 54 (23%) of the 230
queried patients had a mutation in these genes (Figure S3A). In the
larger dataset of Nat Genet 2016 for NSCLC, which contains 1,144 pa-
tients, these genes were altered in 304 (27%) patients (Figure S3B).
The frequent mutations, to some extent, indicated the contribution
of these genes to the development of tumors. We also checked the ge-
netic alterations of the prognostic genes in six other different cancer
types, including breast-invasive carcinoma (BRCA), cervical squa-
mous cell carcinoma and endocervical adenocarcinoma (CESC),
pancreatic adenocarcinoma (PAAD), skin cutaneous melanoma
(SKCM), stomach adenocarcinoma (STAD), and liver hepatocellular
carcinoma (LIHC). These genes also showed frequent mutations in
the other cancer types: 179 (18%) of the 996 BRCA patients, 43
(15%) of the 278 CESE patients, and 62 (18%) of the 353 LIHC pa-
tients had a mutation in these genes; 16 (9%) of the 175 PAAD pa-
tients, 187 (52%) of the 363 SKCM patients, and 117 (27%) of the
434 STAD patients showed gene alterations (Figure S4).

A prognostic risk score for each patient was calculated based on the
mRNA expression levels of the 13 genes and the coefficients from
LASSO Cox regression analysis. We performed univariate and multi-
variate Cox regression analyses to evaluate the prognostic value of the
risk score. Univariate Cox regression analysis revealed that the risk
score (p < 0.001, hazard ratio [HR] = 4.035, 95% confidence interval
[CI] = 2.828–5.759) and clinicopathological parameters, including T
stage (p < 0.001, HR = 1.544, 95%CI = 1.281–1.862), N stage (p <
0.001, HR = 1.744, 95%CI = 1.457–2.088), M stage (p = 0.024,
HR = 1.917, 95%CI = 1.088–3.380), and overall stage (p < 0.001,
HR = 1.611, 95%CI = 1.396–1.859), were significantly associated
with OS in TCGA LUAD cohorts. Multivariate Cox regression anal-
ysis proved the risk score to be an independent prognostic variable
(p < 0.001, HR = 3.639, 95%CI = 2.510–5.277).

The distribution of the risk scores and the correlation between the
risk scores and survival data are illustrated in scatterplots (Fig-
ure 4A). The patients were divided into a low-risk group and
high-risk group, according to the median value of the risk scores
in TCGA LUAD cohorts. The gene-expression profiles of the prog-
nostic risk genes between the high-risk group and low-risk group are
displayed in the heatmap in Figure 4B. K-M survival analysis re-
vealed a significantly higher survival probability in the low-risk
group (p < 0.0001) (Figure 5A). The area under the receiver oper-
ating characteristic (ROC) curve (AUC) of the risk scores for the sur-
vival probability at 1, 2, 3, 4, and 5 years is displayed in Figure 5B.
The maximum AUC value reached 0.72, which indicated good sensi-
tivity and specificity.

Evaluation of the Prognostic Gene Signature in Independent

Gene Expression Omnibus (GEO) Validation Cohorts

To validate the prognostic value of the risk score, the GEO validation
cohorts were divided into high- and low-risk groups, according to the
same cut-off value of TCGA cohorts. The distribution of the risk
scores and the correlation between the risk scores and survival data
of Okayama’s cohort are illustrated in Figure 4C. The same

http://www.cbioportal.org/


Figure 1. The Flow Chart Summarizes the Scheme Performed to Construct Prognostic Gene Signatures of Lung Adenocarcinoma (LUAD)
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scatterplots of Rousseaux’s cohort are displayed in Figure 4E. The
gene-expression profiles of the two cohorts are visualized in Figures
4D and 5F. Okayama’s cohort included 226 patients with pathological
stage I–II LUAD. The K-M survival curves revealed a higher survival
probability of the low-risk group (p = 0.0011) in this validation cohort
(Figure 5C), the maximum AUC of which reached 0.83 (Figure 5D).
Rousseaux’s cohort consisted of 292 patients with pathological stage
I–IV lung cancer, including 71 adenocarcinomas and other different
kinds of lung cancers. The prognostic gene signature also performed
well in this mixed lung cancer validation cohort (p < 0.0001,
maximum AUC = 0.64) (Figures 5E and 5F). In general, the 13 meta-
bolic gene-based prognostic signature was proven to be valuable in
risk stratification.

Similar approaches were used to evaluate the specificity of this prog-
nostic gene signature in six different types of cancer, including BRCA,
CESC, PAAD, SKCM, STAD, and LIHC, in TCGA cohorts. Among
these cancers, the low-risk groups in the LIHC (p = 0.046) and
Molecular Therapy: Oncolytics Vol. 19 December 2020 267
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PAAD (p = 0.011) cohorts were consistently associated with higher
survival probability using the K-M analysis (Figure S5).

We predicted transcription factor (TF) for our gene signature via
the ChEA3 (https://amp.pharm.mssm.edu/chea3/) website. The
top 10 TFs were listed in Table S2. Forkhead box M1 (FOXM1), fol-
lowed by tumor protein p73 (TP73), and cyclic AMP (cAMP)-
responsive element-binding protein 3-like 4 (CREB3L4) were pre-
dicted to be the most related. The protein-protein interaction
(PPI) network was constructed and visualized by STRING
(Figure S6A).

Construction of the Nomogram

The nomogram is an efficient tool that integrates multiple risk factors
for clinical application. We established a nomogram for the predic-
tion of 3-year and 5-year OS in TCGA LUAD cohorts. Seven indepen-
dent risk factors, including age, sex, stage, T stage, M stage, N stage,
and metabolism signature, were included in the model (Figure 6A).
The points of the factors indicate their corresponding contribution
to the survival probability. The total points of each patient provided
the estimated 3-year and 5-year survival times. The C-index of our
nomogram was 0.702 (95%CI = 0.679–0.724). The actual OS and
nomogram-predicted OS matched well at 3 years and 5 years, as
shown by the calibration curves (Figures 6B and 6C).

Exploration of Signaling Pathways

Gene set enrichment analysis (GSEA) has an advantage in exploring
the involved signaling pathways from an overall perspective. GSEA
revealed that the genes in the high-risk group of TCGA cohorts
were significantly enriched in the cell cycle (normalized enrichment
score [NES] = 2.43, p < 0.01), P53 signaling pathway (NES = 2.26,
p < 0.01), pyrimidine metabolism (NES = 2.24, p < 0.01), and protea-
some (NES = 2.24, p < 0.01). In contrast, the low-risk group genes
were significantly enriched in pathways, such as vascular smooth
muscle contraction (NES = �1.84, p = 0.008), aldosterone-regulated
sodium reabsorption (NES = �1.84, p = 0.008), asthma (NES =
�1.82, p = 0.036), and primary bile acid biosynthesis (NES =
�1.67, p = 0.020) (Figure 6D).

Immunohistochemistry Staining of Representative Prognostic

Genes

To validate the protein expression of the prognostic gene signature,
we performed immunohistochemical analysis on the top 4 genes of
Table 1 using lung biopsies. The characters of patients enrolled
were illustrated in Table S3. Solute carrier family 2-facilitated glucose
transporter member 1 protein (SLC2A1) expression was increased in
NSCLC and SCLC lung biopsies. PCSK9 and ABCC2 were weakly
positive in lung biopsies of lung cancer. Klotho (KL) was not detected
in NSCLC or SCLC lung tissues (Figure 7).
Figure 2. Identification of Differentially Expressed (DE)-MTGs and Selection of

(A and B) Volcano plot (A) and Venn diagram (B) of the 86 DE-MTGs in the LUAD coho

MTGs. (D and E) Expression levels of survival-related genes in tumor and normal tissues

eighteen genes in E panel.
Analysis of Gene Expression at the Single-Cell Level

Thienpont and coworkers7 identify 52 different stromal cell subclus-
ters within seven major cell types in the lung tumor microenviron-
ment. To further verify the expression of these gene signatures in
single cells, we applied single-cell RNA sequencing (RNA-seq) data-
sets for lung cancer. As Figure S6B illustrated, genes like SLC2A1,
cytochrome P450 4 (CYP4) B1 (CYP4B1), TFAP2A, transcobalamin
1 (TCN1), CDKN3, and TK1 were expressed in most cell types,
whereas FFAR4 mostly expressed in myeloid cells. CAV3 only ex-
pressed in one cell subcluster within fibroblast cells. Genes like
CYP2F1 and SCN1A were expressed at lower levels in specific cell
types.

DISCUSSION
Gene signatures based on specific cell activities, such as the cell cycle,8

autophagy,9 and immune signature,10 show good advantage in
prognosis prediction in cancers. Given the importance of metabolic
processes and the superiority of multiple gene-based models than
single genes, it is reasonable to expect that metabolism-related prog-
nostic models would perform well in cancers.4 To our knowledge,
prognostic gene signatures based on MTGs have not yet been re-
ported in LUAD. In this study, we found 86 DE-MTGs from
TCGA LUAD cohorts, 37 of which were significantly associated
with survival probability in LUAD patients. Our study focused on
the altered metabolic genes but was not limited to glycolysis-related
genes, as in formal studies.11,12 Then, we established a prognostic
signature with 13 metabolic genes and constructed a new nomogram
that integrated the metabolic signature and clinical parameters. Our
gene signature efficiently stratified patient outcomes in the LUAD co-
horts and was validated in independent datasets. Recently, Liu et al.13

constructed an MTG prognostic model in hepatocellular carcinoma.
The combination of Liu et al.’s13 MTG risk score and clinical param-
eters outperforms the traditional tumour, node and metastasis
(TNM) staging system. However, there are few common genes be-
tween our gene signature and Liu et al.’s,13 suggesting that the meta-
bolic contribution-related genes are tumor specific.

Lung cancers, including LUAD, are heterogeneous, and the prog-
nosis varies even in patients with the same pathological stage:
some fortunately get over the disease, but some are afflicted by
recurrence. There are still aspects of the disease that the staging sys-
tem cannot explain. The elucidation of the molecular method helps
to uncover the underlying mechanisms and predict outcomes. The
identification of the MTG signature shows clinical implications, as
it is significantly related to the outcomes of LUAD patients.
Gene-targeted therapy is a novel treatment that is effective in
some lung cancer patients with gene mutations, but it is expensive.14

Compared to traditional treatments, patients at high risk might
benefit from innovative treatments, such as DNA- and RNA-based
MTGs Associated with the Survival of TCGA LUAD Patients

rts of TCGA database. (C) Forest plot of the univariate Cox regression analysis with

.*p < 0.01, **p < 0.001 and ***p<0.0001. Nineteen genes are shown in D panel and
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Figure 3. The Construction of Metabolic Gene Signature and the Evaluation of Its Independent Prognostic Value

(A) LASSO coefficient profiles of the 37 survival-related genes. (B) A coefficient profile plot was produced against the log (lambda) sequence in the LASSOmodel. The optimal

parameter (lambda) was selected as the first black dotted line indicated. (C) Genetic alteration profiles of the prognostic genes in TCGA LUAD RNA-seq dataset (TCGA,

PanCancer Atlas). (D and E) Forest plots of the (D) univariate and (E) multivariate Cox regression analyses in TCGA LUAD cohorts.
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Table 1. Functions of the Genes in the Prognostic Gene Signature

Number Gene Symbol Full Name Function Risk Coefficient Relevance Score

1 SLC2A1
solute carrier family 2-facilitated glucose
transporter member 1

glucose metabolism-related gene 0.02516 34.97

2 PCSK9 proprotein convertase subtilisin/kexin type 9
plays a role in cholesterol and fatty acid
metabolism

0.06971 33.16

3 KL klotho participates in the carbohydrate metabolic process �0.02761 24.39

4 ABCC2 ATP-binding cassette subfamily C member 2 promotes biliary metabolism 0.06233 21.08

5 CAV3 caveolin 3 glycometabolism-related gene �0.29684 18.03

6 TCN1 transcobalamin 1 vitamin metabolism-related gene 0.07042 14.52

7 CDKN3 cyclin-dependent kinase inhibitor 3 diabetes-related gene 0.07383 13.63

8 FFAR4 free fatty acid receptor 4 participates in insulin sensitizing �0.03365 11.56

9 CYP2F1 cytochrome P450 family 2 subfamily F member 1
catalyzes reactions involved in drug metabolism
and synthesis of lipids

�0.06792 11.49

10 SCN1A sodium voltage-gated channel alpha subunit 1 metabolism-related gene �0.11240 11.4

11 CYP4B1 cytochrome P450 family 4 subfamily B member 1
catalyzes reactions involved in drug metabolism
and synthesis of lipids

�0.02138 10.93

12 TK1 thymidine kinase 1 metabolism-related gene 0.00644 9.53

13 TFAP2A transcription factor AP-2 alpha diabetes-related gene 0.09059 8.53
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therapeutics, whereas those with low-risk gene signatures could
temporarily postpone undergoing those methods. The prognostic
model could contribute to patient classification, support personal-
ized therapeutic strategies in clinical practice for LUAD patients,
and ultimately contribute to reducing mortality.

Despite the limitation of retrospective research, our MTG signature
was validated in two independent cohorts. Our gene signature effi-
ciently stratified patient outcomes even in the mixed cohorts consist-
ing of different kinds of lung cancer. Thus, we believe that the results
we obtained using the MTG signature are reliable. Most of the genes
in our signature have been previously reported to be involved in can-
cers previously. For example, TCN1 regulates the homeostasis of
vitamin B12 as the binding protein. Elevated TCN1 expression has
been reported in breast cancer and hepatocellular carcinoma.15

SLC2A1, also called glucose transporter type 1 (GLUT1), is overex-
pressed in cancers, such as gastric, liver, and lung cancers. The expres-
sion of SLC2A1 is significantly related to the histopathological grades.
Given the role of SLC2A1 in glucose utilization, it is supposed that
overexpressed SLC2A1 meets the great needs of energy, contributes
to the acidification of the tumor microenvironment, and ultimately
promotes the growth and metastasis of tumors.16 Consistent with
our results, KL acts as a suppressive gene in cancers. Downregulated
KL expression has been reported in several types of cancers, including
breast, gastric, bladder, and lung cancer.17 Enzymes in the CYP4 fam-
ily have been implicated in the metabolism of drugs, fatty acids, and
signaling molecules. With the consideration of the role of CYP4 en-
zymes in the maintenance of fatty acid homeostasis, the enzymes
are suggested to be involved in the process of carcinogenesis. As a
member of the CYP4 superfamily of enzymes, CYP4B1 is involved
in tumor angiogenesis.18 Metabolism is a complex process in which
thousands of genes are considered to participate. However, there
has been great expansion of our knowledge of the role of metabolic
pathways in carcinogenesis in recent years. Overall, our metabolic
gene signature might indicate a dysregulated metabolic microenvi-
ronment and reveal targets for the development of therapy in lung
cancer.

Interestingly, functional analysis revealed that the intersection of
metabolic genes and DEGs was mainly associated with malaria.
Lung cancer and malaria seem to be diseases of distinct patterns.
However, there are hidden connections between cancer and human
malaria, which involve a multiplicity of metabolic routes.19 The infec-
tion of malaria is associated with the highly mutated gene in can-
cers—P53.20 GSEA of the high- and low-risk groups in LUAD indi-
cates the involvement of different pathways. Consistent with the
clinical outcome, the high-risk group was mainly enriched in
KEGG pathways significantly related to cancer, including the cell-cy-
cle and P53 signaling pathway, and further discerned the participa-
tion of pyrimidine metabolism, the proteasome, homologous recom-
bination, and mismatch repair. Consistent with Liu et al’s13 results,
the low-risk group was more associated with metabolic pathways,
such as aldosterone-regulated sodium reabsorption and bile acid
biosynthesis. Therefore, we speculate that the competition between
carcinogenic factors and body resistibility results in disturbed meta-
bolic microenvironments. The low-risk group represents the early
period of compensation and might benefit more from metabolism-
related treatment than the high-risk group. These hypotheses need
further investigation.

Moreover, we established a nomogram for clinical-decision support.
A nomogram incorporates assumed risk factors, calculates the
proportion of each factor, constructs and visualizes the statistical pre-
dictive model, and ultimately generates a numerical possibility for
Molecular Therapy: Oncolytics Vol. 19 December 2020 271
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Figure 4. Characteristics of the Risk Score and Heatmap of the Metabolic Gene Signature

(A, C, and E) The distributions of the risk score, survival time, and status of patients in TCGA training cohorts (A), GEO validation set 1, and (C) GEO validation set 2 (E). The

dotted lines indicate the optimal cut-off value between the low- and high-risk groups. (B, D, and F) Heatmap of the gene-expression profiles of themetabolic gene signature in

TCGA training cohorts (B), GEO validation set 1 (D), and GEO validation set 2 (F).
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Figure 5. Kaplan-Meier and Time-Dependent ROC

Analysis of the Prognostic Gene Signature

(A, C, and E) Kaplan-Meier curves of the gene signature in

TCGA training cohorts (A), GEO validation set 1 (C), and

GEO validation set 2 (E). (B, D, and F) The time-dependent

ROC curves of the prognostic gene signature in TCGA

training cohorts (B), GEO validation set 1 (D), and GEO

validation set 2 (F).
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individual clinical outcomes.21 Owing to their intuitive visual presen-
tation and personalized application, nomograms have become a pop-
ular tool for oncology prognosis. Liu et al.9 reported a nomogram to
predict 3- and 5-year OS in NSCLC with the incorporation of risk
scores derived from an autophagy-related gene signature. The combi-
nation of clinicopathological features and the autophagy-related gene
signature performed better than each alone. Long and colleagues22

developed a nomogram that included a TP53-associated immune
prognostic signature for hepatocellular carcinoma. The adoption of
an immune prognostic signature and prognostic factors, including
hepatitis C infection and vascular tumor invasion, exhibits high prog-
nostic accuracy, as demonstrated by ROC curves and calibration
curves. Consistently, our nomogram could well predict the 3- and
5-year survival probabilities for LUAD patients by incorporating
the MTG signature and prognostic factors.
Molecular The
Despite the underlying clinical significance of
our results, several limitations need to be
considered. First, the clinical features extracted
from TCGA and GEO databases are limited
and incomplete. Potential prognostic factors,
such as personal history, treatment, and back-
ground diseases, are missing in our nomogram.
It is not clear how the environmental factors,
including smoking, exposure to certain toxins,
or treatments such as chemotherapy, radio-
therapy, and targeted drug therapy, affect the
identified gene signatures. Second, our meta-
bolic gene signature and derived cut-off value
were constructed based on RNA-seq data. The
procedure of sample treatment, RNA extraction,
reverse transcription, and detection needs to be
standardized. Third, independent prospective
cohorts are needed to verify the prognostic
model developed in this study. The value of
those genes as potential pharmacological targets
also needs further investigations.

In summary, we identified a reliable prognostic
MTG signature based on TCGA database. Our
gene signature indicates a dysregulated meta-
bolic microenvironment and might suggest
therapeutic targets for LUAD patients. A nomo-
gram based on the MTG signature and clinical
parameters could accurately predict the 3- and
5-year survival probability of individual LUAD patients. Our findings
might favor personalized therapeutic strategies.

MATERIALS AND METHODS
Acquisition of MTGs

MTGs were collected from the GeneCards (https://www.genecards.
org/) database,23 which provides comprehensive information on hu-
man genes. The term “metabolism” was used as the key word for the
search, and genes with relevance scores >8 were taken as MTGs.

Collection of Datasets

The RNA-seq data and clinical characteristics of TCGA LUAD, PAAD,
BRCA, SKCM, LIHC, STAD, and CESC cohorts were obtained from
TCGAwebsite (https://portal.gdc.cancer.gov/) for training. The large-scale
genome sequencing was performed before treatment in those patients, as
rapy: Oncolytics Vol. 19 December 2020 273
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Figure 6. Nomogram Predicting OS for LUAD Patients in TCGA Cohorts

(A) The nomogram was constructed based on seven independent prognostic factors. (B and C) The calibration plots for the internal validation of the nomogram predicting 3-

year (B) and 5-year (C) OS. The x axis represents the nomogram actual survival, and the y axis represents the predicted survival. (D) Enrichment plot of the DEGs between the

high- and low-risk groups using GSEA.
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Figure 7. Immunohistochemistry Staining of the

Prognostic Genes in Lung Cancer Biopsies

First panel on the left shows the expression of gene sig-

natures in normal controls, whereas the last two panels

represent the expression in NSCLC and SCLC lung bi-

opsies, respectively.
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TCGA focuses on untreated primary cancers.24 The gene-expression pro-
filematrixesof theLUADcohortGEO:GSE31210and themixed lungcan-
cer cohort GEO: GSE30219 were downloaded from the GEO website
(https://www.ncbi.nlm.nih.gov/geo/) for validation. Log2 transformation
and normalization were employed for the expression profiles. The average
expression level was retained for duplicated genes. The sva package (http://
bioconductor.org/packages/release/bioc/html/sva.html) in R software
3.6.0 (https://www.r-project.org/) was used to eliminate batch effects.

DEG Analysis and Functional Analysis

Those MTGs mentioned above were investigated with differential
expression analysis in TCGA cohort by the edgeR package (https://
bioconductor.org/packages/release/bioc/) and visualized as volcano
plots. Adjusted p value (adj. p) < 0.05 and |fold change (FC)| > 0.5
were considered statistically significant for identifying DEGs.25 The
intersection of the DEGs and MTGs (DE-MTGs), as visualized in a
Venn diagram, were selected for further analysis.

Gene functional analysis is a critical step in translating molecular
findings from high-throughput methods into biological signifi-
Molecular The
cance.26,27 The clusterProfiler package in R
software was used to perform statistical anal-
ysis and to visualize the functional profiles
of the DE-MTGs, including Gene Ontology
and KEGG analysis.28 adj. p value < 0.05
was considered the cut-off value for
significance.

Construction of the Prognostic Gene

Signature

Univariate Cox proportional hazards regres-
sion analysis was performed on each DE-
MTG to screen genes significantly associated
with OS in TCGA training set.29,30 Then, the
LASSO Cox regression method was applied to
those identified genes.31 A multivariable model
with the metabolism-related genes was con-
structed. Those genes with nonzero coefficients
were screened out to calculate the risk score. A
prognostic risk score was generated for each
patient with the following formula: risk score =
expression level of gene1 � j1 + expression
level of gene2 � j2 + . + expression level of
genex � jx, where j represents the coefficient.
The median risk score was considered the
cut-off value to divide TCGA LUAD patients
into a high-risk group and a low-risk group. The same formula
and same cut-off value were applied to two GEO datasets for
validation.

Univariate and multivariate Cox proportional hazards regression an-
alyses were performed to test whether the MTG-based prognostic
model was an independent prognostic factor. A K-M survival curve
was constructed, and the log-rank test was used to assess the survival
differences between groups. The sensitivity and specificity of the
prognostic performance were examined by ROC curve analysis.
The AUC values indicated discrimination.

Construction and Validation of the Nomogram

A prognostic nomogram was established to assess the survival prob-
ability for LUAD patients in 3 or 5 years via the rms R package. Age,
sex, pathological stage, pathological T stage, pathological N stage,
pathological M stage, and risk score were included as independent pa-
rameters. The C-index and calibration curves were used to calculate
the discrimination and calibration between the nomogram predicted
value and the true survival.32
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GSEA

GSEA was conducted to determine the related pathways and molec-
ular mechanisms of the high-risk group and low-risk group in TCGA
cohorts (https://www.gsea-msigdb.org/gsea/index.jsp). Gene sets
with a p value of <0.05 and false discovery rate (FDR) of <0.25 after
1,000 permutations were considered significantly enriched.33

Immunohistochemistry Staining

Lung samples were obtained from patients who had been diagnosed
with NSCLC or SCLC and went through cancer resection surgery
(The First Affiliated Hospital, Zhejiang University School of Medi-
cine, Hangzhou, China). The normal controls were correspondingly
taken from para-carcinoma tissues. The study conformed to the
ethical guidelines of the Declaration of Helsinki and was approved
by the Ethics Committee at The First Affiliated Hospital of Zhejiang
University. Informed consent was obtained from every participant
involved. Samples had been fixed, embedded in paraffin, and pro-
cessed into thin slices. The prognostic genes SLC2A1 (Santa
Cruz;1:100), PCSK9 (Proteintech; 1:500), KL (Santa Cruz; 1:300),
and ABCC2 (Proteintech; 1:50) were detected by immunohistochem-
istry in tissue sections, according to the manufacturer’s instructions.
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