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Abstract

Background: Human Papillomavirus (HPV) genotyping is an important approach to fight cervical cancer due to the
relevant information regarding risk stratification for diagnosis and the better understanding of the relationship of HPV
with carcinogenesis. This paper proposed two new feature extraction techniques, i.e. ChaosCentroid and
ChaosFrequency, for predicting HPV genotypes associated with the cancer. The additional diversified 12 HPV
genotypes, i.e. types 6, 11, 16, 18, 31, 33, 35, 45, 52, 53, 58, and 66, were studied in this paper.
In our proposed techniques, a partitioned Chaos Game Representation (CGR) is deployed to represent HPV genomes.
ChaosCentroid captures the structure of sequences in terms of centroid of each sub-region with Euclidean distances
among the centroids and the center of CGR as the relations of all sub-regions. ChaosFrequency extracts the statistical
distribution of mono-, di-, or higher order nucleotides along HPV genomes and forms a matrix of frequency of dots in
each sub-region. For performance evaluation, four different types of classifiers, i.e. Multi-layer Perceptron, Radial Basis
Function, K-Nearest Neighbor, and Fuzzy K-Nearest Neighbor Techniques were deployed, and our best results from
each classifier were compared with the NCBI genotyping tool.

Results: The experimental results obtained by four different classifiers are in the same trend. ChaosCentroid gave
considerably higher performance than ChaosFrequency when the input length is one but it was moderately lower
than ChaosFrequency when the input length is two. Both proposed techniques yielded almost or exactly the best
performance when the input length is more than three. But there is no significance between our proposed
techniques and the comparative alignment method.

Conclusions: Our proposed alignment-free and scale-independent method can successfully transform HPV
genomes with 7,000 - 10,000 base pairs into features of 1 - 11 dimensions. This signifies that our ChaosCentroid and
ChaosFrequency can be served as the effective feature extraction techniques for predicting the HPV genotypes.
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Background
Human Papillomavirus (HPV) is a small double-stranded
and most common sexually transmitting DNA virus. At
present, more than one hundred types of Human papil-
lomavirus have been identified. They are differentiated
by the genetic sequence of the outer capsid protein
L1. Approximately forty types can infect the mucosal
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epithelium. They are categorized according to their epi-
demiologic association with cervical cancer. Infection
with low risk HPV types such as types 6 and 11 can cause
benign or low-grade cervical cell abnormalities and geni-
tal warts. In contrast, high risk HPV types such as 16 and
18 act as carcinogens that can lead to the development of
cervical cancer and other anogenital cancers.
Cervical cancer is the second most common cancer

significantly causing morbidity and mortality in women
worldwide [1]. Persistent infection by high risk HPV is a
necessary cause of this cancer. Especially, the most com-
mon high riskHPV types are 16 and 18, and approximately
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70% of cervical cancer is due to infection by these geno-
types [2]. Each genotype of HPV has a different risk level
in the cervical cancer. Furthermore, there is a wide vari-
ation in genotype distribution in different regions around
the world. To better understand the relationship of HPV
with carcinogenesis, many countries have investigated the
HPV infection among women with cytological status by
HPV genotyping methods, as revealed in Switzerland [3],
in Italy [4], in Cambodia [5], and in Romania [6].
HPV genotyping is necessary for managing effective

medical treatment strategies to patients with persistent
infection and for evaluating prevention strategies to indi-
vidual patients to be immunized with type-specific HPV
vaccines [7]. Currently, there are various kinds of HPV
genotyping tests used for detecting the genotypes of
Human Papillomavirus, in clinical laboratories. For exam-
ple, PapilloCheck®, PCR-RFLP, HPV genome sequencing,
INNO-LiPA, Linear Array® HPV Genotyping Test, etc.
These methods detect the HPV genotypes from some
regions of genomes. Even though these HPV genotyping
tests are beneficial and employed for HPV diagnosis in
patients nowadays, they have some limitations. To illus-
trate this aspect, the HPV genotypes are hardly detected
in cases of inadequate samples or low amplification signals
of some genotypes. Contamination with previously ampli-
fied material can lead to false positive results. Further-
more, mistaken classifications can be occurred through
cross-reactivity among similar types in the tests based on
hybridization [8].
To avoid these problems, some computational methods

for identifying HPV types were developed [9-16]. Since
discriminating whether the patients have been infected
with the high risk types of Human papillomavirus is the
most important and urgent aspect for diagnosis and treat-
ment, multiple perspectives were proposed to focus on
predicting the HPV risk types. For instance, Wang and
Xiao [9] presented multitudinous physicochemical and
statistical features from the protein sequences using Fuzzy
K nearest neighbor classifier for the risk type prediction of
Human papillomaviruses. They also further developed the
better algorithm based on geometric moments of protein
distance matrix images using a Fuzzy K nearest neighbor
classifier [10]. In addition, classification of HPV risk types
was also proposed through algorithms based on deci-
sion tree [11], text mining [12], genetic mining of DNA
sequence structures [13], support vector machines [14],
gap-spectrum kernels [15], and ensemble support vector
machines with protein secondary structures [16].
While classifying the HPV into high and low risk types

is the urgent aspect for diagnosis of the cancer as claimed
by many researchers, the study on how to predict spe-
cific genotypes of the virus has not significantly focused.
In fact, the identification of HPV genotypes infecting the
patients is more essential than a rough classification of

HPV risk types. To clarify this issue, HPV genotyping can
provide more information regarding risk stratification.
With the persistent infection, the risk of a precancerous
lesion is in between 10% to 15% with HPV types 16 and
18 but below 3% for all other high risk types combined [2].
Furthermore, the relevant diagnosis with cost effective-
ness can be done by selecting the virus types to be tested
based on epidemiological and prevalence studies from a
wide variation in the genotype distribution in different
regions around the world. The diversity of virus types and
the incidence of multiple infections have made it neces-
sary to develop reliable methods to identify the different
genotypes for epidemiological studies and medical treat-
ment. HPV genotyping can make a great contribution to
the following aspects: HPV diagnosis in case of single and
multiple infection, more information regarding risk strati-
fication, a better understanding of the relationship of HPV
with carcinogenesis, and prevention of the cancer though
the development of type-specific vaccines. Consequently,
HPV genotyping has become an important approach to
fight with cervical cancer. For these reasons, this research
concentrated on the prediction of HPV genotypes.
Chaos Game Representation (CGR) was proposed as a

unique and scale-independent representation for genomic
sequences by Jeffrey [17]. It is an iterative mapping tech-
nique assigning each nucleotides in a DNA or amino acids
in a protein to a unique coordinates in a 2-dimensional
space. It can be viewed as a 2-dimensional image of dis-
tributed dots and captured in a form of 0-1 square matrix,
where 1 represents a dot and 0 represents an empty
coordinate. The distribution of positions has two proper-
ties of uniqueness and possibility to inverse a coordinate
back to its corresponding nucleotide or amino acid [18].
Using graphic approaches to study biological systems can
provide useful intuitive insights, as indicated bymany pre-
vious studies on a series of important biological topics,
such as DNA [19,20], RNA [21], genome [22-26], protein
[27-35], drug metabolism systems [36], protein-protein
interactions [37], analysis of protein sequence evolution
[38]. Moreover, the cellular automaton graph has also
been applied to study hepatitis B viral infections, HBV
virus gene missense mutation, as well as represent com-
plicated biological sequences and help to identify various
protein attributes [39-41].
Singular value decomposition (SVD) is a matrix factor-

ization technique with various applications. For instance,
it can be used to solve underdetermined and overdeter-
mined systems of linear equations, find inverse and the
pseudo-inverse matrices, compute the matrix condition
number and calculate the vector system orthogonality
and orthogonal complement [42]. SVD is also applied to
several areas in gene expression data and microarray data,
such as analysis [43-46], search [47], image compression
[48], gene extraction [42], and classification [49,50], etc.
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In this paper, we deployed SVD a tool to reduce the size
of CGR into a smaller number of feature matrices without
losing any knowledge from the original data. Therefore, a
new feature extraction was proposed based on the com-
bination of chaos game representation and singular value
decomposition.
Due to the significance of HPV genotyping, the objec-

tive of this paper is to predict the HPV genotypes from
their genomes, which is similar to the conventional meth-
ods of genome detection in clinical laboratories. The
remaining sections of this paper are organized as follows.
Section “Methods” describes for the methods used in
this experiment, including collection of HPV data set, the
proposed feature extraction techniques, predicting sys-
tems, and performance evaluation. Section “Results and
discussion” illustrates the experimental results and dis-
cussion. Section “Conclusion” concludes the paper.

Methods
As realized by a series recent publications [51-58] in
response to the call from [59], the following procedures
to establish a really useful statistical predictor for a bio-
logical system were involved in our method: (i) construct
or select valid benchmark data sets to train and test the
predictor; (ii) formulate the biological samples with an
effective mathematical expression that can truly reflect
their intrinsic correlation with the predicted target; (iii)
introduce or develop a powerful predicting algorithm (or
engine); (iv) properly perform cross-validation tests to
objectively evaluate the anticipated accuracy of the pre-
dictor; (v) establish a user-friendly web-server for the
predictor accessible to the public. The detail of each pro-
cedure is discussed as follows.
HPV genome data from genotypes were collected and

their features were extracted by our proposed feature
extraction techniques, i.e. ChaosCentroid and Chaos-
Frequency, as inputs for classification. These features were
divided into the training and testing sets by a 2-fold cross
validation technique. Four different classification mod-
els were deployed to train and test the experimental data
sets. Then, the prediction performance from the obtained
results were evaluated and compared with other meth-
ods. Our proposed method consists of the following four
main procedures, i.e. data collection, feature extraction,
prediction, and performance evaluation.

Collection of HPV data set
To remove the homologous sequences from the bench-
mark data sets, a cut-off threshold of 25% was imposed in
[60,61] to exclude those proteins from the benchmark data
sets that are equal to or greater than 25% of sequence iden-
tity to any others in a same subset. However, in this study
we did not use such a stringent criterion because the cur-
rently available data do not allow us to do so. Otherwise,

the numbers of genomes for some subsets would be too
few to have statistical significance.
HPV genotypes collected in this experiment are those

important genotypes detectable by Linear Array® HPV
Genotyping Test. This HPV genotyping is a widely used
qualitative test developed by Roche Molecular Diagnos-
tics for detecting HPV genotypes associated with cervical
cancer. The test can detect 37 high and low risk HPV
genotypes, including those considered as a significant risk
factor for HSIL progression to cervical cancer. To chal-
lenge the prediction, only HPV genotypes having genome
diversity were concentrated in this experiment. Some of
37 genotypes containing few genomes were excluded. For
this reason, only HPV genotypes 6, 11, 16, 18, 31, 33, 35,
45, 52, 53, 58 and 66 were involved. The genomes of these
HPV genotypes were collected from the National Cen-
ter for Biotechnology Information (http://www.ncbi.nlm.
nih.gov/). The data set contains Human Papillomavirus
genomes of 12 genotypes, including high, possible high,
and low risk types. For each HPV genotype, the number of
genomes as well as the minimum and maximum lengths
are shown in Table 1.
All viral genomes in this HPV data set were previously

published and are publicly available on GenBank or NCBI
databases. In addition, the genome names, NCBI access
numbers, and HPV genotypes of all genomes in the HPV
data set are properly cited in Additional file 1, and the
HPV data set used in this experiment is also available in
Additional file 2.

Detail of proposed feature extraction techniques
The following techniques, i.e. ChaosCentroid and Chaos-
Frequency, were proposed to extract the features from
the chaos game representation of HPV genomes. To

Table 1 The number of genomes, minimum andmaximum
genome lengths of HPV genotypes in the HPV data set

HPV Genotypes No. of genomes
Genome length (base pairs)

Minimum Maximum

6 58 7954 8051

11 49 7931 10424

16 103 7881 7976

18 19 7824 7857

31 23 7878 7945

33 22 7830 7912

35 28 7820 7908

45 12 7841 7858

52 22 7933 7974

53 16 7856 7863

58 37 7814 7836

66 11 7816 7824

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
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identify each genotype, the relations among subsets of
HPV genomes must be clarified. These relations are actu-
ally the local features. Since the CGR captures the infor-
mation of the whole genome data, extracting the global
features from the CGRmay not be efficient enough to dis-
tinguish the HPV genotypes. The local features hidden
in various sub-regions of CGR must be more contem-
plated. In this work, we concentrate on extracting the
local features rather than global features. The difference
between ChaosCentroid and ChaosFrequency are the fea-
ture representation. HPV genomes contain A, C, G, and T
nucleotides. Prior to the discussion of ChaosCentroid and
ChaosFrequency, the detail of how to construct CGR is the
following. Let xi and yi be the coordinates of nucleotide ηi
at the ith position in the nucleotide sequence. Algorithm 1

illustrates how to construct a CGR for capturing a given
nucleotide sequence.
A CGR can be viewed as a square whose corners are

at coordinates (-1,-1), (-1,1), (1,1), and (1,-1) represent-
ing nucleotides A, C, G, and T, respectively. Note that the
size of CGR according to the coordinates of A, C, G, and
T nucleotides is equal to 2 × 2 units. However, this unit
size of original CGR is not appropriate for discussing our
algorithm. Therefore, the geometrical structure and the
physical size of our CGR are re-defined as follows. The
size of CGR square is set to n × n and n ∈ R+. Its center
is also located at the coordinates (0,0). Each corner of this
square represents the same nucleotide as that of the orig-
inal CGR. After Algorithm 1, CGR can be viewed as an
image of distributed dots. Figure 1 shows some examples

Figure 1 Chaos game representation (CGR) of HPV genotypes 6, 16, 18, and 31. (a) Genotype 6. (b) Genotype 16. (c) Genotype 18.
(d) Genotype 31.
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of CGR of HPV genotypes 6, 16, 18, and 31. Obviously,
the number of dots in a CGR is equal to the number of
nucleotides in a given sequence. Although this CGR image
can be directly used in the prediction step, its computa-
tional time may be too high due to the large number of
dots. Thus it is necessary to extract only those relevant
features from this set of dots to reduce the computational
time complexity in the prediction process. In this paper,
we proposed two different features as the representation
of CGR image. The first feature is called ChaosCentroid
and the second one is called ChaosFrequency. The detail
of each feature is the following.

Algorithm 1 Constructing Chaos Game Representation
1. Create a square with each corner representing Adenine (A),

Cytosine (C), Guanine (G), and Thymine (T) at coordinates
(-1,-1), (-1,1), (1,1), and (1,-1), respectively.

2. Case η1 is
3. A : Place a dot at x1 = 0.5 × (0 − 1); y1 = 0.5 × (0 − 1).
4. C : Place a dot at x1 = 0.5 × (0 − 1); y1 = 0.5 × (0 + 1).
5. G : Place a dot at x1 = 0.5 × (0 + 1); y1 = 0.5 × (0 + 1).
6. T : Place a dot at x1 = 0.5 × (0 + 1); y1 = 0.5 × (0 − 1).
7. EndCase
8. For each other nucleotide ηi; i > 1 do
9. Case ηi is
10. A : Place a dot at xi = 0.5 × (xi−1 − 1); yi = 0.5 × (yi−1 − 1).
11. C : Place a dot at xi = 0.5 × (xi−1 − 1); yi = 0.5 × (yi−1 + 1).
12. G : Place a dot at xi = 0.5 × (xi−1 + 1); yi = 0.5 × (yi−1 + 1).
13. T : Place a dot at xi = 0.5 × (xi−1 + 1); yi = 0.5 × (yi−1 − 1).
14. EndCase

ChaosCentroid
According to [17], the k-th dot plotted on the CGR of
a sequence corresponds to the first k-long initial sub-
sequence of the sequence. Therefore, any visible pattern
of the CGR corresponds to some pattern of the nucleotide
sequence. CGR represents the global information of the
nucleotide sequence. Partitioning the CGR into several
sub-regions is implemented for revealing local informa-
tion of the interested areas. If two dots are within the
same quadrant, they correspond to sequences with the
same last mononucleotide; if they are in the same sub-
quadrant, the sequences have the same last dinucleotides;
and so on. This can demonstrate the structure of the
sequences yielding the dots. ChaosCentroid utilizes this
biological significance by computing the centroid of the
distributed dots of each sub-region. Therefore, the cen-
troid, which can be converted to specific structure of the
sequence, is represented as local information of the sub-
region. For ChaosCentroid, the CGR is partitioned into
n
g × n

g equal sub-regions, where n
g ∈ {1, 2, 3, . . . , 11}. This

range is obtained by all possible numbers that can applied
to the CGR. For instance, the CGR is not partitioned when
n
g = 1, the CGR is partitioned into 4 equal sub-regions
when n

g = 2, and so on. Furthermore, if the value of n
g

is greater than 11, some sub-regions does not contain any
dots. So, 11 is the maximum value of n

g in this experiment.
For each of n

g partitioned into the CGR, the centroid of
each sub-region is computed first. Then all pairs of dis-
tances between the centroids and the center of CGR are
computed and captured in a form of a matrix. This set
of distances can be considered as the relation of informa-
tion embedded in all sub-regions. However, the number of
ChaosCentroids may be too large. Therefore, this matrix
is decomposed by applying singular value decomposition
(SVD) method to reduce information complexity. Finally,
the n

g diagonal elements from the n
g -by-

n
g diagonal matrix

of SVD are represented as the features of CGR and are
subsequently used as the input vectors for prediction pro-
cess. As a result, ChaosCentroid produces 11 formats of
input vectors, i.e. the first format have 1 dimension, the
second format have 2 dimensions, and so on. Extracting
ChaosCentroid consists of the following steps, as illus-
trated in Algorithm 2. Additionally, Figure 2 shows an
example of distances between the centroid of each sub-
region and the center of CGR for HPV genotype 16 after
being partitioned into sub-regions of size 2 × 2.

Algorithm 2 Extracting ChaosCentroid Feature
1. Represent the HPV genomes by chaos game representation

(CGR) of size n × n.
2. Partition CGR into n

g × n
g equal sub-regions, each of

size g × g.
3. Let ri,j be the CGR region at row 1 ≤ i ≤ n

g and column
1 ≤ j ≤ n

g .
4. Let |ri,j| be the number of dots in ri,j.
5. For each sub-region ri,j do

6. Compute the centroid ci,j =
(∑|ri,j |

k=1 xk|ri,j| ,
∑|ri,j |

k=1 yk|ri,j|

)
.

7. EndFor
8. Compute a distance matrix D = [

di,j
]
n
g × n

g
; di,j = ||ci,j||.

9. Let S = [
si,j

]
n
g × n

g
be the diagonal matrix of D computed by

applying singular value decomposition.
10. Form vector F = [

si,i
]T
1≤i≤ n

g
as the feature of CGR.

ChaosFrequency
As elucidated in [20], the bias of distribution of differ-
ent mono-, di-, tri-, or higher order nucleotides along
the DNA/RNA sequences can generate different patterns
in the CGR. This can be used as diagnostic patterns
for different HPV genotypes. The CGRs of the HPV
genomes of different genotypes tend to exhibit distinct
patterns visually, as displayed in Figure 1. Thus, Chaos-
Frequency concentrates on the frequencies of sub-
sequences occurred in the HPV genomes. Particularly,
when n

g is equal to 2k where k ∈ {1, 2, 3}, it represents
the k-mer frequency occurred in the HPV sequences.
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Figure 2 The distances between the centroids and the center of
CGR for HPV genotype 16 after being partitioned into
sub-regions of size 2 × 2.

Accordingly, the ratio between the number of dots in the
sub-region and the total number of dots in the CGR are
computed and represented as the feature of each sub-
region. This ratio can be interpreted as the probability
of distribution. Suppose each sub-region is of size g × g.
After extracting the ChaosFrequency of each sub-region,
the whole CGR be viewed as a matrix of size n

g × n
g . This

matrix is decomposed by SVD to extract the n
g diagonal

elements used as the feature of CGR. Likewise, this tech-
nique produces 11 formats of input vectors, in accordance
with those of ChaosCentroid. The detail of this procedure
is illustrated in Algorithm 3. Each sub-region is referred by
its location according to the row and column after the par-
tition of CGR. Letmi,j be the number of dots in sub-region
at row i and column j. Suppose there are total M dots in
CGR. Thenwe can calculate the probability of distribution
as pi,j = mi,j

M .

Algorithm 3 Extracting ChaosFrequency Feature
1. Represent the HPV genomes by chaos game representation

(CGR) of size n × n.
2. Partition CGR into n

g × n
g equal sub-regions, each of

size g × g.
3. Let ri,j be the CGR region at row 1 ≤ i ≤ n

g and column
1 ≤ j ≤ n

g .
4. For each sub-region ri,j do
5. Compute the probability of distribution pi,j = mi,j

M .
6. EndFor
7. Form matrix D = [

di,j
]
n
g × n

g
; di,j = pi,j.

8. Let S = [
si,j

]
n
g × n

g
be the diagonal matrix of D computed by

applying singular value decomposition.
9. Form vector F = [

si,i
]T
1≤i≤ n

g
as the feature of CGR.

Predicting systems
To evaluate the performance of the proposed feature
extraction techniques, the testing sets were fed to four
different types of predicting systems. Each system has
its own principle and criteria for predicting the corre-
sponding HPV genotypes. The predicting systems are
multi-layer perceptron neural network, radial basis func-
tion network, k-nearest neighbor technique, and fuzzy
k-nearest neighbor technique. From 400 HPV genomes,
one of 12 genotypes which are types 6, 11, 16, 18, 31, 33,
35, 45, 52, 53, 58, and 66 was identified. The detail of set-
up for each predicting system in our experiments are as
follows.

Multi-layer perceptron neural network
Each input pattern is the feature vector F obtained from
Algorithms 2 and 3. Therefore, the numbers of input neu-
rons are ranged from 1 to 11 according to the sizes of
the feature vector F. The number of hidden neurons was
empirically varied from 1 to 24 neurons to find the most
suitable number. From the experiments, 16 hidden neu-
rons are the best number of neurons for producing the
best prediction of HPV genotypes. There are 12 output
neurons, each of which corresponds to each HPV geno-
type. To make the testing efficient, the neuron 1 is for
determining HPV genotype 6; neuron 2 for type 11; neu-
ron 3 for type 16; neuron 4 for type 18; neuron 5 for type
31; neuron 6 for type 33; neuron 7 for type 35; neuron 8
for type 45; neuron 9 for type 52; neuron 10 for type 53;
neuron 11 for type 58; and neuron 12 for type 66. There-
fore, the network deployed in our experiments consists
of an input layer with n

g neurons, a hidden layer with 16
neurons, and an output layers with 12 neurons. Backprop-
agation learning rule was adopted to adjust the weights
of the network during the training process. Mean squared
normalized error function was used as a terminating cri-
terion in the training process. In testing procedure, the
predict HPV genotype is determined by this equation. Let
oi be the output value of output neuron i.

HPV genotype = argtype max
1≤i≤12

(oi) (1)

argtype is the mapping from neuron index to its corre-
sponding HPV genotype previously defined.

Radial basis function network
After finding the optimal spread distances for the predic-
tion, the spread of radial basis function (RBF) is set to 0.4
for ChaosCentroid and 0.1 for ChaosFrequency. The same
network structure of multi-layer perceptron was adopted
for this RBF network. The determination in Equation (1)
of HPV genotypes for multi-layer perceptron was used in
this RBF predicting system.
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K-nearest neighbor technique
In this technique, the determination of HPV genotypes
depends upon the value of k nearest neighbors measured
by Euclidean distance. For any tested feature vector, the
HPV genotype of its nearest neighbor is assigned as the
HPV genotype of the tested feature vector. Empirically, it
was found that k = 1 gave the best performance.

Fuzzy K-nearest neighbor technique
Fuzzy k-nearest neighbor technique was proposed by
James M. Keller, Michael R. Gray, and James A. Givens
[62]. It is a special variation of the k-nearest neighbor
technique family. The algorithm of fuzzy k-nearest neigh-
bor assigns class membership to a sample vector rather
than assigning the vector to a particular class. An advan-
tage is that no arbitrary assignments are made by the
algorithm. Additionally, membership values of the vec-
tor should provide a level of assurance to accompany the
resultant classification. In this technique, we set k to 1.

Performance evaluation
Among the independent statistical accuracy testing meth-
ods for predicted results such as sub-sampling (e.g., 2, 5
or 10-fold cross-validation) test and jackknife test, jack-
knife test was deemed the most objective that can always
yield a unique result for a given benchmark data set, as
elucidated in [59] and demonstrated by Equations 28, 29
and 30 in [59]. Therefore, the jackknife test has been
increasingly used and widely recognized by investigators
to test the power of various prediction methods (see, e.g.,
[63-73]). Although jackknife is widely used, its computa-
tional time is rather high. However, to reduce the com-
putational time, we adopted the 2-fold cross-validation
in this experiment to deal with the parameter optimiza-
tion. Therefore, the reported prediction performance was
obtained by the combination of both validating sets.
In this experiment, we adopted Equation 11 of [52]

to formulate the set of four metrics, including Sensitiv-
ity(Sen), Specificity(Spec), Accuracy(Acc), and Matthew’s
Correlation Coefficient(MCC), for evaluating the predic-
tion performance. The formulation of the four metrics is
defined by the following equations.

Sensitivity = 1 − N+−
N+ , 0 ≤ Sen ≤ 1

Specificity = 1 − N−+
N− , 0 ≤ Spec ≤ 1

Accuracy = 1 − N+− + N−+
N+ + N− , 0 ≤ Acc ≤ 1

MCC=
1−

(
N+−
N+ + N−+

N−

)
√(

1 + N−+ −N+−
N+

)(
1 + N+− −N−+

N−

) , −1≤MCC≤1

(2)

where N+ is the total number of HPV genomes of the
investigated genotype whereas N+− the number of HPV
genomes of the investigated genotype that is incorrectly
predicted as the other genotypes; N− the total number of
HPV genomes of the other genotypes that are not inves-
tigated whereas N−+ the number of HPV genomes of the
other genotypes that is incorrectly predicted as the inves-
tigated genotype. The investigated HPV genotype is 6,
11, 16, 18, 31, 33, 35, 45, 52, 53, 58, or 66. For example,
if the investigated genotype is 6, N+ is the total num-
ber of HPV genomes of genotype 6, while N− is the total
number of the genomes of the other genotypes, excluding
genotype 6.
According to Equation 2, the prediction performance

can be evaluated in a meaningful explanation, as follows.
The sensitivity is used for evaluating the performance
of the predicting systems in identifying the investigated
genotype. When N+− = 0, none of HPV genomes
of the investigated genotype was incorrectly predicted as
the other genotypes, so the sensitivity is 1. In contrast,
while N+− = N+, all HPV genomes of the investigated
genotype were incorrectly predicted as the other geno-
types, so the sensitivity is 0. The specificity is used for
evaluating the performance of the systems in exclud-
ing the other genotypes. When N−+ = 0, none of HPV
genomes of the other genotypes was incorrectly predicted
as the investigated genotype, so the specificity is 1; while
N−+ = N−, all HPV genomes of the other genotype
were incorrectly predicted as the investigated genotype,
so the specificity is 0. The accuracy is used for evalu-
ating the performance of the systems in classifying the
investigated genotype and the other genotypes. When
N+− = N−+ = 0, none of HPV genomes of the investi-
gated genotype and none of HPV genomes of the other
genotypes was incorrectly predicted, so the accuracy is
1; while N+− = N+ and N−+ = N− all HPV genomes
of the investigated genotype and all HPV genomes of
the other genotypes were incorrectly predicted, so the
accuracy is 0. Typically, the Matthew’s Correlation Coef-
ficient (MCC) is used for measuring the quality of binary
classification. When N+− = N−+ = 0, none of HPV
genomes of the investigated genotypes and none of HPV
genomes of the other genotypes was incorrectly pre-
dicted, so MCC is 1; when N+− = N+/2 and N−+ =
N−/2, MCC is 0 meaning no better than random pre-
diction; When N+− = N+ and N−+ = N−, MCC is -1
indicating total disagreement between prediction and
observation.
However, the set of metrics in Equation 2 is valid

only for single-label systems. For multi-label systems
whose existence has become more frequent in system
biology [61,74] and system medicine [67,75], a com-
pletely different set of metrics as defined in [76] is
needed.
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Results and discussion
The value of variable n

g in Algorithms 2 and 3 was set from
1 to 11. The performance of HPV genotype prediction
was separately summarized according to each predicting
system and two feature extracting schemes. The obtained
results are the following.

Results frommulti-layer perceptron neural network
The results of the HPV genotype prediction gained by
ChaosCentroid and by ChaosFrequency feature extraction
with the predicting system based on multi-layer percep-
tron neural network are summarized in Tables 7 and 8,
respectively, of Additional file 3. The results were reported
according to different values of n

g ∈ {1, 2, . . . , 11}. It is
rather remarkable when n

g = 1.
When n

g = 1, the number of sub-regions of CGR is
equal to one. Thus there is only one centroid computed
by ChaosCentroid and the probability of distribution of
CGR computed by ChaosFrequency is equal to one. The
overall performance of ChaosFrequency is much lower
than those of ChaosCentroid. ChaosFrequency gain 0%
of sensitivity and 100% of specificity in all genotypes,
excepting genotype 16. It implies that the features of all
genomes extracted by ChaosFrequency are totally pre-
dicted to genotype 16. In contrast, ChaosCentroid can
obtain high performancemetrics, including accuracy, sen-
sitivity, specificity, and Matthew’s Correlation Coefficient
in almost all genotypes. This is because a centroid is com-
puted from the coordinates of every dots. It is obvious that
different HPV genotypes must have different distribution
of dots and centroids. So, predicting HPV genotypes with
high performance from these centroids is possible. But in
case of ChaosFrequency, the probability of distribution of
every HPV genotype is equal. This makes the feature of
each HPV genotype indistinguishable.
However, when the value of n

g is greater than one,
the local information regarding the frequency of sub-
sequence among nucleotides in each sub-region is
brought out and the performance is increased in pro-
portion to the value of n

g . It is noticeable that there is
no significant difference between the overall performance
obtained from ChaosCentroid and ChaosFrequency when
n
g > 3. In addition, we can conclude that, to achieve high
performance of prediction, the local information of each
sub-region is more relevant than global information.

Results from radial basis function network
The results of the HPV genotype prediction gained by
ChaosCentroid and by ChaosFrequency feature extrac-
tion with the predicting system based on radial basis
function network are summarized in Tables 9 and 10,
respectively, of Additional file 3. According to the results,
the performance values obtained by this predicting system

are unstable among input dimensions. This is because
this experiment set only one optimal spread distance,
which gain the maximum average accuracy of all dimen-
sions, for each predicting system of ChaosCentroid and
ChaosFrequency, respectively. In fact, it is possible that
each input dimension has its own proper spread dis-
tance, and one value of spread distance can not fit for
all dimensions. In addition, it is noticeable that Chaos-
Frequency with RBF at 4-dimensional input can achieve
the best performance with minimum input dimension.
The overall performance trend obtained from this predict-
ing system is similar to those of multi-layer perceptron.
But the peformance from multi-layer perceptron is sig-
nificantly higher than the performance from radial basis
function.

Results from K-nearest neighbor technique
The results of the HPV genotype prediction gained by
ChaosCentroid and by ChaosFrequency feature extraction
with the predicting system based on k-nearest neighbor
technique are summarized in Tables 11 and 12, respec-
tively, of Additional file 3. The experimental results have
shown the high performance of prediction. Therefore,
it can imply that, in each sub-region, the structure of
sequence in a form of centroid by ChaosCentroid and
the statistical distribution of mono-, di-, or higher order
nucleotides in a form of frequency by ChaosFrequency,
are closed to each other in the same genotype. The overall
performance trend obtained from this predicting sys-
tem is similar to those of multi-layer perceptron. But the
performance from this predicting system is slightly higher
than the performance of multi-layer perceptron.

Results from Fuzzy K-nearest Neighbor Technique
The results of the HPV genotype prediction gained by
ChaosCentroid and by ChaosFrequency feature extrac-
tion with the predicting system based on fuzzy k-nearest
neighbor technique are summarized in Tables 13 and 14,
respectively, of Additional file 3. The overall performance
trend obtained from this predicting system is similar to
those of multi-layer perceptron. Additionally, the overall
performance of this predicting system is slightly higher
than the performance of multi-layer perceptron but it is
statistically equal to the performance of k-nearest neigh-
bor technique due to setting the same value of k.

Comparative results with Related Method
NCBI viral genotyping tool [77] is a web-based tool for
identifying the genotype of a viral sequence. It works
by sliding a window along the query sequence and pro-
cessing each window/sequence segment separately. Each
segment is compared to a set of reference sequences
using BLAST, which returns the similarity scores for the
local alignments. The reference sequence genotype that
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Table 2 Best results of the HPV genotype prediction based on the features extracted by ChaosCentroid and by
ChaosFrequency withmulti-layer perceptron neural network

HPV Genotypes
ChaosCentroid ChaosFrequency

Accuracy Sensitivity Specificity MCC Accuracy Sensitivity Specificity MCC

6 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

11 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

16 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

18 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

31 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

33 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

35 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

45 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

52 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

53 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

58 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

66 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

matches the query with the highest similarity score is
assigned to the query segment. The process is repeated
for the next window until the whole length of the query
sequence has been covered. The results from all win-
dows are combined. If the same genotype is assigned
to most segments, then the query sequence is consid-
ered the genotype. This tool is a web-based resource
that provides a reliable method based on alignment.
Then, this experiment adopted this tool for identify-
ing genotypes of the viral genomes in the HPV data
set. To evaluate the prediction performance, the result
obtained by this genotyping tool were compared with

the best results obtained by the proposed ChaosCentroid
and ChaosFrequency feature extraction techniques with
all predicting systems, as illustrated in Tables 2, 3, 4,
5 and 6.
The experimental results have shown that all meth-

ods, excepting ChaosCentroid with radial basis function
network, can achieve the best performance of the four
metrics, including accuracy, sensitivity, specificity, and
Matthew’s Correlation Coefficient, in predicting the HPV
genotypes of the data set. It demonstrated that both of
the proposed techniques and the NCBI genotyping tool
can be used to predict the genotypes of HPV genomes.

Table 3 Best results of the HPV genotype prediction based on the features extracted by ChaosCentroid and by
ChaosFrequency with radial basis function network

HPV Genotypes
ChaosCentroid ChaosFrequency

Accuracy Sensitivity Specificity MCC Accuracy Sensitivity Specificity MCC

6 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

11 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

16 99.50 99.03 99.66 0.99 100.00 100.00 100.00 1.00

18 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

31 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

33 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

35 99.50 96.43 99.73 0.96 100.00 100.00 100.00 1.00

45 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

52 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

53 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

58 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

66 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00
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Table 4 Best results of the HPV genotype prediction based on the features extracted by ChaosCentroid and by
ChaosFrequency with k-nearest neighbor technique

HPV Genotypes
ChaosCentroid ChaosFrequency

Accuracy Sensitivity Specificity MCC Accuracy Sensitivity Specificity MCC

6 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

11 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

16 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

18 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

31 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

33 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

35 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

45 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

52 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

53 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

58 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

66 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

Even though there is no significance between the pro-
posed techniques and the NCBI genotyping tool, some
issues should be considered.
The NCBI genotyping tool provides a reliable method

based on homology searching sequence alignment proce-
dure. The limitation of alignment is that it is difficult to
identify or classify the protein or DNA sequences in the
case that they does not have a significant sequence homol-
ogy. Besides, the alignment with multiple sequences will
take time consuming and only one query sequence at a
time can be processed by this tool. So, this method is not
appropriate for large scale tasks.

In contrast, the proposed techniques, i.e. ChaosCen-
troid and ChaosFrequency, are based on Chaos game
representation, which provides a unique and scale-
independent representation of DNA sequences through
the statistical distribution of mono-, di-, tri-, or higher
order nucleotides along DNA sequences. An advantage
of CGR over alignment is that it has the potential to
reveal the evolutionary and/or functional relationships
between the sequences having no significant homology,
as elucidated in [35]. Furthermore, it does not require
prior knowledge of consensus sequences, nor does it
involve exhaustive searches for sequences in databases.

Table 5 Best results of the HPV genotype prediction based on the features extracted by ChaosCentroid and by
ChaosFrequency with fuzzy k-nearest neighbor technique

HPV Genotypes
ChaosCentroid ChaosFrequency

Accuracy Sensitivity Specificity MCC Accuracy Sensitivity Specificity MCC

6 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

11 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

16 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

18 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

31 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

33 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

35 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

45 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

52 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

53 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

58 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00

66 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00
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Table 6 Results of the HPV genotype prediction obtained
by NCBI viral genotyping tool

HPV Genotypes Accuracy Sensitivity Specificity MCC

6 100.00 100.00 100.00 1.00

11 100.00 100.00 100.00 1.00

16 100.00 100.00 100.00 1.00

18 100.00 100.00 100.00 1.00

31 100.00 100.00 100.00 1.00

33 100.00 100.00 100.00 1.00

35 100.00 100.00 100.00 1.00

45 100.00 100.00 100.00 1.00

52 100.00 100.00 100.00 1.00

53 100.00 100.00 100.00 1.00

58 100.00 100.00 100.00 1.00

66 100.00 100.00 100.00 1.00

The limitation of CGR is that it takes a computational time
to generate the representations from DNA sequences.
Nevertheless, this experiment utilized the singular value
decomposition to reduce the size of CGR into a smaller
number of feature matrices so the computational time
in the prediction process was also reduced. From the
experimental results, it have shown that the proposed
ChaosCentroid and ChaosFrequency, which are based on
chaos game representation and singular value decomposi-
tion, can successfully extract the characteristic parameters
of HPV genotypes for the prediction.
Since user-friendly and publicly accessible web-servers

represent the future direction for developing practically
more useful models, simulated methods, or predictors
[78-80], wemaymake efforts in our future work to provide
a web-server for the method presented in this paper.

Conclusion
This paper proposed two new feature extraction tech-
niques, i.e. ChaosCentroid and ChaosFrequency, based
on chaos game representation and singular value decom-
position for predicting HPV genotypes from nucleotide
sequences in HPV genomes. Both extracting techniques
concentrate on the local information among nucleotides.
For the sub-regions in CGR, ChaosCentroid pays atten-
tion to capture the structures of the sequences in a form
of centroids, while ChaosFrequency focuses on capture
the distribution of sub-sequences in a form of frequen-
cies. Four different predicting systems, i.e. multi-layer
perceptron neural network, radial basis function net-
work, K-nearest neighbor technique, and fuzzy K-nearest
neighbor technique, were deployed. From the experi-
ment, we found that the features extracted by our pro-
posed feature extraction techniques are significant and

independent of the predicting systems. The comparative
results demonstrated no significance between our pro-
posed techniques and the NCBI viral genotyping tool. In
addition, local information is more important than global
information in order to achieve high performance of
prediction.
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