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DeepContact: High-throughput quantification of
membrane contact sites based on electron
microscopy imaging
Liqing Liu1,5*, Shuxin Yang2,4*, Yang Liu2,4, Xixia Li5, Junjie Hu1,6, Li Xiao2,3,4, and Tao Xu1,6,7

Membrane contact site (MCS)-mediated organelle interactions play essential roles in the cell. Quantitative analysis of MCSs
reveals vital clues for cellular responses under various physiological and pathological conditions. However, an efficient tool is
lacking. Here, we developed DeepContact, a deep-learning protocol for optimizing organelle segmentation and contact
analysis based on label-free EM. DeepContact presents high efficiency and flexibility in interactive visualizations,
accommodating new morphologies of organelles and recognizing contacts in versatile width ranges, which enables statistical
analysis of various types of MCSs in multiple systems. DeepContact profiled previously unidentified coordinative
rearrangements of MCS types in cultured cells with combined nutritional conditions. DeepContact also unveiled a subtle wave
of ER–mitochondrial entanglement in Sertoli cells during the seminiferous epithelial cycle, indicating its potential in bridging
MCS dynamics to physiological and pathological processes.

Introduction
Eukaryotic cells are compartmentalized via intracellular mem-
branes into organelles with distinct physiological functions.
Precise coordination among organelles is essential to enable the
operation of the cell as a functional unit. Direct physical inter-
actions between organelles by molecular tethering, namely
membrane contact sites (MCSs; Scorrano et al., 2019), have been
found to regulate the cellular homeostasis of lipids (Jeong et al.,
2017; Lahiri et al., 2015; Tong et al., 2018), calcium ions
(Burgoyne et al., 2015; Krols et al., 2016), and reactive oxygen
species (Eisner et al., 2013) and transmit signals (Toulmay and
Prinz, 2011) and forces (Rowland et al., 2014) for organelle dy-
namics (Namba, 2019; Prinz et al., 2019). There is an increasing
demand to elucidate the precise roles of MCSs in various
physiological and pathological conditions (Bohnert, 2020; Helle
et al., 2013; Horvath et al., 2015; Phillips and Voeltz, 2016; Prinz,
2014).

EM acquires ultraresolution landscape images of subcellular
contents, presenting the most direct morphological information
on organelles, as well as their interactions, in nanoscale detail.
Advances in EM have provided critical insight into the features
of MCSs (Fernández-Busnadiego et al., 2015; Meschede et al.,
2020). For example, proteinaceous tethers between the ER and

mitochondria, ranging from 10 to 25 nm at the smooth ER and
from 50 to 80 nm at the rough ER, have been defined by EM
(Csordás et al., 2006; Giacomello and Pellegrini, 2016). Quanti-
tative analysis of EM images has provided vital clues about the
involvement of MCSs in specific cellular events (Zhao et al.,
2017). However, manual annotation–based organelle segmenta-
tion is labor-intensive and biased in defining organelle param-
eters, and it relies on sufficient imaging resolution and accurate
determination of the organelle boundary. In addition, precise
MCS profiling demands a high-throughput system to account for
variations between samples (Bag et al., 2020; Scorrano et al.,
2019).

Deep learning methods have been developed to recognize
organelles in EM images, mostly one at a time (Haberl et al.,
2018; Xiao et al., 2018; Zhang et al., 2019). Advancement of
EM imaging techniques and computing resources allow deep
learning–based 3D analysis of MCSs based on organelle seg-
mentation in high-resolution volumetric data, which demands
days of machine time for EM imaging and high-performance
computing resources for the analysis of a single cell (Heinrich
et al., 2021; Liu et al., 2020). However, cross-sample compar-
isons of biological samples can easily be complicated by the
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heterogeneity of the cells (Yang et al., 2018), requiring a large
sample size for deep learning–based statistical analysis, which
hardly adapts to the time and resource demands of 3D analysis at
the current stage.

We designed DeepContact, a deep learning protocol for MCS
analysis based on accurate segmentation of individual organelles
by model optimization, with high efficiency and flexibility to
accommodate various types and morphologies of organelles in
various EM samples. The system automates the procedure of
processing the 2D EM slices, segmenting and visualizing MCSs
in versatile width ranges, and quantifying normalized MCS
parameters in large sample sizes, enabling cross-sample contact
analysis in various biological processes. The systemwas verified
in both cultured cells and specific cell types within tissue sam-
ples, revealing unprecedented throughput and details of MCS
profiling in different physiological settings. With a computa-
tionally accessible setup, our pioneering work provides an effi-
cient and comprehensive approach to high-throughput statistical
analyses of MCSs in vitro and in vivo.

Results
Design of DeepContact
To automatically segment organelles and compute theirMCSs by
defining the distance between the cytosolic faces of the organ-
elles (contact width), we established a deep learning–based
method using EM images. The procedure was demonstrated
initially by analyzing the ER-mitochondria (ER-Mito) contact
(Fig. 1).

EM images can be different sizes and resolutions. To stan-
dardize the analysis procedure and reduce the computational
cost of high-resolution images, we preprocessed images by ex-
tracting the region of interest (RoI) and resized them into
standard-sized patches of 1,024 × 1,024 pixels with a resolution
of 10 nm. Subsequently, image intensity was normalized. In the
training stage, we used a sliding window protocol to extract
1,024 × 1,024-pixel patches with a 512-pixel step size, and affine
transform and Gaussian blur were applied to each patch to
generate the training samples. These samples were then used to
train the DeepContact models. Segmenting the ER at image level
may help model the integrative patterns of the ER and exclude
other cisterna-like organelle networks from the model, partic-
ularly the Golgi apparatus. Therefore, we tested several se-
mantic segmentation models, including U-Net (Ronneberger
et al., 2015), LinkNet (Chaurasia and Culurciello, 2017), FPN
(Lin et al., 2016), and PSPnet (Zhao et al., 2016), and their per-
formances are summarized in Table S1. DeepContact adopts
U-Net (Ronneberger et al., 2015) as the backbone for ER seg-
mentation because it achieves the best performance on both Dice
and mean intersection over union (mIoU) metrics. Meanwhile,
we adopted instance segmentation model Mask R-CNN (He
et al., 2017) for mitochondrial segmentation, as mitochondria
are composed of physiologically and functionally individualized
entities, and DeepContact needs to segment each mitochondrion
for contact analysis. To avoid false-positive predictions caused
by the similarity between targeted mitochondria and other or-
ganelles, a top likelihood loss (Xiao et al., 2019) was implanted in

the Mask R-CNN to improve model performance by sampling
the most suspected target regions during training. A similarity
loss was then added for improved feature identification of the
positive and negative proposals (Fig. S1 a).

We randomly cropped five patches on each image during
inference, segmented the organelles, and determined the
boundaries of the targeting organelles on each patch. We pro-
grammed an automatic recording and calculation of organelle
information, including numbers, perimeters, areas, and, most
importantly, the MCS profile. In addition, the width of each
contact point, based on pixel units, was measured and recorded.
Quantification of the ER-Mito contact was usually normalized by
mitochondrial parameters (Yang et al., 2018; Zhao et al., 2017).
The MCS profile was defined as the corresponding pixels lining
the outer membrane of the mitochondria in the current study.
Therefore, the ER-Mito contact ratio is computed as Mito_-
boundary contact divided by Mito_boundary. Mito_boundary
was computed by summing all of the mitochondria boundaries
among the patches from a single EM image, and similarly, Mi-
to_boundary contact was the sum of all contacting mitochondria
boundaries among the patches from a single EM image. The
same principle was used in the lipid droplet (LD)-Mito contact
calculation in subsequent applications.

To verify the accuracy of DeepContact in segmenting or-
ganelles, as a gold standard, a senior expert elaborately anno-
tated six images of U-2 OS cells, which were taken from six
different cells in one section of a new EM sample block that had
never been involved in the training processes. We then ran-
domly cropped five patches from each image, 30 patches in total,
to make up the testing set. We defined the metric match ratio,
which is the total number of correctly predicted pixels divided
by the total number of annotated pixels, to quantify the pre-
diction accuracy. Themeanmatch ratio ofmitochondria, ER, and
LD was 97.64, 87.71, and 98.48%, respectively, and the SDs of the
match ratios were all <10% (Table S2). Comparison of Deep-
Contact segmentation to manual segmentation was also dem-
onstrated by direct visualization (Fig. S2, a and b). DeepContact
modeled the integrative patterns of ER, excluding other
cisterna-like organelle networks from the model, such as the
Golgi apparatus (Fig. S2 c). To further ensure segmentation of
the genuine ER networks by DeepContact, HRP-KDEL dia-
minobenzidine (DAB) staining was used to highlight the ER
structure in the EM picture. Segmentation of ER by DeepContact
coincided mostly with DAB-enhanced HRP-KDEL ER networks
(Fig. S2, e and f). In addition, the top likelihood and similarity
loss implanted in DeepContact was effective in eliminating false
positives for mitochondria (Fig. S1, b–e). These results manifest
the accurate and stable predictions of DeepContact.

To demonstrate the efficiency of DeepContact, we re-
corded the time consumed by DeepContact analysis on a
single Titan 1080Ti graphics processing unit core and com-
pared it to the manual annotation by Labelme. DeepContact
analysis can be divided into five stages: preprocessing, or-
ganelle #1 segmentation, organelle #2 segmentation, visual-
ization, and MCS quantification. As expected, DeepContact
exhibited significant advantages in the steps for segmenting
various organelles when analyzing specific cultured cells or
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tissues (Tables S3, S4, and S5). In general, the program took
seconds for each stage of DeepContact, whereas manual an-
notation lasted at least minutes, sometimes even hours. After
segmentation, the calculation of contact parameters is even
more complicated. An experienced researcher, usually with
the help of software such as ImageJ, takes hours to process the
equivalent amount of data (50 randomly selected patches).
Importantly, the accuracy of the morphometric estimates by
DeepContact was comparable to manual estimates (Fig. S2 g).
These time contrasts indicate that, while ensuring accuracy,
the performance of DeepContact is superior to manual an-
notation in regard to speed, making it highly feasible for
high-throughput analysis.

Optimization of the quantification procedure for MCSs
by DeepContact
Quantitative analysis of MCSs has previously been attempted by
using fluorescent probes at the contact. Therefore, we compared
the commonly used ER-Mito contact indicator with Deep-
Contact. When U-2 OS cells were transfected with either a
rapamycin-induced ER-Mito tethering system (Csordás et al.,
2010) or a split-GFP–based ER-Mito contact indicator (Yang
et al., 2018), mitochondria degeneration (Fig. S3 b) or aggrega-
tion (Fig. S3 c) was readily detected by EM, raising concerns for
MCS measurements when overexpression of split-GFP caused
frequent mitochondrial abnormalities. In contrast, DeepContact
requires no overexpression of probes. Mitochondrial degenera-
tion or aggregation was rarely observed in wild-type U-2 OS

cells (Fig. S3 a). These results suggest that DeepContact is risk-
free for artifacts introduced by probe overexpression.

ER-Mito MCSs in nutrition deprivation, when cells were
cultured in HBSS, have been quantified using various Split-GFP
indicators, including the short (∼10-nm) and long (10–50-nm)
versions (Cieri et al., 2018). In these studies, an increased
number of total MCSs were detected when using the short
version, but not the long version, of the Split-GFP indicators
(Cieri et al., 2018; Yang et al., 2018). Using the contact width
setting in DeepContact, we found that both the number and
length ratio of the ER-Mito contact were significantly increased
in HBSS-treated cells in the shortMCSwidth range (≤10 nm; Fig.
S4, a and b). The number ratio of MCSs in the 10–50-nm range
was not altered, which is consistent with the Split-GFP analysis
(Fig. S4 a). However, the MCS length ratio measured by Deep-
Contact was significantly increased in the 10–50-nm width
range (Fig. S4 b), which was not seen in the previous analysis.
These results suggest that a fluorescent probe–based analysis
may report overall changes in MCS formation upon physiolog-
ical shifts but falls short in picking up the details.

MCSs were shown to possess various width ranges according
to the tethering conditions (Prinz, 2014; Scorrano et al., 2019).
With DeepContact, changes in contact profiling could be dis-
sected on pixel-based width intervals in 1-pixel steps, which
corresponds to a length of 10 nm, from 0 to 10 pixels (0–100
nm). DeepContact was able to resolve these details based on
accurate segmentation of the membrane boundaries of the ER
and mitochondria (Fig. 2, a and b). In starved U-2 OS cells, we

Figure 1. The DeepContact workflow. The large image was acquired from EM. We preprocessed this image by a series of operations, including resizing,
cropping, affine transformation, and normalization to obtain the patch for analysis with a standard size of 1,024 × 1,024 pixels and a resolution of 10 nm. We
adopted fScore loss, IoU loss, Dice loss, and BCE loss to train the ER segmentation model and similarity loss, top likelihood loss, CE loss, bounding box re-
gression loss, and mask IoU loss to train the mitochondria segmentation model. The output of the ER segmentation model is the whole ER region. The output of
the mitochondria segmentation model is all of the individual mitochondria instances. The number, perimeter, area, ratio, and MCS profile are calculated and
reported. The MCS profile includes the lengths and ratios of 1–10-pixel-width intervals represented by different colors. Scale bar, 2 μm.
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noted an increase in the total perimeter of the ER (Fig. 2 c), ER
areas (Fig. 2 d), and ER elongation (Fig. 2 e), an increase in the
number of mitochondria (Fig. 2 f), and a more prominent de-
crease in the mean mitochondrial perimeter (Fig. 2 h) compared
with control cells. In addition, the MCS length ratio was con-
stantly increased in the width interval of 0–60 nm but became
the same when the width range was wider (Fig. 2 k). Thus,
DeepContact is capable of gathering comprehensive contact-
related measurements, including organelle number, perimeter,
area, and morphological geometry (Fig. 2, c–j), as well as pixel-
based width counting (Fig. 2 k), with previously unachieved
precision.

Next, we tested the sensitivity of DeepContact in settings
with more physiological relevance. Autophagic protein EPG-3/
VMP1 has been shown to regulate ER contact with numerous
organelles, including mitochondria (Zhao et al., 2017). When
deleted in cells, the ER-Mito contact is evidently increased. In
contrast, contact site adapter protein VAPa/b is well established
as mediating a variety of ER-based contacts. In the case of ER-
Mito contact, PTPIP51 or Vps13D bridges the two organelles in a
VAP-dependent manner (Guillén-Samander et al., 2021). As a
control, atlastin (ATL) is an ER membrane fusogen, the lack of
which causes an aberrant ER morphology but with no known
impact on ER-Mito contact. Thus, we analyzed VMP1-deleted

Figure 2. Quantitative analysis of ER-Mito contact by DeepContact. (a) Segmentation of the ER, mitochondria, and ER-Mito MCS as colored pixels on the
outer mitochondria membrane spanning a series of width intervals from ER membranes. (b) The color bar indicates color gradients corresponding to 0–
10 pixel-width (0–100 nm, 10-nm resolution) intervals of the MCS in panel a. Nu, nucleus. Scale bar, 1 μm. (c) Total ER perimeter in control and HBSS-treated
U-2 OS cells. (d) Total ER area in control and HBSS-treated U-2 OS cells. (e) ER elongation condition in control and HBSS-treated U-2 OS cells. Elongation
factor, perimeter2/(4π × area). (f) Total number of mitochondria in control and HBSS-treated U-2 OS cells. (g) Total mitochondria perimeter in control and
HBSS-treated U-2 OS cells. (h) Mean mitochondria perimeter in control and HBSS-treated U-2 OS cells. (i) Total mitochondria area in control and HBSS-
treated U-2 OS cells. (j) Mitochondria elongation condition in control and HBSS-treated U-2 OS cells. Elongation factor, perimeter2/(4π × area). (k) Ratio of
MCS length/mitochondria perimeter in 0- to 100-nm-width intervals with HBSS treatment. The sample size of each experimental setting is 30, and individual
dots in the plot represent the mean value of a 15 × 10–μm cellular image. Bars in c–k indicate 95% confidence intervals.
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cells, VAPa/b-depleted cells, and ATL-deleted cells using Deep-
Contact. As expected, DeepContact obtained consistent results
(Fig. S4, c–f) with the functional scenario of these molecular
machineries and the published results obtained with manual
segmentations (Zhao et al., 2017). These results confirm that
DeepContact is capable of detecting changes in MCS profiling in
physiological settings.

EM sample preparations of adherent cells were used to
maintain the native topology of the intracellular organizations,
as well as the morphological status of the organelles. However,
section z-axis levels from the adherent side (equivalent to the
basal side of polarized cells) to the top side (equivalent to the
apical side) may possess different properties in MCS organiza-
tion. To test this hypothesis, we acquired image datasets from
three sections, each with an interval of ∼2.5 μm in the z-axis,
within serial sections of adherent cells on sapphire disks. The
ER-Mito contact length ratio showed no significant differences
between sections (Fig. S4 i). However, the total ER perimeter
(Fig. S4 g) and mean mitochondrial perimeter (Fig. S4 h) were
slightly different in apical sections compared with the basal and
middle sections. These results indicate that, for unbiased
analysis, comparisons between samples from a similar section
level are highly recommended.

We incorporated an active learning framework (Yang et al.,
2017) to reduce the annotation effort by making judicious sug-
gestion on the most effective annotation samples (Fig. 3 a).
Starting as a set of a certain initial number of labeled data, we
iteratively trained our model. During each stage, a new model
was trained and tested. We selected the worst 10% of images
based on the mIoU value, from which we identified organelles
that are missed in prediction as difficult cases. For additional
images to be added in the next round of training, we ensured
that the newly unannotated images contained sufficient “diffi-
cult” cases with similar features so that the model could be
improved. After acquiring the new annotation data, we started
the next round of training using all available annotated images.
Taking drug-induced morphological alterations of mitochondria
as an example, we efficiently incorporated aberrant morpholo-
gies into the mitochondria models via targeted labeling and
training, and improvement of the model was readily verified by
visualization (Fig. 3 b). As a result, we noticed that three mito-
chondrial drugs, carbonyl cyanidem-chlorophenyl hydrazone
(CCCP), oligomycin A1, and mdivi-1, all decreased the ER-Mito
contact ratios in all width interval ranges (Fig. 3 c).

MCS profiling under combined nutrient conditions
Next, we applied DeepContact to a biological setting in which
changes in the MCS profile are important and physiologically
relevant. Contact between organelles is actively involved in
nutrient homeostasis (Lahiri et al., 2015; Prinz et al., 2019). In
addition to the ER-Mito contact extensively analyzed above,
contact between LDs and mitochondria is essential in regulating
lipid metabolism and energy homeostasis (Benador et al., 2019;
Lahiri et al., 2015). To investigate MCS coordination in adapting
to a varied nutritional supply, we performed DeepContact
analysis in U-2 OS cells under three different nutrient con-
ditions, including FBS starvation for the depletion of lipid

resources, glucose and sodium pyruvate starvation, and HBSS
starvation limiting both lipid and sugar intake. Segmentation of
the ER, mitochondria, and LD was performed simultaneously by
DeepContact, and the data were analyzed for both the ER-Mito
and LD-Mito contacts (Fig. 4, a and b). The dimensions and
shapes of the ER and mitochondria were altered incidentally,
and no consistency was observed between starvation treatments
(Fig. S4, j–l). LD expansion was readily detected in cells during
glucose starvation or HBSS treatment, but not in FBS-starved
cells (Fig. 4 c). LD-Mito contact is suggested to be within 30 nm
in width (Lahiri et al., 2015); therefore, ≤30 nm contacts were
summed for LD-Mito contact analysis. Both the ER-Mito contact
in short width intervals (≤10 nm) and the LD-Mito contact were
generally increased under these conditions compared with un-
treated cells (Fig. 4, f, h, i, and k). ER-Mito contact with a width
interval ranging from 20 to 80 nm was slightly decreased when
serum or glucose starvation was applied (Fig. 4, i and l). We also
introduced overfeeding of oleic acid (OA) either before or during
starvation to monitor contact adaptation. Consistently, the
growth of LDs was evident upon OA treatment (Fig. 4, d and e).
Surprisingly, even though LD-Mito contacts were further in-
duced before and during OA conditions, ER-Mito contacts were
generally reduced, particularly in the serum or glucose starva-
tion groups compared with cells with no OA treatment (Fig. 4,
f–l). These results indicate previously unidentified metabolic
coordination between ER-Mito and LD-Mito contacts and dem-
onstrate the ability of DeepContact to reveal systemic changes in
multiple types of MCSs in a comprehensive manner.

MCS profiling in epithelial tissues
Quantitative analysis of MCSs in tissues is challenging due to
variations in cell type and complicated cell–cell entanglement.
At the same time, it is urgently needed because MCS organiza-
tion is tightly linked to physiological or pathological processes.
Therefore, we developed a DeepContact tissue model for cell
type–specific MCS analysis. Sertoli cells are the only somatic cell
type in the seminiferous epithelium, which provides structural
support and nourishment for spermatogenesis (Hess and Vogl,
2015). Surrounded by Sertoli cells, germ cells develop in a cyclic
manner during migration from the basal to the adluminal site of
the seminiferous epithelium (Hess and Renato de Franca, 2008;
Leblond and Clermont, 1952). Organelle communication within
Sertoli cells has been suggested to play a role in the progression
of spermatogenesis throughout the seminiferous epithelial cycle
(Lyon et al., 2017; Vogl et al., 2018). We examined whether the
dynamics of the ER-Mito contact in these cells fit with the cycle.
Sertoli cells possess an enormous territory with basal-apical
polarities (Hess and Vogl, 2015). For the reasons discussed
above, we focused on the basal sections of these cells for unbi-
ased ER-Mito contact probing by DeepContact (Fig. S5). The
seminiferous epithelium cycle of the mouse has been classified
into 12 stages, which are roughly grouped into early, middle, and
late stages (Cheng, 2009). Both the total ER perimeter and mean
mitochondrial perimeter were similar between the early and
middle stages, and both were increased significantly in the late
stages (Fig. 5, a and c). In contrast, the elongation factor for both
the ER and mitochondria had an apparent decrease in the late
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stages (Fig. 5, b and d). Furthermore, the ER-Mito contact length
ratio in ≤30-nm-width intervals appeared to be lower in the late
stage than the early and middle stages. No substantial difference
was observed between stages when the width intervals were
≥40 nm (Fig. 5 e). Next, we analyzed ER-Mito contact profiling
using width intervals ≤30 nm in seminiferous tubule samples
with adequate staging features in a large view of the ultrathin

section, so that corresponding stages could be determined ac-
curately (Fig. S5). The contact increased gradually from stage I,
reaching the highest level at late stage VII, before decreasing a
little at late stage VIII, but then decreased significantly at stage
IX and was sustained at a low level until stage XII (Fig. 5 f).
Notably, cisternal ER alignment with elongated mitochondria
was observed in most cases in late stage VII (Fig. 5 g), whereas

Figure 3. Incorporation of new morphologies in the mitochondria model via the active learning function of DeepContact. (a) Demonstration of the
active learning procedure. (b) Incorporation of new morphologies induced by 4 h of treatment with 10 μM CCCP, 10 μg/ml oligomycin A1, and 50 μM mdivi-
1 through the active learning function of DeepContact. Scale bar, 2 μm. (c)MCS length ratio in 0- to 100-nm-width intervals in control, CCCP, oligomycin, and
mdivi-1 treatments. Arrowheads in b indicate mitochondria that are not segmented by the original model but are segmented by the refined model through two
rounds of active-learning process. The sample size of each experimental setting is 30, and individual dots in the plot represent the mean value of a 15 × 10–μm
cellular image. Bars in c indicate 95% confidence intervals.
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Figure 4. MCS coordinations in various nutrient conditions. (a) Segmentation of LD, mitochondria, ER, LD-Mito MCS, and ER-Mito MCS by DeepContact.
Scale bar, 2 μm. (b) The color bar indicates color gradients corresponding to 0- to 100-nm-width intervals of the ER-MitoMCS in panel a. (c) Total LD perimeter
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swelled circular ER structures often touched round mitochon-
dria in stage IX (Fig. 5 h). Taken together, these results of the
DeepContact tissue model reveal a wave of ER-Mito contact
changes in Sertoli cells, accompanied by morphological shifts in
the participating organelles, which are likely tightly associated
with functional switching in the cell.

Discussion
To systematically quantify intracellular MCS profiles using EM
images, we designed DeepContact and tailored it for high-
throughput capacity. The accuracy and efficiency of the proce-
dure is ensured by following modifications to the conventional
workflow. First, EM samples can be prepared by the reduced
osmium-thiocarbohydrazide-osmium (ROTO) method, which
highlights the organelle outline by preferential staining of lipid
bilayers and subsequently benefits the recognition of organellar
boundaries. Second, the active learning procedure allows human
intervention by interactive visual checking and refining the
models by targeted labeling, which then ensures the incorpo-
ration of new organelle morphologies in an accurate and effi-
cient manner. Along these lines, top likelihood sampling
combined with similarity loss is applied in segmentation models
to avoid the potential risk of false positives. Finally, MCS
measurements are plotted with pixel-based width intervals,
which provides full-scale information on the contact, including
features of the tethering conditions. Such adjustments enable
counting not only the number of MCSs, but also accurate width-
based lengths of each MCS, as the width of an MCS is a key
structural element for its function and is tightly regulated in the
cell (Giacomello and Pellegrini, 2016).

EM image–based quantification by DeepContact bypasses the
need for the fluorescent indicators commonly used in optical
microscopy–based MCS analysis. As revealed here, and consis-
tent with previous reports, overexpression of these indicators,
including Split-GFP, induces artificial tethering of correspond-
ing organelles, which results in abnormal organelle morpholo-
gies (Kakimoto et al., 2018; Tashiro et al., 2020). In addition,
contact analysis based on fluorescence colocalization is limited
by optical resolution, and it is usually challenging to introduce
the indicators when tissue samples are used instead of cultured
cells. Therefore, DeepContact offers unprecedented precision in
analyzing a variety of MCSs in cultured cells or tissue samples.

Using DeepContact, we were able to reveal subtle specific
changes in MCS profiles with cells under different nutrient
conditions. In particular, we found that the length ratio of both
LD-Mito and ER-Mito MCSs in short-range (≤10-nm) width

intervals are mostly increased in nutrient-depleted conditions,
and excessive fatty acids, in the form of OA treatment, caused a
further increase in LD-Mito contact but a decrease in ER-Mito
contact. These findings support cross-talk between LD-Mito and
ER-Mito contacts in regulating lipid and energy homeostasis. In
a simple course of starvation, especially glucose starvation or
HBSS-induced starvation, intracellular lipids are quickly gath-
ered by either elevated intake or redistribution through au-
tophagy and flooded into LDs. A balance is then reached with
help from both LD-Mito and ER-Mito contacts. Interestingly,
when such a balance is once again challenged by a sudden supply
of fatty acids, LD-Mito contact appears to become dominant in
handling the response, whereas ER-Mito contact likely makes
way for this. A mechanistic investigation of these changes
warrants a further understanding of the metabolic pathway.

We also took advantage of DeepContact by probing the MCS
profiles in an epithelial tissue model. Fully differentiated Sertoli
cells adapt subcellular reorganization along with the procession
of the seminiferous epithelial cycle and spermatogenesis (Ueno
and Mori, 1990). Morphometric studies of subcellular organelles
were performed extensively prior to the 1990s, revealing cyclic
alterations of several organelles in number or area parallel with
the seminiferous epithelial cycle, including mitochondria, ER,
Golgi apparatus, and primary and secondary lysosomes (Kerr,
1988; Morales et al., 1986; Ueno and Mori, 1990). With Deep-
Contact, we found that ER-Mito contact changes in a wave-like
pattern in mouse Sertoli cells. The wave peaks in late stage VII
and quickly bottoms out in stage IX. Coincidently, in stage VIII,
which is the critical switching point in the wave, two major
events in the process of spermatogenesis occur concurrently:
mature sperm is released to the lumen of the seminiferous tu-
bule, and the blood–testis barrier is reconstructed to facilitate
entry of the preleptotene primary spermatocyte into the
immune-privileged luminal compartment from the basal com-
partment. Importantly, both events are orchestrated by Sertoli
cells (Cheng, 2009). It is reasonable to speculate that ER-Mito
contact rearrangements play a key role in spermatogenesis.
Similarly, in the late stages of spermatogenesis, from stage IX to
stage XI, primary spermatocytes proceed in prophase differen-
tiation steps, and the only generation of spermatids gradually
elongate and develop more compacted nuclei; however, no new
associations of germ cells with the Sertoli cell occur in such late
stages of the seminiferous epithelial cycle. Two successive
meiotic divisions occur at stage XII, and the highest numbers of
spermatid are reached at stages I–II, which require tremendous
new associations with Sertoli cells. Such changes may demand
more actively integrated functions of Sertoli cells, which are

in complete medium (Whole), FBS starvation (–FBS), glucose and sodium pyruvate starvation (–Glu&. –S.P.), and HBSS starvation conditions. (d) Total LD
perimeter with OA treatment 10 h before (Pre-OA) or during (OA) starvation treatment in Whole, –FBS, –Glu&. –S.P., and HBSS conditions. Units in c and d are
pixels. (e) Levels of total LD perimeter inWhole, –FBS, –Glu&. –S.P., and HBSS conditions combined with Pre-OA or OA treatments. (f) Length ratio of <30-nm
LD-Mito MCS in Whole, –FBS, –Glu&. –S.P., and HBSS conditions. (g) Length ratio of <30-nm LD-Mito MCS with Pre-OA or OA treatment in Whole, –FBS,
–Glu&. –S.P., and HBSS conditions. (h) Levels of LD-Mito MCS in Whole, –FBS, –Glu&. –S.P., and HBSS conditions combined with Pre-OA or OA treatments.
(i) ER-Mito MCS length ratio in 0- to 100-nm-width intervals in Whole, –FBS, –Glu&. –S.P., and HBSS conditions. (j) MCS length ratio in 0- to 100-nm-width
intervals with Pre-OA or OA treatment in Whole, –FBS, –Glu&. –S.P., and HBSS conditions. (k and l) Levels of <10-nm (k) and 20–80-nm (l) ER-Mito MCS
length ratios in Whole, –FBS, –Glu&. –S.P., and HBSS conditions combined with Pre-OA or OA treatments. The sample size of each experimental setting is 30,
and individual dots in the plot represent the mean value of a 15 × 10–μm cellular image. Bars in c, d, f, g, i, and j indicate 95% confidence intervals.
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Figure 5. MCS wave in Sertoli cells of seminiferous epithelial tissue. (a–e) Total ER perimeter (a), ER elongation condition (b), mean mitochondrial
perimeter (c), mitochondria elongation condition (d), and MCS length ratio in 0- to 100-nm-width intervals (e) in early, middle, and late stages of the sem-
iniferous epithelium cycle. n = 60; 15 images from four seminiferous epithelial tubules were included in each sampling. (f) ER-Mito MCS length ratio in
representative stages of the mouse epithelium cycle. Significance was calculated between neighboring stages. Data set from stage I–II was arranged in both the
beginning and the last column of the plot for a statistical comparison between neighboring stages. n = 30; 15 images from two seminiferous epithelial tubules
were included in the sampling of each stage. Individual dots in the plots in a, b, d, and f represent the mean value of a Sertoli cell in the basal area of the
seminiferous tubule (15 × 10–μm size). Significance was calculated by unpaired t test with Welsh’s correction. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P <
0.0001 with 95% confidence intervals. (g and h) Segmentation of ER, mitochondria, ER-Mito MCS, and enlarged view of ER-Mito MCS in ≤30-nm-width
intervals of the Sertoli cells from the basal area of a seminiferous tubule in late stage VII (g) and stage IX (h). Bar, 1 μm. Individual dots in the plot represent the
mean value of a 15 × 10–μm cellular image. Bars in a–f indicate 95% confidence intervals.
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achieved by increased levels of ER-Mito associations. As ex-
pected, the overall levels of ER-Mito contact quantified by
DeepContact appear to correlate well with the number of sper-
matids associated with the Sertoli cell and major dynamics of
spermatogenesis. These findings collectively confirm the power
of DeepContact.

Materials and methods
Cell culture
U-2 OS (ATCC) cells were cultured in DMEM supplemented with
10% FBS and 1% penicillin-streptomycin at 37°C in a 5% CO2 at-
mosphere. Three starvation conditions were applied by depleting
nutrients from the complete medium for 12 h, including FBS
deprivation, glucose and sodium pyruvate deprivation, and de-
pletion of all energy substrates using HBSS. OA was supplied at
200 μM for 12 h either before or during the starvation treatment.

All drugs were obtained from Sigma-Aldrich. CCCP, mdivi-1,
and oligomycin A1 were used to induce mitochondrial abnor-
malities. We applied 10 μM CCCP, 50 μM mdivi-1, and 10 μg/ml
oligomycin A1 in complete medium for 4 h. Standard procedures
of Lipofectamine 3000 (Thermo Fisher Scientific) transfection
were used to transfect pDisplay-HRP-KDEL (#85582; Addgene)
or pDisplay hollow vector (V66020; Invitrogen) to the cells.

HPR staining for EM
DAB staining was performed according to previously reported
procedures (Galmes et al., 2016; Shi et al., 2017) with slight
modifications. Briefly, 1.25% glutaraldehyde in PBS was used to
fix the cell monolayer for 1 h on ice. Fixatives were neutralized
and washed with 0.1 M ammonium phosphate, pH 7.4, for 5 min
three times, 20 mM glycine in PBS for 5 min, and PBS for 2 min
three times on ice. DAB Kit (CWBIO) was used to stain cells for
20min on ice, followed by three 2-min rinses in chilled PBS. The
formation of DAB polymer could be checked by transmission
light microscopy. Stained cells could be stored in 2.5% glutar-
aldehyde in a refrigerator if not proceeding directly to EM
sample preparation processes.

EM sample preparation of cultured cells
EM sample preparations of adherent cells were used for all
cultured cells to keep the topology of the subcellular organ-
izations. Sapphire disks (Wulundes, 3 × 0.16mm)were placed on
the bottom of a 30-mm Petri dish and coated with 0.02% poly-
lysine for 30 min, and then washed twice with culture medium
after withdrawing the coatingmedium. U-2 OS cells were seeded
on the Petri dish with the sapphire disk and allowed to reach
∼80% confluence before fixation. Adherent conditions of the cell
monolayers on the sapphire disk were maintained through the
whole EM sample preparation procedure to retain the physio-
logical topology of the subcellular structures. ROTO was used to
enhance the contrast of the lipid-based membranous structures
(Tapia et al., 2012) with slight modifications. Briefly, cells were
fixedwith 2.5% (vol/vol) glutaraldehyde in phosphate buffer (0.1
M, pH 7.4) and washed four times in phosphate buffer, then
immersed in 1% (wt/vol) OsO4 and 1.5% (wt/vol) potassium
ferricyanide aqueous solution at 4°C for 30 min. After washing,

cells were incubated in filtered 1% thiocarbohydrazide (Sigma-
Aldrich) solution at room temperature for 15 min, and then with
1% unbuffered OsO4 at 4°C for 30 min and 2% uranyl acetate at
room temperature for 1 h, followed by four rinses in ddH2O for
6 min each between each step. Cells were then dehydrated
through graded ethanol (30, 50, 70, 80, 90%, and 2 × 100%, 5min
each) into pure acetone (2 × 5 min). Dehydrated samples were
infiltrated in graded mixtures (3:1, 1:1, and 1:3) of acetone with
SPI-PON812 resin (21 ml SPI-PON812, 13 ml dodecenyl succinic
anhydride, and 11 ml nadic methyl anhydride), and then pure
resin. Finally, a sapphire disk with a cell monolayer facing up-
ward was embedded in the bottom of a tubule mold (GP130-25;
EMCN) filled with pure resin containing 1.5% BDMA accelerator.
Resin samples were polymerized for 48 h at 60°C. The sapphire
disk was removed after a brief cold shock of the resin sample
blocks with liquid nitrogen.

Animals
10-wk-old male CD-1 mice were housed in groups of three to five
at 22–24°C with a 12-h light/dark cycle. Animals had access to
water and food ad libitum. All experiments were approved by
the Animal Care Committee at the Institute of Biophysics (li-
cense no. SYXK2016-19).

EM sample preparation of seminiferous tissues
The testis was exposed in the lower abdomen after anesthetizing
the mice via isoflurane inhalation. A pair of testes were tran-
spierced with a 26-gauge needle in the middle shaft of the short
axis and injected slowly with 0.2 ml first fixative (2% PFA + 2.5%
glutaraldehyde in PBS) from one end of the long axis for brief
fixation of the seminiferous tissues under physiological con-
ditions. The testes were then dissected out and immersed into
fresh first fixative. The tunica albuginea was carefully removed
using ophthalmic scissors, and bundles of seminiferous tissue
with <20 seminiferous tubules were gently dissected using the
ophthalmic scalpel and further fixed in first fixative with gentle
shaking for 4 h under 4°C refrigerator. ROTO procedures were
adapted for the seminiferous tissue sample preparation. Dis-
sected tissue was first immersed in 1% (wt/vol) OsO4 and 1.5%
(wt/vol) buffered with 0.1 M cacodylate (pH 7.4) at 4°C for
90 min. Tissues were incubated in filtered 1% thiocarbohy-
drazide at room temperature for 30 min, 1% unbuffered OsO4

aqueous solution at 4°C for 90 min, and 2% uranyl acetate
aqueous solution at 4°C overnight. Triple rinses were performed
in ddH2O for 30 min between steps. The next day, progressive
lowering temperature dehydration was performed in the freeze
substitution device (AFS2; Leica) to reduce extraction-induced
changes to the morphology of the membranous structures
(Carlemalm et al., 1985). After warming up the dehydrated
sample to room temperature in 100% ethanol, the ethanol was
exchanged with 100% acetone twice. Dehydrated samples were
infiltrated in graded mixtures (3:1, 1:1, and 1:3) of acetone with
SPI-PON812 resin, then pure resin for 2 d with exchange every
12 h. Seminiferous tissue bundles were embedded in pure resin
with 1.5% BDMA accelerator and aligned longitudinally with the
wells of embedding mold and polymerized in an oven at 45°C for
24 h and 60°C for 48 h.
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Ultrathin sectioning
ROTO-prepared samples of both U-2 OS cells and seminiferous
tissue were cut into ultrathin sections 70-nm-thick using a mi-
crotome (EM UC6; Leica), collected with PE tape mixed with
carbon nanoparticles, and then mounted on a wafer as support
(Li et al., 2017). Serial ultra-thin sections of sapphire disk–
assisted adherent U-2 OS cells were cut by AutoCUTS (Li et al.,
2017) to compare membrane contact conditions among sections
from the basal, middle, and apical Z-level.

Scanning field emission EM data acquisition
For U-2 OS cells, 3,072 × 2,048 images at 5-nm resolution were
acquired in the main cytoplasmic area near the nuclei using a
circular backscatter (FEI Helios Nanolab 600i dual-beam scan-
ning EM) detector under immersion high-magnification mode
(2-kV accelerating voltage, 0.34-nA beam current, 2-μs dwell
time, and 400-V reverse bias voltage). For seminiferous sam-
ples, a map view of a whole seminiferous tubule was acquired to
stage the seminiferous cycle according to the cellular associa-
tions between the germ cells and Sertoli cells, mitosis/meiosis
status of the germ cells, presence of one or two generations of
spermatids, and the differentiation status of spermatids (Hess
and Renato de Franca, 2008; Oakberg, 1956). The latter includes
the perinucleus formation of the acrosomal granules, capping of
the acrosomes, formation of the tail and cytoplasmic residual
bodies, and condensation of the chromatin of the spermatid
(Hess and Renato de Franca, 2008). Stages VII, VIII, and IX are
those before, during, and after spermiation, respectively. Stage
XII and I–II correspond to those during and after the meiotic
divisions of the spermatocytes, respectively. Sertoli cells are
irregularly shaped, spanning an ∼100-μm range from the very
basal to the adluminal compartment of the seminiferous epi-
thelium. Targeted 1,024 × 1,526 (Fig. S5) images at 10-nm reso-
lution were acquired in the basal region of the Sertoli cell to
avoid basal-apical polarity-induced variance using a circular
backscatter (FEI Helios Nanolab 600i dual-beam scanning EM)
detector under immersion high magnification mode (2-kV ac-
celerating voltage, 0.69-nA beam current, 5-μs dwell time, and
400-V reverse bias voltage).

Transmission EM data acquisition
ROTO-prepared Cos7 cells with EPG-3/VMP1 deletion, VAPa/b
depletion, and ATL deletion kindly provided by other re-
searchers (Zhao et al., 2017) were cut into 70-nm-thick sections
and examined under a transmission electron microscope (FEI
Tecnai Spirit120 kV) equipped with Morada G3 (EMsis) at
6,800× with 4.68-nm resolution under 100-kV accelerating
voltage.

Data annotation
Labelme software (Torralba et al., 2010) was used for manual
annotation and segmentation. For cultured cell mitochondria, ER
and LDs are annotated on 5-nm-resolution EM images. Ap-
proximately 60 EM images of U-2 OS cells and an additional 17
EM images of TM4 cells (a Sertoli cell line) were annotated to
train the mitochondria model. Four EM images of TM4 cells and

12 EM images of U-2 OS cells were annotated to train the ER
model. Approximately 20 EM images of U-2 OS cells in normal
culture conditions or with LD induction by OA treatment and
HBSS treatment were annotated to train the LD model. For
Sertoli cells, we first annotated the plasma membrane in the
images of the seminiferous epithelial tissue, which was then
used to extract the RoI to exclude the cellular areas of various
kinds of germ cells and peripheral smooth muscle cells. The
mitochondria and ER were elaborately annotated by Labelme in
∼50 selected representative images from stage I–II, stage III, late
stage VII, stage IX, and stage XII to initialize the DeepContact
model. The annotated data were randomly split in a 3:1 ratio to
form the training: validation set. After training the initially la-
beled dataset, we evaluated the performance and added the
training set as needed. An active learning framework was used
to reduce the annotation effort by making judicious suggestions
on the most effective annotation samples. Details of the active
learning framework can be found in Fig. 3.

Top likelihood sampling
Cellular structures possessing similar morphological features as
the targeted organelle may cause false positives in organelle
segmentation in EM images. Here, we propose a top likelihood
sampling strategy incorporating the top likelihood loss (Xiao
et al., 2019) in the Mask R-CNN (He et al., 2020) model, which
samples the most suspected target regions during training. The
top likelihood loss selects the top scoring negative anchors on
the Region Proposal Network (RPN) and optimizes them. The
anchors with top scores should be more representative of the
suspected target regions as the training progresses. On the other
hand, as long as these top scoring anchors are minimized, all
anchors are simultaneously optimized toward negative. The
RPN loss with the top likelihood sampling is expressed as

Ltploss � 1
Npos

X

i2 (lowestpi)

�
Lcls

�
pi, p∗i � 1

� + λLreg
�
ti, t∗i

��
,

Ltnloss � 1
Nneg

X

i2 (toppi)
Lcls

�
pi, p∗i � 0

�
.

A similarity loss is then added to further identify the selected
negative proposals from positive proposals. Fig. S1 a shows the
detailed framework for implementing the top likelihood sam-
pling with similarity loss. Fig. S1, b–e, shows the effectiveness of
such implementation.

Training details
For the Mask R-CNNmodel, the threshold score of detection as a
mask is set as the default value of 0.5. The backbone network
was Resnet101, and we used the stochastic gradient descent
optimization method. The learning rate was set to 0.001 with a
weight decay of 0.001. We first iterated 15 epochs to train the
network head and iterate another 10 epochs to train all layers.
The overall training procedure was continued for ≤25 epochs
until the loss reached equilibrium. The learning rate of the
U-Net model was set at 0.0005 with a weight decay of 0.0003.
The training procedure for U-Net lasted for 130 epochs until it
reached equilibrium.
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Deep-learning analysis procedure
For cultured cells, all samples are selected for the analysis
(Fig. 1). For each sample, the well-trained DeepContact model
was then used to segment each mitochondrion instance and the
ER region. For Sertoli cells, DeepContact extracts the RoI, which
is the area within the Sertoli cell territory determined by an-
notation of the plasma membrane. The IoU, which represents
the ratio of the RoI area in the whole image, is computed for each
sample. Only samples with IoU > 0.15 are selected for analysis
(Fig. S5). Next, DeepContact extracts the boundary of each mi-
tochondrion to compute the ER-Mito contact according to the
distances between the boundaries of the mitochondria and ER
region. Finally, the ER-Mito MCS length ratio is computed as

Ratio � mito boundarycontact
�
mito boundary,

where mito_boundary refers to the length of all boundaries of
the mitochondria among the patches generated from one EM
image, and mito_boundarycontact refers to the length of all con-
tact between the mitochondria and ER among the patches gen-
erated from one EM image.

Visualization and quantitative analysis of MCS distributions in
different length intervals
To plot the MCS distribution with pixel-based width intervals
among the contact boundary, we quantified each pixel’s contact
length on the edge of the organelle. Biologically, the contact
satisfies one-to-one mapping; namely, each site on one organelle
can communicate only with a unique site on another organelle.
However, the size of some sites is only 1–2 nm, whereas the
resolution of an analyzed image is 10 nm, limiting the applica-
tion of this principle in the analysis. Nevertheless, we chose a
tradeoff strategy that a pair of pixels (sites) has contact if there is
no other site that has a distance 1 pixel (>10 nm) shorter than the
distance of the pairs. Taking the ER-Mito MCS as an example,
the procedure for quantifying the contact length ratio is as fol-
lows: define a value threshold; a pixel on the mitochondria edge
is considered to contact a pixel on the ER if they have a distance
less than or equal to the threshold (i.e., 10 pixels); extract the
edge of the ER (Edgeer) and edge of the mitochondria (Edgemito)
separately; find the pixels on the mitochondria that overlap with
the ER (these pixels will not be taken into consideration for
contact analysis); define the matrix MinDistance, which repre-
sents the minimum distance on each ER edge with at least one
pixel on the mitochondria edge within the distance; search the
pixels within the threshold on the mitochondria edge; ignore the
ER edge if its distance from the mitochondria edge is 1 pixel
greater than its MinDistance value; find the minimum distance
that the ER edge has contact with the mitochondria edge and
record the value in DistanceMap; and define the mitochondria
edges that overlap with ER areas with DistanceMap values of 0.

The pseudo-algorithm is summarized as follows: Algorithm
1 Calculate Contacting

Require: Mito: Prediction of mitochondria; ER: Prediction of ER;
threshold: the maximum distance which considers as a contact.

Ensure: nmito, ncon: Number of mitochondria and
mitochondria-ER contact;

lenmito, lencon: Length of mitochondria and mitochondria-
ER contact;

MinDistance: Distance on ER edge between edge of mito-
chondria and ER;

DistanceMap: Distance on the mitochondria between edge of
mitochondria and ER;

Canny: Canny Operator to extract the edge of each object;
ConnectedComponents: find connected regions of each mask;
ncon ← 0
initialize MinDistance ← threshold + 1
initialize DistanceMap ← threshold + 1
overlap ← Mito&ER
edgemito ← Canny(Mito)
edgeer ← Canny(ER)
nmito ← ConnectedComponents(Mito)
for Every pixel (i,j) of edgeer do
if not overlap[i][j] then
for threshold pixels (x,y) of mitochondria around ER do
if not overlap[x][y] then
Minimum distance der between Mitochondria and ER
MinDistance[i][j] ← der
end if
end for
end if
end for
for Every pixel (i,j) of edgemito do
if not overlap[i][j] then
flagcontact ← False
for theshold pixels (x,y) of ER around mitochondria do
Minimum distance dmito between Mitochondria and ER
if dmito < MinDistance[x][y] + 1 then
DistanceMap[i][j] ← dmito
flagcontact ← True
end if
end for
if flagcontact then
ncon ← ncon + 1
end if
end if
end for
if overlap and edgemito then
DistanceMap[i][j] ← 0
end if
lenmito ← SUM(edgemito)
lencon ← SUM(DistanceMap[i][j] < threshold + 1)

Computation settings
For the Mask R-CNN baseline, we directly used its public im-
plementation (https://github.com/matterport/Mask_RCNN).
For the U-Net baseline, we used the PyTorch module (https://
github.com/qubvel/segmentation_models.pytorch/tree/V0.1.0).
For contact analysis, we implemented our algorithms based on
Python. Computational resources were common settings for lab
workstations. The operating system was Ubuntu 14.04 LTS 64-
bit. We trained and inferenced models on a single GeForce
GTX 1080Ti graphics processing unit. The other hardware
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information is as follows: 128G memory and 40 core Intel Xeon
CPU E5-2640 v4 @ 2.40 GHz.

Quantification and statistical analysis
The quantitative parameters generated from DeepContact were
the number of mitochondria (Mito_number), total perimeter (p)
of the mitochondria (Mito_length), mean perimeter of the mi-
tochondria (Mito_length_mean), total number of ER-Mito MCSs
(ER-Mito_contact_number), total perimeter and total area of the
ER, factor of mitochondrial and ER elongation (p2/[4π × area];
Zhao et al., 2017), and total length of the ER-Mito MCS (ER-
Mito_contact_length). Significance was calculated by two-tailed
unpaired t test with Welch’s correction (nonparametric, do not
assume equal SDs). Data distribution was assumed to be normal
but was not formally tested. All types of plots, heatmaps, and
statistics were generated using GraphPad Prism 8.3.0. Individual
values in each plot indicate a summed or averaged value of the
corresponding parameters from one micrograph, representing
the organelle information from the main body part of a cell. The
sample size in each experimental setting was 30 unless other-
wise indicated. Measurements were from distinct samples.

AMIRA version of DeepContact
To develop a user-friendly GUI, we incorporated DeepContact
into AMIRA (Stalling et al., 2005), a popular commercial soft-
ware for electron microscope image analysis. We also provide a
detailed tutorial to guide users in installing and using the
DeepContact module on AMIRA. The tutorial is available on
GitHub: https://github.com/LX-doctorAI1/DeepContact/blob/
main/DeepContact_Tutorial.pdf.

Online supplemental material
Fig. S1 shows the workflow in the incorporation of top likelihood
sampling and similarity loss into the Mask R-CNN framework
and its effectiveness by virtualization. Fig. S2 shows the con-
formities of organelle segmentation by DeepContact compared
with manual annotation and ER staining. Fig. S3. shows the
abnormalities of mitochondria in artificial tether or contact in-
dicator expression systems. Fig. S4 shows the profiling of MCS
and organelle morphology by DeepContact in various experi-
mental systems. Fig. S5 shows the workflow for analyzing ER-
Mito contact in Sertoli cells using DeepContact. Table S1 is the
conformities of DeepContact organelle models with manual an-
notation. Table S2 is the comparison of ER segmentation using
different models. Tables S3, S4, and S5 are the time consumption
comparison between manual annotation and DeepContact
analysis of the ER-MitoMCS and LD-MitoMCS of a cultured cell,
and of the ER-Mito MCS of a Sertoli cell in seminiferous epi-
thelial tissue.

Data availability
Several representative trained models (https://doi.org/10.6084/
m9.figshare.19845940), corresponding training data annotated
by Labelme, and example images for testing (https://doi.org/10.
6084/m9.figshare.19898404.v3) are publicly available at the
figshare repository. The DeepContact source code is available on
GitHub: https://github.com/LX-doctorAI1/DeepContact.
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Figure S1. Effectiveness of the incorporation of top likelihood sampling and similarity loss into the Mask R-CNN framework. (a) The network adopts
ResNet101-FPN as the backbone. A top likelihood loss is applied to sample the top scoring negative anchors when training RPN and the top scoring negative
proposals when training the following branches. A similarity loss is simultaneously added on the fc-layer of the Fast R-CNN branch to discriminate negative
proposals from positive ones. (b) Original image. (c) Image with ground-truth labels. (d) Prediction from baseline Mask R-CNN. (e) Prediction of Mask R-CNN
with top likelihood sampling and similarity loss added. Red dotted rectangles indicate a reduction of false positives.
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Figure S2. Conformities of organelle segmentation by DeepContact with manual and ER staining. (a) Original patch image of a U-2 OS cell. (b–d)
Segmentation of mitochondria (b), LD (c), and ER (d) by manual annotation and DeepContact. Red-colored areas, intersections of DeepContact segmentation
with manual annotation; green, manual annotation only; and blue, DeepContact segmentation only; Nu, nucleus. Scale bar, 2 μm. Arrowheads indicate Golgi
apparatus. (e) Original patch EM image of a HRP-KDEL–transfected U-2 OS cell stained with DAB. (f) Segmentation of ER by DeepContact. Scale bar, 2 μm.
(g) Comparison of MCS length/mitochondria perimeter ratio in 0- to 100-nm-width intervals with the combined boundary lines of ER and mitochondria
segmented by the Labelme or DeepContact models. The sample size is six. Data are presented as mean values with 95% confidence intervals.
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Figure S3. Mitochondrial defects in artificial tether or contact indicator expression systems. (a) Normal mitochondrial morphologies in wild-type
U-2 OS cells. (b) Degraded morphologies in a stable cell line reconstructed with the rapamycin-induced ER-Mito tethering system. (c) Aggregated mor-
phologies in single-cell clones reconstructed with ER-Mito MCS. Scale bar, 2 μm.
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Figure S4. Profiling of MCS and organelle morphology by DeepContact in various experimental systems. (a) Alterations in the MCS number relative to
the total mitochondria number in width intervals of 0–10 or 10–50 nm with HBSS starvation. (b) Alterations in MCS length relative to the mitochondrial
perimeter. (c) Alterations in the Mito-ER MCS length ratio in 0- to 30-nm-width intervals with VMP1 deletion. (d) MCS length ratio profiling in 0- to 100-nm-
width intervals with VMP1 deletion. (e) Alterations in the MCS length ratio in 0- to 30-nm-width intervals with VAPa/b or ATL deletion and their combined
depletion. (f) MCS length ratio profiling in 0- to 100-nm-width intervals with VAPa/b or ATL deletion and their combined depletion. (g) Total ER perimeter in
sections from the basal, middle, and apical level of the adherent U-2 OS cells. (h)Mean mitochondrial perimeter in sections from the basal, middle, and apical
level of the adherent U-2 OS cells. (i)MCS length ratio in MCS 0- to 100-nm-width intervals in sections from the basal, middle, and apical level of the adherent
U-2 OS cells. (j) Total perimeter of ER in complete medium (Whole), FBS starvation (–FBS), glucose and sodium pyruvate starvation (–Glu&. –S.P.), and HBSS
starvation conditions in combination with OA treatment 10 h before (Pre-OA) or during (OA) starvation treatment of the cells. (k) Total perimeter of mito-
chondria in Whole, –FBS, –Glu&. –S.P., and HBSS conditions combined with Pre-OA or OA treatments. (l) Mean perimeter of mitochondria in Whole, –FBS,
–Glu&. –S.P., and HBSS conditions combined with Pre-OA or OA treatments. The sample size of each experimental setting is 30, and individual dots in the plot
represent the mean value of a 15 × 10–μm cellular image. Bars indicate 95% confidence intervals.
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Provided online are Tables S1, S2, S3, S4, and S5. Table S1 shows performance in ER segmentation using different models. Table S2
shows conformities of DeepContact organelle models with manual annotation. Table S3 shows time consumption comparison
between Labelme manual annotation and DeepContact analysis of the ER-Mito MCS of a cultured cell. Table S4 shows time
consumption comparison between Labelme manual annotation and DeepContact analysis of the LD-Mito MCS of a cultured cell.
Table S5 shows time consumption comparison between Labelme manual annotation and DeepContact analysis of the ER-Mito MCS
of a Sertoli cell in seminiferous epithelial tissue.

Figure S5. Theworkflow for analyzing ER-Mito contact in Sertoli cells using DeepContact. The large image was acquired from EM, and the staging image
was cropped from the large view. The annotations include the plasma membrane, mitochondrion, and ER of the Sertoli cell. The plasma membrane is used to
extract the RoI, which is the area within the Sertoli cell territory. We preprocess the staging image in a series of operations, including resizing, random flip,
affine transform, Gaussian blur, cropping, and normalization, to obtain patches with a standard size of 1,024 × 1,024 pixels and resolution of 10 nm. The IoU,
which represents the ratio of the RoI area according to the whole image, is computed for each sample. Only samples with IoU > 0.15 are selected for analysis.
We adopted fScore loss, IoU loss, Dice loss, and BCE loss to train the ER segmentation model and similarity loss, top likelihood loss, CE loss, bounding box
regression loss, and mask IoU loss to train the mitochondria segmentation model. The output of the ER segmentation model is the whole ER region. The output
of the mitochondria segmentation model is the instance of an individual mitochondrion. The number, perimeter, area, ratio, and MCS profile are calculated by
DeepContact using ER areas and mitochondrial instances. The MCS profile includes the length and ratio for 1- to 10-pixel-width intervals, represented by
different colors. Scale bar in large and middle size view of the left panel, 10 μm; in targeted basal view of the left panel and patch view, 2 μm; in the enlarged
view of the right panel, 0.5 μm.
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