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OBJECTIVE—The nuclear receptor TAK1/TR4/NR2C2 is ex-
pressed in several tissues that are important in the control of
energy homeostasis. In this study, we investigate whether TAK1
functions as a regulator of lipid and energy homeostasis and has
a role in metabolic syndrome.

RESEARCH DESIGN AND METHODS—We generated TAK1-
deficient (TAK1�/�) mice to study the function of TAK1 in the
development of metabolic syndrome in aged mice and mice fed a
high-fat diet (HFD). (Immuno)histochemical, biochemical, and
gene expression profile analyses were performed to determine
the effect of the loss of TAK1 expression on lipid homeostasis in
liver and adipose tissues. In addition, insulin sensitivity, energy
expenditure, and adipose-associated inflammation were com-
pared in wild-type (WT) and TAK1�/� mice fed a HFD.

RESULTS—TAK1-deficient (TAK1�/�) mice are resistant to the
development of age- and HFD-induced metabolic syndrome.
Histo- and biochemical analyses showed significantly lower
hepatic triglyceride levels and reduced lipid accumulation in
adipose tissue in TAK1�/� mice compared with WT mice. Gene
expression profiling analysis revealed that the expression of
several genes encoding proteins involved in lipid uptake and
triglyceride synthesis and storage, including Cidea, Cidec,
Mogat1, and CD36, was greatly decreased in the liver and primary
hepatocytes of TAK1�/� mice. Restoration of TAK1 expression in
TAK1�/� hepatocytes induced expression of several lipogenic
genes. Moreover, TAK1�/� mice exhibited reduced infiltration of
inflammatory cells and expression of inflammatory genes in
white adipose tissue, and were resistant to the development of
glucose intolerance and insulin resistance. TAK1�/� mice con-
sume more oxygen and produce more carbon dioxide than WT
mice, suggesting increased energy expenditure.

CONCLUSIONS—Our data reveal that TAK1 plays a critical role
in the regulation of energy and lipid homeostasis, and promotes
the development of metabolic syndrome. TAK1 may provide a
new therapeutic target in the management of obesity, diabetes,
and liver steatosis. Diabetes 60:177–188, 2011

O
besity is a major health-care concern in West-
ernized cultures that affects �30% of the gen-
eral population in the U.S. (1,2). A strong
etiologic link has been found between obesity

and several obesity-associated diseases, including insulin-
resistance, type 2 diabetes, cardiovascular disease, and
nonalcoholic fatty liver disease. There is considerable
evidence indicating that systemic low-grade inflammation
associated with obesity plays a pivotal role in the patho-
genesis of metabolic syndrome (3–6). In particular, the
infiltration of macrophages and T lymphocytes in hyper-
trophic adipose tissue and the production of proinflamma-
tory cytokines are important early events in the
development of obesity-associated complications (6–9).

TAK1 (TR4, NR2C2), together with the closely related
transcription factor TR2 (NR2C1), form a subclass of the
nuclear receptor superfamily (10–12). TAK1 is highly
expressed in several tissues, including the testis, brain,
kidney, liver, and adipose tissue. Although TAK1 is still
considered to be an orphan receptor, recent reports sug-
gest that certain fatty acids and eicosanoids bind to and
enhance the transcriptional activity of TAK1, thereby
suggesting that TAK1 might function as a lipid sensor
(13,14). Although the precise physiologic functions of
TAK1 remain poorly understood, characterization of
TAK1-deficient mice have suggested a role for TAK1 in
cerebellar development and reproductive functions (15–
18). More recent studies have provided evidence suggest-
ing a role for TAK1 in lipid metabolism and gluco-
neogenesis (14,19–21).

In the present study, we used a TAK1-deficient
(TAK1�/�) mouse model to obtain further insights into the
physiologic roles of TAK1 in energy homeostasis. We
show, for the first time, that male TAK1�/� mice are
resistant to the development of age- and high-fat diet
(HFD)-induced obesity and are protected against obesity-
linked hepatic steatosis, white adipose tissue (WAT)-
associated inflammation, and insulin resistance. Our study
reveals that the TAK1-signaling pathway plays a critical
role in the regulation of lipid and energy homeostasis and
metabolic syndrome. Because TAK1 functions as a ligand-
dependent transcription factor, it may provide a novel
therapeutic target in the management and prevention of
obesity and associated pathologies.

RESEARCH DESIGN AND METHODS

TAK1�/� mice. A schematic view and detailed information on the knock-
out strategy and mice are provided in supplementary Fig. 1 in the online
appendix available at http://diabetes.diabetesjournals.org/cgi/content/full/
db10-0628/DC1. TAK1�/� mice were bred into a C57BL/6 background for
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�8 generations. Mice were supplied ad libitum with National Institutes of
Health-A31 formula and water. Mice that were 8 to 12 weeks old were fed
a high-fat diet (HFD; D12492, Research Diets, New Brunswick, NJ) for 6
weeks, unless indicated otherwise. All animal protocols followed the
guidelines outlined by the National Institutes of Health Guide for the Care
and Use of Laboratory Animals and were approved by the Institutional
Animal Care and Use Committee at the National Institute of Environmental
Health Sciences.
Cell culture and viral infection. Primary hepatocytes were isolated
using a Hepatocyte Isolation System (Worthington Biomedical, Lakewood,
NJ). To generate adenovirus, TAK1WT and TAK�AF2, a mutant lacking the
AF2 domain, were cloned to pShuttle-IRES-hrGFP-1 vector and then
transferred into AdEasy-1 (Stratagene, LA Jolla, CA). Adenovirus was then
generated according to the manufacturer’s protocol. Hepa1– 6/Emp,
Hepa1– 6/TAK1, and Hepa1– 6/TAK�AF2 cells were generated by infection
with retrovirus containing the empty vector pLXIN, pLXIN-TAK1, or
pLXIN-TAK1�AF2, respectively. After selection in G418, separate clones
were isolated. All cells were maintained in Dulbecco’s modified Eagle’s
medium containing 10% FBS.
Histology and immunostaining. Adipose and liver specimens (n � 6) were
fixed in 4% paraformaldehyde, paraffin-embedded, and tissue sections (5 �m)
stained with hematoxylin-esosin. The average diameter of white adipocytes
was calculated from 20–30 cells/field and 3 fields/section. For the detection of
macrophages, sections of white adipose tissue (WAT) were stained with an
F4/80 antibody (Santa Cruz, CA) and avidin-biotin-peroxidase detection
system.
RNA isolation, microarray analysis, and QRT-PCR. RNA isolation, mi-
croarray analysis, and QRT-PCR were carried out as described previously

(22). Total RNA from individual mice (n � 4–10) in each group was analyzed
as indicated. Details are listed in supplementary Table 1.
Biochemical assays. Blood levels of free fatty acids, �-hydroxybutyrate,
glucose, cholesterol, triglycerides, and HDL were determined using the Cobas
Mira Classic Chemistry System (Roche Diagnostics Systems, Montclair, NJ).
The chemical reagents for all assays were purchased from Equal Diagnostics
(Exton, PA). Serum insulin levels were analyzed with an insulin radioimmu-
noassay kit (Millipore, St. Charles, MO). To measure liver lipid content, tissues
were homogenized and lipids extracted as previously described (23). Triglyc-
eride and cholesterol levels were measured with Stanbio assay kits (Stanbio
Laboratory, Boerne, TX). Total ketones were analyzed with an Autokit (Waco
Chemical GmbH, Neuss, Germany).
Metabolic analysis. Wild-type (WT) and TAK1�/� mice were fed either a
normal diet or HFD for 18 weeks and their oxygen consumption, CO2

production, and respiratory exchange ratio were analyzed with a LabMaster
system (TSE Systems, Chesterfield, MO). All values were measured every 5
min for 3 days. The average of the values during the circadian time or light
period and dark period were calculated and presented. P values were
calculated using the Student t test.
Isolation of the stromal-vascular fraction and flow cytometry analysis.

Stromal-vascular fraction (SVF) was isolated from epididymal white adipose
tissue (eWAT) of mice fed with a HFD for 18 weeks and analyzed by flow
cytometry with anti-F4/80 antibody (Invitrogen, Camarillo, CA), and anti-CD3,
CD4, CD8, and CD11b antibodies (BD Biosciences, San Jose, CA) as described
(6). Cells were costained with 7-amino-actinomycin D (7-AAD) or propidium
iodine to exclude dead cells. Cells were analyzed with a BD LSR II Flow
cytometer (Becton Dickinson) using FACSDiVa software as previously de-
scribed (6).
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FIG. 1. TAK1�/� mice are resistant to age-induced hepatic steatosis and display a reduced adiposity. A: Representative hematoxylin and
eosin (H&E) staining of sections of liver, WAT, and BAT from 1-year-old WT and TAK1�/� male mice. Scale bar indicates 250 �m. B:
One-year-old male TAK1�/� mice fed a normal diet have a reduced total body weight compared with littermate WT controls. C: Relative
weights of epididymal (eWAT) and abdominal (AbWAT) WAT of WT and TAK1�/� mice. D: Comparison of the cell size of WAT adipocytes
from 1-year-old WT and TAK1�/� male mice. Cell diameters (n � 100) were measured and the percentages of different size cells calculated
and plotted. (A high-quality color representation of this figure is available in the online issue.)
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RESULTS

Generation of TAK1�/� mice. To obtain further insights
into the role of TAK1 in vivo, we generated TAK1�/�

mutant mice in which TAK1 was functionally inactive
(supplementary Fig. 1). Increased mortality of TAK1�/�

embryos was noted (supplementary Table 2). Although at
2 to 3 months the surviving TAK1�/� mice were slightly
underweight, they were healthy and had a normal appear-
ance and life span. Analysis of multiple organ tissues did
not identify any gross anatomical or histologic abnormali-
ties in TAK1�/� mice.
TAK1�/� mice are resistant to age-induced hepatic
steatosis. TAK1 is highly expressed in several tissues that
are critical in lipid and energy homeostasis (supplemen-
tary Fig. 2). To study the role of TAK1 in lipid homeostasis,
we first examined whether loss of TAK1 function has any
effect on age-induced hepatic steatosis. As shown in Fig.
1A, in contrast to aged male WT mice (24), 1-year-old male
TAK1�/� mice were protected against age-induced hepatic
steatosis (Fig. 1A). Heterozygous male TAK1�/� mice
developed steatosis to a similar degree as WT littermates
(data not shown).

One-year-old male TAK1�/� mice weighed �30% less
(Fig. 1B) and the size of epididymal and abdominal WAT,
when measured as percentage of total body weight, was
markedly reduced (respectively, 50 and 70% less than in

WT littermates) (Fig. 1C). Histochemical analysis showed
reduced lipid accumulation in WAT and BAT of TAK1�/�

mice (Fig. 1A). Furthermore, adipocytes in WAT of
TAK1�/� mice were dramatically smaller than those of WT
mice (Fig. 1D), suggesting that the reduced adiposity
observed in TAK1�/� mice may be caused, to a large
extent, by reduced triglyceride accumulation.

Consistent with our histologic observations, biochemi-
cal analysis showed that the triglyceride level was greatly
reduced in the liver of TAK1�/� mice compared with those
of WT mice (Fig. 2A). Levels of hepatic cholesterol were
slightly, but not significantly, decreased in TAK1�/� mice.
Blood triglyceride and cholesterol levels were significantly
lower in TAK1�/� mice compared with WT, whereas there
was no change in blood glucose levels (Fig. 2A). Exami-
nation of the food intake over a 5-day period indicated that
TAK1�/� mice displayed a modest but significant in-
creased food intake relative to WT mice, suggesting that
the reduced fat mass in these mice was not due to reduced
food intake (Fig. 2B).
Gene expression profiling. To understand the mecha-
nism by which loss of TAK1 prevented age-induced he-
patic steatosis, we analyzed and compared the gene
expression profiles in liver from WT and TAK1�/� mice by
microarray analysis (http://www.ncbi.nlm.nih.gov/geo; ac-
cession number GSE21903). Loss of TAK1 function af-
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FIG. 2. Reduced lipid accumulation and lipogenic gene expression in liver of aged TAK1�/� mice. A: Comparison of cholesterol (Chol), triglyceride
(TG), and glucose (levels in liver and serum from 1-year-old WT and TAK1�/� male mice on a normal diet (WT, n � 6; TAK1�/�, n � 10). B: Relative
food intake by WT and TAK1�/� mice. C: Several genes with roles in lipid accumulation are expressed at significantly lower levels in livers of
1-year-old male TAK1�/� mice than those of littermate WT mice (WT, n � 6; TAK1�/�, n � 10). The level of expression was examined by QRT-PCR.
Data represent mean � SEM. *P < 0.05; **P < 0.01; ***P < 0.001.
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TABLE 1
A partial list of genes up- or downregulated in the liver of 1-year-old TAK1�/� mice compared with WT liver

Functional category
Gene

symbol
GenBank

accession # Gene description
Fold

change

Metabolism
Lipid Acsm2 NM_146197 Acyl-CoA synthetase medium-chain family member 2 3.9

Mgll NM_011844 Monoglyceride lipase �1.4
Dhrs8 NM_053262 Hydroxysteroid (17-�) dehydrogenase 11 �1.5
Adfp NM_007408 Adipose differentiation related protein �1.5
Adipor2 NM_197985 Adiponectin receptor 2 �1.5
Lrp4 NM_172668 Low-density lipoprotein receptor-related protein 4 �1.6
Acox1 NM_015729 Acyl-coenzyme A oxidase 1, palmitoyl �1.7
Lpin1 NM_015763 Lipin 1/fatty liver dystrophy protein �1.8
Ehhadh NM_023737 Enoyl-Co A, hydratase/3-hydroxyacyl Co A dehydrogenase �1.8
Acaa1b NM_146230 Acetyl-coenzyme A acyltransferase 1B �1.8
Acad10 NM_028037 Acyl-CoA dehydrogenase family member 10 �1.8
Dgat2l4 NM_177746 Acyl-CoA wax alcohol acyltransferase 2 �1.8
Fabp2 NM_007980 Fatty acid-binding protein 2, intestinal �1.8
Acaa1a NM_130864 Acetyl-coenzyme A acyltransferase 1A �1.9
Crat NM_007760 carnitine acetyltransferase �2.0
Acss2 AK035497 Acyl-CoA synthetase short-chain family member 2 �2.1
Elovl5 NM_134255 ELOVL family member 5, elongation of long chain fatty acids �2.2
Acot2 NM_134188 Acyl-CoA thioesterase 2 �2.2
Gpam NM_008149 Glycerol-3-phosphate acyltransferase, mitochondrial �2.6
Acot11 NM_025590 Acyl-CoA thioesterase 11 �3.9
Cd36 NM_007643 CD36 antigen �3.9
Mogat1 NM_026713 Monoacylglycerol O-acyltransferase 1 �14.6
Cidec NM_178373 Cell death-inducing DFFA-like effector c (FSP27) �18.0
Cidea NM_007702 Cell death-inducing DFFA-like effector A �94.3

Carbohydrate Car2 NM_009801 Carbonic anhydrase 2 �1.6
Steroid Osbpl3 AK040984 Oxysterol binding protein-like 3 �4.2
Glutathione Mgst3 NM_025569 Microsomal glutathione S-transferase 3 �1.5

Gstt1 NM_008185 Glutathione S-transferase, theta 1 �1.6
Gstt2 NM_010361 Glutathione S-transferase, theta 2 �1.7
Gstt3 NM_133994 Glutathione S-transferase, theta 3 �2.2

Cytochrome c Cox7a1 NM_009944 Cytochrome c oxidase, subunit VIIa 1 �1.6
Oxidase VIIb Cox8b NM_007751 Cytochrome c oxidase, subunit VIIIb �4.4
Cytochrome P450 Cyp2c70 NM_145499 Cytochrome P450, family 2, subfamily c, polypeptide 70 2.0

Cyp2c40 NM_010004 Cytochrome P450, family 2, subfamily c, polypeptide 40 2.0
Cyp39a1 NM_018887 Cytochrome P450, family 39, subfamily a, polypeptide 1 1.8
Cyp51 NM_020010 Cytochrome P450, family 51 1.7
Cyb5b NM_025558 Cytochrome P450, family 5 type B �1.5
Cyp2a5 NM_007812 Cytochrome P450, family 2, subfamily a, polypeptide 5 �1.7
Cyp2a4 NM_009997 Cytochrome P450, family 2, subfamily a, polypeptide 4 �2.0
Cyp4a10 NM_010011 Cytochrome P450, family 4, subfamily a, polypeptide 11 �2.7

Others Asns NM_012055 Asparagine synthetase 26.8
Arsa NM_009713 Arylsulfatase A �1.6
Aldh3a2 NM_007437 Aldehyde dehydrogenase family 3, subfamily A2 �1.9
Uck1 NM_011675 Uridine-cytidine kinase 1 �2.0
Wwox NM_019573 WW domain-containing oxidoreductase �2.0
Rdh16 NM_009040 Retinol dehydrogenase 16 �2.3

Transcription Onecut1 BC023444 One cut domain, family member 1 (Hnf6) 3.0
Foxa1 NM_008259 Forkhead box A1 (Hnf3a) 2.0
Srebf2 AF374267 Sterol regulatory element binding factor 2 1.4
Rxrg NM_009107 Retinoid X receptor 	 �1.4
Ppargc1b NM_133249 Peroxisome proliferative activated receptor, 	, coactivator 1 � �1.5
Ar NM_013476 Androgen receptor �1.5
Nfe2l2 AK029360 Nuclear factor, erythroid derived 2, like 2 �1.6
Pparg NM_011146 Peroxisome proliferator activated receptor 	 �1.9
Srebf1 NM_011480 Sterol regulatory element binding transcription factor 1 �2.1

Transport Apom NM_018816 Apolipoprotein M 2.0
Abcb9 NM_019875 ATP-binding cassette, subfamily B (MDR/TAP), member 9 �1.7
Abcb1a NM_011076 ATP-binding cassette, subfamily B (MDR/TAP), member 1A �2.1
Abcd3 AK031611 ATP-binding cassette, subfamily D (ALD), member 3 �2.3

Continued on facing page
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fected the expression of many genes that are implicated in
lipid, fatty acid, and carbohydrate metabolism (Table 1).
Cell death-inducing DFFA-like effector c (Cidec), also
termed fat-specific protein (FSP27), and cell death-induc-
ing DFFA-like effector a (Cidea), two proteins that play a
critical role in triglyceride accumulation (25–27), mono-
acylglycerol O-acyltransferase one (Mogat1), which is part
of an alternative pathway of triglyceride synthesis, and
CD36, which plays a role in lipid transport and steatosis
(28), were among the genes most strongly suppressed in
TAK1�/� liver. Thus, these observations suggest that TAK1
positively regulates the expression of several genes encod-
ing proteins involved in promoting lipid uptake and triglyc-
eride accumulation.

Among other notable changes, the expression of a
number of phase I and phase II enzyme, and drug-trans-
porter genes was affected in TAK1�/� livers, including
several cytochrome p450 enzymes, sulfotransferase
Sult1c2, and several ATP-binding cassette (Abc) transport-
ers (Table 1). These observations suggest that TAK1 may
also play a role in the regulation of the transport and
metabolism of various drugs and xenobiotics. Several
transcription factors, including Srebf1 and Ppar	, were
expressed at significantly lower levels in TAK1�/� liver
compared with WT liver, whereas Onecut1 and Foxa1
were expressed at higher levels in the liver of TAK1�/�

mice.
The repression of hepatic expression of Cidea, Cidec,

Gprc5b, Mogat1, resistin (Retn), CD36, Srebf1, acetyl-CoA
carboxylase a, and fatty acid binding protein-2 (Fabp2), in
TAK1�/� mice was confirmed by QRT-PCR (Fig. 2C). The
expression of the corepressor RIP140, which has been
reported to regulate Cidea (29), was not significantly

different between TAK1�/� and WT mice. The repression
of Ppar	 in TAK1�/� liver was confirmed by QRT-PCR,
whereas the expressions of estrogen-related receptor 

(ERR
), pregnane X receptor (PXR), and liver X receptor

 (LXR
) were not changed in the liver of TAK1�/� mice
(Fig. 2C).

We next examined whether the changes in gene expres-
sion in aged mice could be detected at an earlier age.
Although histologically no significant differences were
observed between the livers of 4- to 5-month-old WT and
TAK1�/� mice (Fig. 3A and B), the expression of Cidea,
Cidec, Mogat1, Cd36, and Retn was significantly reduced in
TAK1�/� liver compared with WT liver (Fig. 3C). More-
over, analysis of gene expression in primary hepatocytes
showed that Cidea, Cidec, Ppar	, Cd36, and Mogat1 were
expressed at significantly lower levels in TAK1�/� primary
hepatocytes than in WT hepatocytes (Fig. 3D). Next, we
examined, whether the expression of genes downregu-
lated in TAK1�/� hepatocytes could be restored by exog-
enous TAK1 expression. Infection of TAK1�/� hepatocytes
with Ad-TAK1 adenovirus restored TAK1 expression and
induced Cidea and Mogat1 expression several fold and
that of Cidec by 70%, whereas infection with Ad-Empty or
Ad-TAK1�AF2, in which the activation domain of TAK1
was deleted, had little effect on the expression of these
genes (Fig. 3E). Expression of Ppar	 was not significantly
altered by Ad-TAK1, suggesting that the increase in Cidea,
Cidec, and Mogat1 mRNA occurred independently of the
increased Ppar	 mRNA expression.
TAK1�/� mice are resistant to HFD-induced hepatic
steatosis. TAK1�/� mice were also protected against
HFD-induced hepatic steatosis and obesity. The 8- to
10-week-old TAK1�/� mice fed a HFD for 6 weeks gained

TABLE 1
Continued

Functional category
Gene

symbol
GenBank

accession # Gene description
Fold

change

Solute carrier Slc25a14 NM_011398 Solute carrier family 25 �1.4
Slc27a4 NM_011989 Solute carrier family 27 (FATP4) �1.5
Slc5a6 NM_177870 Solute carrier family 5 �1.9
Slc13a4 NM_172892 Solute carrier family 13 �4.2

Growth/differentiation
factors

Fgfr1 NM_010206 Fibroblast growth factor receptor 1 3.3
Ctgf NM_010217 Connective tissue growth factor 2.1
Bmp7 NM_007557 Bone morphogenetic protein 7 �1.5
Vegfb NM_011697 Vascular endothelial growth factor B �1.6
Gdf15 NM_011819 Growth differentiation factor 15 (Mic-1) �2.4
Fgf9 NM_013518 Fibroblast growth factor 9 �4.1

G-protein coupled receptor
protein signaling

Avpr1a NM_016847 Arginine vasopressin receptor 1A 3.6
Adra1a NM_013461 Adrenergic receptor, 
 1a �2.0
Gprc5b NM_022420 G protein-coupled receptor, family C, group 5, member B �10.9

Sulfotransferase Sult1c2 NM_026935 Sulfotransferase 1C, member 2 �2.3
Immune response Tff3 NM_011575 Trefoil factor 3, intestinal 4.2

Tlr5 NM_016928 Toll-like receptor 5 �1.8
Cxcl7 NM_023785 Chemokine (C-X-C motif) ligand 7 �2.2
Raet1a NM_009016 Retinoic acid early transcript 1, alpha �3.0

Miscellaneous Sqle NM_009270 Squalene epoxidase 2.6
Fbln2 NM_007992 Fibulin 2 2.6
Inhba NM_008380 Inhibin �-A 2.0
Fbxo7 AK082146 F-box protein 7 �1.9
Insl6 NM_013754 Insulin-like 6 �2.5
Adam11 BC054536 a disintegrin and metallopeptidase domain 11 �3.6
Retn NM_022984 Resistin �3.7
Dyx1c1 NM_026314 Dyslexia susceptibility 1 candidate 1 homolog �11.6

Note: Of the 40,000 transcripts analyzed, the expression of 490 transcripts was decreased by �1.5-fold, whereas the expression of 260
transcripts was enhanced by �1.5-fold in livers of TAK1�/� mice compared with WT mice.
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less weight than their WT littermates (Fig. 4A). By the end
of the feeding period, the average body weight of WT mice
increased by 55%, whereas TAK1�/� mice gained only 12%
body weight. TAK1�/�(HFD) mice also exhibited a re-

duced fat mass compared with WT(HFD) controls. In
fact, the relative weight of epididymal and abdominal
WAT in TAK1�/�(HFD) mice was, respectively, 40 and
50% less compared with WT(HFD) mice, whereas no
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significant difference in kidney weights was observed
(Fig. 4B).

Histologic analysis revealed that TAK1�/�(HFD) mice
showed significantly smaller WAT adipocyte size, as well
as less accumulation of hepatic lipid droplets than their
WT(HFD) littermates (Fig. 4C–F). The latter was sup-
ported by biochemical data showing that the significantly
lower hepatic triglyceride accumulation in TAK1�/�(HFD)
mice than in WT(HFD) mice (Fig. 5A). The serum concen-
trations of triglycerides and HDL were not significantly
changed, but total cholesterol, LDL, and glucose levels
were significantly reduced in TAK1�/� mice compared
with WT mice (Fig. 5B). Together, these observations
indicate that TAK1�/� mice were significantly protected
against HFD-induced obesity and hepatic steatosis. The
protective effect cannot be attributed to increased levels
of secreted lipid in the feces, because no appreciable
difference was found in that regard between WT and
TAK1�/� mice (Fig. 5C). Analysis of serum alanine
aminotransferase (ALT) and aspartate aminotransferase
(AST), markers of hepatocytotoxicity, showed that ALT
and AST levels were significantly elevated in WT(HFD)
mice compared with TAK1�/�(HFD) mice (Fig. 5D).
Hepatic expression of Cidea, Mogat1, Cidec, CD36, and
Retn was significantly lower in TAK1�/�(HDF) mice
than in WT(HFD) mice (Fig. 5E), consistent with obser-
vations in aged TAK1�/� mice.
TAK1�/� mice have an increased energy expenditure.
Although their relative food consumption was higher (Fig.
6E), TAK1�/� mice were leaner than WT mice, which
suggested that TAK1�/� mice might have an increased

energy expenditure. Using indirect calorimetry, oxygen
consumption (VO2) and CO2 production (VCO2) rates were
measured in TAK1�/�(HFD) and WT(HFD) mice over a
period of 2 days. In both WT(HFD) and TAK1�/�(HFD)
mice, VO2 and VCO2 were significantly increased during
the dark phase compared with the light phase (Fig. 6A and
B). Moreover, TAK1�/�(HFD) mice exhibited elevated VO2
and VCO2 in both the light and dark phase as compared
with WT(HFD) mice, and an increased respiratory ex-
change ratio (Fig. 6A–C). These observations are consis-
tent with a higher rate of energy expenditure by TAK1�/�

(HFD) mice that might be partly caused by the observed
increase in heat generation (Fig. 6D), The increased ex-
pression of uncoupling protein 1 (Ucp1), CoxIV, and
Pgc-1
 in BAT of TAK1�/�(HFD) mice, compared with
that of WT(HFD), is consistent with the notion of in-
creased energy expenditure (Fig. 6F).
Inflammation was significantly reduced in WAT of
TAK1�/�(HFD) mice. WAT-associated inflammation
plays a critical role in the development of obesity-related
complications (6–8,30). Consistent with this, WAT of
WT(HFD) mice showed an increase in crown-like struc-
tures (CLS) representing aggregated F4/80-positive macro-
phages (Fig. 7A). In contrast, F4/80-positive cells were
infrequently observed in WAT from TAK1�/�(HFD) mice
(Fig. 7A). This was substantiated by quantitative analysis
showing that the percentage of SVF-associated macro-
phages (F4/80�/Cd11b�) was significantly reduced in
TAK1�/�(HFD) mice compared with WT(HFD) (Fig. 7B).
Furthermore, the percentage of CD3� T lymphocytes in
TAK1�/�(HFD) mice was 45% lower than in WT mice;
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however, the ratio between CD4� and CD8� T cells was
not different, indicating that both CD4� and CD8� cell
populations are decreased in the WAT of TAK1�/�(HFD)
mice (Fig. 7B). Together, these results suggest that loss of
TAK1 greatly reduced HFD-responsive inflammation in WAT.
The inhibition of inflammation in WAT of TAK1�/�(HFD) mice
was supported by decreased expression of the macro-
phage markers, F4/80 and Mac-2, and several other inflam-
mation-related genes, including serum amyloid-3 (Saa3),
matrix metallopeptidase 12 (Mmp12), interleukin-1 recep-
tor antagonist (Il1rn), and the Toll-like receptor 8 (Tlr8)
compared with WT(HFD) WAT (Fig. 7C). In addition, as
observed in TAK1�/�(HFD) mice, the expression of
Mmp12, Saa3, Mac-2, and F4/80 was also significantly
reduced in WAT of 1-year-old TAK1�/� mice compared
with their age-matched WT mice (supplementary Fig. 3).

These data support the hypothesis that TAK1�/� mice are
protected against obesity-associated inflammation of adi-
pose tissue.
TAK1�/� mice are protected against insulin resis-
tance. It is well established that obesity greatly enhances
the risk of type 2 diabetes as indicated by the development
of insulin resistance and glucose intolerance (3,4). As
shown in Fig. 8A, blood insulin levels were significantly
lower in chow-fed, 4- to 5-month-old TAK1�/� mice com-
pared with their age-matched WT littermates. Insulin lev-
els increased further in aged WT and WT(HFD) mice, but
remained low in corresponding TAK1�/� littermates.
Moreover, WT(HFD) mice developed glucose intolerance
and insulin resistance as indicated by the glucose toler-
ance test and insulin tolerance test analyses (Fig. 8B and
C). In sharp contrast, TAK1�/�(HFD) mice retained their
glucose tolerance and insulin sensitivity, indicating that
TAK1�/� mice are protected against insulin resistance, a
common symptom of diabetes.
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DISCUSSION

In this study we show, for the first time, that loss of TAK1
protects mice against age- and HFD-induced metabolic
syndrome. TAK1�/� mice remain lean and show reduced
adiposity and hepatic steatosis during aging or when fed a
HFD. Moreover, TAK1�/� mice are protected against the
development of age- and diet-induced adipose tissue-
associated inflammation, insulin resistance, and glucose
intolerance. These observations indicate that the nuclear
receptor TAK1 plays a critical role in the control of energy
balance and lipid homeostasis.

Livers of TAK1�/� mice showed a reduced lipid accu-
mulation compared with their WT littermates. Hepatic
triglyceride accumulation is controlled at several levels,
including fatty acid uptake, synthesis and storage of
triglycerides, fatty acid oxidation, and lipolysis. Gene
expression profiling revealed a great number of differ-
ences in gene expression between livers from 1-year-old
WT and TAK1�/� mice, including genes that are critical in
the regulation of lipid, fatty acid, carbohydrate, and xeno-
biotic metabolism, and gene transcription (Table 1). The
expression of many of these genes has been reported to be
elevated in hepatic steatosis (31,32). One of these genes is
CD36, which encodes a multifunctional protein implicated

in angiogenesis, immunity, and in several metabolic disor-
ders, such as obesity, hepatic steatosis, and insulin resis-
tance (28,33). In several cell types, including adipocytes
and hepatocytes, CD36 facilitates long-chain fatty acid
uptake. Thus, the reduced CD36 expression observed in
TAK1�/� liver may lead to diminished hepatic fatty acid
uptake and, at least in part, be responsible for the resis-
tance to hepatic steatosis.

Cidea and Cidec were also among the genes that were
the most dramatically downregulated in TAK1�/� mice.
Cide proteins promote triglyceride accumulation within
lipid droplets and regulate lipolysis, and their expression
correlates positively with the development of obesity and
hepatic steatosis (25,34,35). Deficiency in Cidea or Cidec
in mice resulted in increased energy expenditure and
lipolysis, and yielded a lean phenotype in mice and resis-
tance to diet-induced obesity (25,26,36). Therefore, the
repression of these genes in TAK1�/� mice may also have
contributed to the reduction in hepatic triglyceride levels
and resistance to hepatic steatosis in TAK1�/� mice.
Although the expression of Cidea and Cidec, as well as
CD36, was greatly repressed in the liver of TAK1�/� mice,
TAK1 did not appear to regulate the expression of these
genes in WAT, suggesting a tissue-dependent regulation.
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Mogat1, another gene that was dramatically downregu-
lated in TAK1�/� liver, is part of an alternative, less-
studied pathway of triglyceride synthesis. The main
pathway of triglyceride synthesis is catalyzed by glycerol-
3-phosphate acyltransferase (GPAT), acyl-glycerol-3-phos-
phate acyltransferases (AGPATs), and diacylglycerol
transferase (DGAT) in the final step of synthesis (37). The
expression of DGAT1 was not altered; however, the ex-
pression of GPAT1 and AGPAT6 was significantly reduced
in TAK1�/� liver. The latter is interesting because AG-
PAT6-deficiency has been reported to cause lipodystrophy
and resistance to obesity (38). Thus, the lower levels of
Mogat1, GPAT1, and AGPAT6 expression may be part of
the mechanism by which triglyceride synthesis and stor-
age is reduced in TAK1�/� liver. Thus, the regulation of
several genes with functions related to fatty acid uptake
(CD36), triglyceride synthesis (Mogat1, GPAT1, AGPAT6),
and storage (Cidea, Cidec) suggests that TAK1 affects
several aspects of lipid accumulation. In contrast, no
significant changes in fatty acid oxidation were observed.

In contrast to aged mice, 4- to 5-month-old mice fed with
a normal diet did not show histologic signs of hepatic
steatosis; however, the hepatic expression of Cidea, Cidec,
Mogat1, CD36, and Retn was significantly lower in
TAK1�/� mice than WT littermates. Consistent with a
previous study (19), young TAK1 KO mice were also more
glucose tolerant and insulin sensitive than WT mice (sup-
plementary Fig. 4). These observations suggest that TAK1
affects changes in hepatic gene expression and insulin
sensitivity at an early age.

Energy and lipid homeostasis is under the control of a
complex network of transcription factors and coregulators
(32,39–41). Deficiencies in many of these factors have
been associated with resistance to diet-induced obesity.
For example, mice deficient in the nuclear receptors
COUP-TFII and ERR
, or the coregulator RIP140 exhibit a
lean phenotype; however, the expression of these genes
was unaltered in TAK1�/� liver. Because TAK1 itself
functions as a transcription factor, one might expect that
some of the differentially expressed genes be regulated
directly by TAK1. Indeed, a recent report showed that
TAK1 regulates CD36 transcription in macrophages by
binding to TAK1 response elements in the CD36 gene
promoter (14), suggesting that CD36 is a direct TAK1
target gene. CD36 is also a known target of several other
nuclear receptors, including PPAR	, LXR, and PXR (42).
Although the expression of PXR and LXR was unchanged,
the expression of PPAR	 was reduced by 50% in liver of
TAK1�/� mice. Therefore, hepatic CD36 expression might
be regulated by TAK1 directly as well as indirectly through
modulation of PPAR	 expression (Fig. 8D). The coregula-
tors RIP140 and PGC-1
, and the receptor PPAR	 have
also been implicated in the regulation of Cidec (29,42,43).
TAK1 might cooperate with these transcriptional modula-
tors to regulate the expression of these genes. Moreover,
the downregulation of the transcription factor Srebf1,
which promotes triglyceride synthesis (44), may contrib-
ute to the reduced lipid accumulation in TAK1�/� liver.

Our data also demonstrated that the expression of
several lipogenic genes was dramatically decreased in
TAK1�/� primary hepatocytes compared with WT hepato-
cytes. Restoration of TAK1 expression in TAK1�/� hepa-
tocytes by Ad-TAK1 induced the expression of Mogat1,
Cidea, and Cidec, whereas empty virus or expression of an
inactive form of TAK1 had little effect on their expression
level. Moreover, downregulation of TAK1 in Hepa1–6 cells

by TAK1 siRNAs suppressed Cidec, whereas stable expres-
sion of TAK1-induced Cidec expression. These data indi-
cate that these changes in gene regulation by TAK1 are
hepatocyte cell autonomous and not a response to
changes in other tissues. Whether these TAK1-responsive
genes are direct targets of TAK1 transcriptional regulation
needs further study.

Recent studies have provided evidence indicating that
TAK1 functions as a ligand-dependent transcription factor.
Certain fatty acids, including 	-linoleic acid and 	-linolenic
acid, as well as several eicosanoids, have been shown to
activate TAK1-mediated transcription, suggesting that
TAK1 might function as a fatty acid sensor (13,14). Con-
sistent with this hypothesis, we speculate that during
aging or when fed a HFD, elevated levels of fatty acids may
result in increased activation of TAK1 and enhanced
expression of TAK1-responsive genes, such as CD36, that
promote fatty acid uptake and triglyceride accumulation,
and subsequent obesity (Fig. 8D). Hence, one could spec-
ulate that TAK1-selective antagonists would inhibit the
expression of these genes and might be useful for the
management of metabolic syndrome.

In addition to hepatic steatosis, adiposity is greatly
reduced in aged TAK1�/� and TAK1�/�(HFD) mice com-
pared with WT mice. The adipocytes in TAK1�/� mice
were significantly smaller than in WT mice, suggesting
reduced storage of triglycerides. Obesity is well known to
be associated with chronic, low-grade inflammation, and
there is considerable evidence that inflammation, insulin
resistance, and aberrant lipid metabolism are interlinked
in metabolic syndrome (3–5,9). Hypertrophy of adipose
tissues and infiltration of inflammatory cells have been
recognized as important early events in the development
of obesity-linked pathologies. The molecular process of
the recruitment and function of macrophage infiltration is
not fully understood; however, the release of various
cytokines by adipose tissue is likely part of the recruit-
ment of various immune cells (6–8). In contrast to WT
mice, TAK1�/� mice are protected against the develop-
ment of age- and diet-induced adipose tissue-associated
inflammation, as indicated by reduced infiltration of mac-
rophages and T lymphocytes. Crown-like structures were
rarely observed in WAT of TAK1�/� mice and the macro-
phage markers, F4/80 and Mac-2, were expressed at sig-
nificantly lower levels. In addition, the expression of
several proinflammatory genes, including Saa3, Mmp-12,
Il1rn, and Tlr8, were also reduced in adipose tissues of
TAK1�/� mice. T lymphocytes have also been implicated
in the development of obesity-associated complications
(6–8,30). CD8� effector T cells have been reported to
exhibit an essential role in the initiation and maintenance
of adipose tissue inflammation, including macrophage
recruitment, during obesity. The observed reduction in the
number of CD8� cells in SVF might be linked to the
diminished infiltration of macrophages and inflammatory
response in TAK1�/� mice. Moreover, the reduced WAT
inflammation in TAK1�/� mice may in part be responsible
for the preservation of the insulin sensitivity and glucose
tolerance observed in TAK1�/� mice. In this regard, the
repression of Il1rn expression in TAK1�/� WAT is partic-
ularly interesting because upregulation of this gene has
been reported to be associated with obesity whereas Il1rn
KO mice have been shown to be resistant to obesity
(45,46). Therefore, repression of this gene may contribute
to the resistance to obesity observed in TAK1 KO mice.

Finally, two important factors in energy balance are
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food intake and energy expenditure. Although their rela-
tive food intake was slightly higher than their WT litter-
mates, TAK1�/� mice exhibited a lean phenotype
compared with WT mice. Furthermore, TAK1�/� mice
showed a significant increase in energy expenditure as
indicated by increased oxygen consumption and CO2
production rates. The increase in energy expenditure by
TAK1�/� mice is consistent with the elevated expression
of UCP1 in BAT. UCP1 diverts energy derived from
mitochondrial electron transport chain and generation of
ATP into heat production. Thus, the elevated energy
expenditure observed in TAK1�/�(HFD) mice may at least
in part be responsible for the reduced weight gain and
resistance to hepatic steatosis and insulin insensitivity.

In summary, in this study we show for the first time that
TAK1�/� mice are protected against age- and HFD-induced
obesity, hepatic steatosis, adipose tissue-associated in-
flammation, and insulin resistance. As a ligand-dependent
nuclear receptor, TAK1 might provide a novel therapeutic
target in the management and prevention of obesity and
related pathologies, such as diabetes.
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