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Hematopoietic stressors such as infection, bleeding, or
toxic injury trigger a hematopoietic adaptation that sacrifices
hematopoietic stem and progenitor cell (HSPC) quiescence to
meet an urgent need for new blood cell production. Once the
hematopoietic demands are adequately met, homeostasis
must be restored. Transforming growth factor b (TGFb)
signaling is a central mediator mandating the return of HSPCs
to quiescence after stress. Blockade of TGFb signaling after
hematopoietic stress delays the return of cycling HSPCs to
quiescence and in so doing promotes hematopoietic stem
cell (HSC) self-renewal and accelerates hematopoietic
reconstitution. These findings open the door to new
therapeutics that modulate the hematopoietic adaptation to
stress. In this review, we will discuss the complex context-
dependent activities of TGFb in hematopoiesis and the
potential benefits and limitations of using TGFb pathway
inhibitors to promote multilineage hematopoietic
reconstitution after myelosuppressive chemotherapy.

Introduction

Most hematopoietic stem cells (HSCs) are deeply quiescent
but a small fraction exit G0 to prime hematopoietic replacement

of daily blood cell loss.1,2 The signals that induce select HSCs to
emerge from quiescence during homeostasis are incompletely
understood and may be partly stochastic. Active HSCs contribute
to hematopoiesis for variable periods and then return to dor-
mancy.3,4 However, things change when hematopoietic produc-
tion must be urgently increased because of overwhelming
infection, significant bleeding, or other causes of profound cyto-
penia such as myelotoxic chemotherapy or HSC transplantation.
During these periods of stress, most HSCs are rapidly recruited
into the cell cycle and undergo extensive self-renewal and differ-
entiation to meet the new hematopoietic demands. Evolutionary
pressures have apparently selected this “demand” hematopoietic
mode as a necessary adaptation to promote survival by allowing a
rapid response to acute stresses. However, unrestricted HSC
cycling can lead to HSC exhaustion and hematopoietic failure.5-8

Therefore, it is likely that evolution has also advanced mecha-
nisms to restrict the duration of demand hematopoiesis as a
means to safeguard HSCs.

A great deal is known about how hematopoietic stem and pro-
genitor cells (HSPCs) are activated during hematopoietic stress.9-
11 But how is homeostasis restored when the stress is over? Curi-
ously, until very recently nothing was known about how these
processes wind down to allow HSCs to withdraw from the cell
cycle and return to quiescence. Indeed, the de facto paradigm has
been that homeostasis is passively re-established as stress media-
tors normalize. But this is a bit like driving with only a gas pedal
to control velocity: fine if you want to accelerate but potentially
disastrous if you need to slow down. Recently, this paradigm has
been challenged. Researchers found that steady-state hematopoie-
sis is actively re-imposed during stress recovery and that trans-
forming growth factor b (TGFb) is a central mediator of this
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process.1 Context-dependent blockade of TGFb signaling during
recovery from hematopoietic stress prolongs HSPC cycling and
can augment blood count recovery from cytopenias caused by
hemolysis, HSC transplantation (HSCT), or myelotoxic
injury.1,12 This finding is potentially useful because it suggests
that TGFb pathway inhibitors could be used to promote multili-
neage hematopoietic regeneration after myelosuppressive chemo-
therapy or HSCT.

Myelosuppression is among the most common life-threatening
complications of cancer treatment and limits the tolerability of
antineoplastic therapy. Insights from prior work defining how
hematopoietic stress is activated have led to the development of a
large panel of molecules that are now used to promote unilineage
hematopoiesis (e.g., granulocyte colony-stimulating factor [G-
CSF], erythropoietin, and thrombopoietin mimetics) and HSPC
mobilization (e.g., C-X-C chemokine receptor type 4 [CXCR4]
blockade with plerixafor). However, these agents have narrow
activity. G-CSF is commonly used to promote granulocytic recov-
ery after chemotherapy13 but it does not help with dose-limiting
thrombocytopenia and symptomatic anemia. The other available
unilineage cytokines such as the erythroid stimulating agents
(ESAs) and thrombopoietin (THPO) mimetics are less commonly
used to treat myelosuppression and some risks have been identi-
fied.14 For these reasons, blood product transfusions remain a
cornerstone of supportive therapy after myelosuppressive chemo-
therapy or HSCT. However, transfusions are surprisingly expen-
sive and carry the risk of severe reactions and transmission
of infectious agents. New approaches are needed to promote
hematopoietic regeneration after transplantation or myelotoxicity.

Only recently have we begun to understand how homeostasis
is restored after hematopoietic stress. These new insights promise
novel agents that promote hematopoietic regeneration by block-
ing the counter-regulatory signals restricting recovery rather than
trying to overdrive recovery using supraphysiologic levels of unili-
neage cytokines. As our understanding of hematopoietic adapta-
tion to stress improves, new approaches can be developed to
promote multilineage hematopoietic regeneration without
sacrificing long-term hematopoietic function.

In this review, we will discuss demand hematopoiesis with a
particular focus on the context-dependent activity of TGFb as a
mediator that limits the duration of HSC activation. We also dis-
cuss the potential benefits and possible limitations of using TGFb
pathway inhibitors to promote multilineage hematopoietic recon-
stitution after chemotherapy-induced myelosuppression.

Context-Dependent Hematopoietic
Adaptation to Hematologic Stress

At steady state, most HSCs are maintained in a deeply quies-
cent state15,16 by paracrine factors produced by specialized bone
marrow niche cells.4,17 Yet evolution demands a rapid hemato-
poietic response to stressors. These triggers set off a remarkable
adaptation in hematopoiesis that sacrifices HSPC quiescence to
meet an urgent need for new blood cell production. The signals
that awaken hibernating HSCs and activate and mobilize HSPCs

during these periods of stress have been well studied.9,11,18 Pro-
teolytic enzymes such as matrix metallopeptidase 9 (MMP-9),
cathepsin G, and elastase cleave the chemokines (e.g., CXCL12),
cytokines (e.g., KITL), and adhesive interactions that retain
HSCs in the niche and maintain their quiescence.19-22 Circulat-
ing cytokine levels increase in response to cytopenias, tissue
injury, and inflammation and this reinforces HSPC
proliferation.11,23

Most mature effector cells of the innate immune system are
post-mitotic and must be continually produced by bone marrow
HSPCs. Severe infections consume effector cells and require
emergency hematopoiesis to replenish the losses. Many signals
are known to trigger increased hematopoietic output. Cytokines
produced by immune cells and non-hematopoietic tissues play a
central role in the stimulation of hematopoiesis during infection,
often skewing differentiation toward myeloid lineages at the
expense of lymphopoiesis.21,24-26

Inflammatory cytokines are known to act on mature effector
cells and hematopoietic progenitors to support the fight against
pathogens. Yet HSCs are also directly and indirectly affected by
the surge of cytokines during infection. G-CSF levels increase
acutely during bacterial and fungal infections to support the dif-
ferentiation of mature granulocytes.27 However, G-CSF also
mobilizes HSCs from the bone marrow by triggering cleavage of
membrane-bound CXCL12 (SDF1) and other factors that retain
HSPCs in the niche and maintain their quiescence.21,28 HSCs
can also directly respond to inflammatory cytokines. For exam-
ple, HSCs express receptors for type 1 and type 2 interferons that
are induced during certain viral and chronic bacterial infections.
Poly(I:C) provokes interferon-a (INF-a, Ifna) production and is
known to induce HSC mobilization and recruitment into the
cell cycle via activation of INF-a receptor (Ifnar1) and down-
stream Stat1/Pkb/Akt signaling in HSCs.25,29 Interferon-g (INF-
g, Ifng) signaling, which is induced by chronic Mycobacterium
avium infection, also triggers HSC proliferation via its receptor,
Ifngr1, and downstream Stat1-mediated signaling.24 Successful
eradication of infections requires coordinated activity of multiple
cytokines.

Cytotoxic T cells (CTLs) secrete INF-g during acute viral
infections and have been recently shown to stimulate myelopoie-
sis by inducing non-hematopoietic bone marrow cells, possibly
mesenchymal stem cells (MSCs), to release hematopoietic cyto-
kines including interleukin 6 (IL-6).30 In turn, IL-6 stimulates
HSPCs to proliferate and differentiate with a bias toward myelo-
poiesis.30 Similarly, elevated levels of M-CSF can also direct
HSC differentiation toward myelopoiesis.26 Such complex inter-
play between the adaptive and innate immune system is necessary
to successfully eradicate infections, and the cytokine networks
sculpting the immune responses act on mature effector cells,
hematopoietic progenitors, and HSCs.

HSCs also express receptors that allow them to directly
sense certain infections. For example, HSCs express the Toll-
like receptors TLR-2 and TLR-4 to detect and respond to
lipopolysaccharide (LPS), an outer membrane component of
all Gram-negative bacteria.23,31 LPS induces quiescent HSCs
to enter the cell cycle in vitro and in vivo.1,3,11,23 Expression
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of TLRs is of course not restricted to HSCs, and it is recog-
nized that TLR activation is a strong inducer of cytokine
production by mature effector cells. Recently, however,
researchers have found that LPS activation of TLR4 stimulates
an outpouring of inflammatory cytokines by multipotent pro-
genitors (MPPs) and short-term HSCs (ST-HSCs) that, on a
per cell basis, far exceeds production by mature effector cells.23

This regional cytokine storm is mediated by NF-kB signaling
and counter-regulated by miR-146a. Of the cytokines tested,
IL-6 secreted by HSPCs was again found to be the most
potent inducer of myelopoiesis during endotoxin-mediated
stress. These recent studies provide new insight into the
inflammatory machinery that allows bone marrow HSPCs to
sense and rapidly respond to acute infections.18

Significant cytopenias caused by acute blood loss, immuno-
logic destruction of mature blood cells, or myelosuppressive
treatments trigger demand hematopoiesis via mechanisms that
partially overlap the adaptive responses to severe infections. Cyto-
penias can directly elevate the plasma level of key cytokines such

as thrombopoietin (THPO) and G-CSF because they are cleared
from the circulation by mature platelets and neutrophils.32 Acute
cytopenias are also commonly associated with inflammatory sig-
nals and activation of key proteases within the bone marrow.19,33

G-CSF induces HSC proliferation not just by interfering with
signaling from CXCL12 and KITL but also partly via activation
of TLR4/TRIF signaling, thereby merging the mechanism of
response to chemotherapy-induced myelosuppression with emer-
gency myelopoiesis linked to infection.21 Adding further com-
plexity, signaling during demand hematopoiesis can differ from
that in homeostasis. Acute hemolysis is associated with stereo-
typed alterations in erythropoiesis34,35 and is also known to
recruit dormant HSCs to begin active proliferation via mecha-
nisms that have not yet been defined.1 This makes it difficult to
attribute singular functions to individual cytokines because stress
hematopoiesis is a composite of many signals interacting in fluid
contexts (Fig. 1).

These findings also show that many hematopoietic stressors
lead to grossly similar consequences: recruitment of dormant

Figure 1. The lifecycle of hematopoietic stem cell quiescence. (Homeostasis) Niche factors maintain most hematopoietic stem cells (HSCs) in a quiescent
state. (Early Stress) HSCs are mobilized from the niche and begin to cycle actively. (Early Regeneration) Circulating cytokine levels increase in response to
cytopenia, tissue injury, and inflammation and this reinforces hematopoietic stem and progenitor cell (HSPC) proliferation. HSPCs continue actively
cycling to repopulate the bone marrow. (Late Regeneration) HSPC quiescence is re-imposed and bone marrow homeostasis is restored. [CXCL2-abundant
reticular (CAR) cells, leptin receptor (LeprC)-expressing perivascular cells, NestinC mesenchymal stem cells (MSC)].
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HSCs into the cell cycle; self-renewal, differentiation, and mobi-
lization of HSPCs from bone marrow niches; and myeloid biased
differentiation. Yet all of these prior studies have focused upon
the initiating signals triggering demand hematopoiesis. The
return to homeostasis after the major stress is over has only
recently been studied.

TGFb Signaling: A Pleomorphic System
Regulated at Multiple Levels

Canonical TGFb signaling
TGFb is a potent growth inhibitor of epithelial, endothelial,

neuronal, hematopoietic, and immune cells and performs

important functions in normal tissue homeostasis.36 The TGFb
superfamily is comprised of more than 30 closely related proteins
including bone morphogenetic proteins (BMPs), growth and dif-
ferentiation factors (GDFs), activins, inhibins, nodal, and the 3
TGFb isoforms that have distinct expression patterns and bio-
logic activities.37,38 Of these, TGFb1 is the most highly
expressed by immature hematopoietic cells and has the best-char-
acterized activity in hematopoiesis.39

Canonical TGFb signaling has been well reviewed else-
where.40 Active TGFb1 binds to the high-affinity type II recep-
tor (TbRII, Tgfbr2), inducing a heterotetrameric complex with
TGFb type I receptor (TbR1, ALK5) and leading via trans-phos-
phorylation to the recruitment and phosphorylation of Smad2

Figure 2. Schematic of TGFb signaling. Transforming growth factor b (TGFb) is synthesized in a latent form that is incapable of interacting with recep-
tors. After secretion and activation, TGFb interacts with Tgfbr2 and Tgfbr1, initiating serine phosphorylation and activation of Tgfbr1. Tgfbr1 then phos-
phorylates receptor activated Smads (R-Smads) such as Smad2 and Smad3. Phosphorylated R-Smads can then hetero-oligomerize with co-Smads (e.g.,
Smad4) and translocate to the nucleus where they interact with cofactors to induce transcription. Signaling wanes as a result of adaptation that tracks
with the nuclear localization of Smad4. TGFb receptor function can be modulated by accessory receptors such as Tgfbr3 and Endoglin and through inter-
actions with modulators such as Cripto. The RNA binding protein Msi2 helps control Tgfbr1 mRNA and TGFb pathway signaling.
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and Smad3 in most cell types (Fig. 2). Smad proteins activated
by phosphorylation heterodimerize with the common mediator
Smad4, and the resulting complex translocates to the nucleus and
recruits transcriptional cofactors to control expression of target
genes.

Constraining the spatial activation of TGFb signaling
TGFb is secreted as a biologically inert “latent” protein inca-

pable of signaling. Although many cell types produce TGFb, it is
secreted in non-covalent association with the latency-associated
peptide (LAP) that prevents it from binding to TGFb receptors.
In turn, LAP interacts with members of the latent TGFb-binding
protein family (LTBP) that can moor the large latent complex in
the extracellular matrix. LTBPs influence the release of TGFb
from LAP—a process called activation—to allow TGFb medi-
ated signaling via cell surface TGFb receptors.41 Latent TGFb is
activated by several mechanisms. LAP can be shed after cleavage
by MMPs or plasmin, or through conformational changes
induced by reactive oxygen species or adhesive interactions with
thrombospondin-1 (TSP1) and integrins (e.g., avb6 and
avb8).42-46 It is instructive that all of the known mechanisms for
activating latent TGFb act locally, suggesting that TGFb signal-
ing likely conforms to juxtacrine or paracrine models.

Large quantities of latent TGFb are incorporated into bone
matrix and are found in the granular contents of megakaryocytes
and platelets.47 Nonetheless, few bone marrow cells show signifi-
cant TGFb signaling during steady-state hematopoiesis, suggesting
that critical aspects of this signaling are regulated by the availability
of active TGFb to its cellular receptors. In addition, cells that stain
for phospho-Smad2 signaling are typically adjacent to cells mani-
festing no TGFb signaling, indicating that the mechanisms of
TGFb activation are spatially constrained.1,48 These results suggest
that highly specific TGFb inhibitors could be designed if the
mechanism for localized TGFb ligand activation were known.

Constraining the temporality of TGFb signaling
Negative feedback mechanisms limit the duration of TGFb

signaling by restricting receptor expression, transmembrane sig-
naling, nuclear transit of mediators, and their transcriptional
activity. At the cell surface, TGFb occupancy of receptors ini-
tiates their internalization with consequent recycling or ubiqui-
tin-mediated degradation.49-51 The TGFb target Smad7 feeds
back to block activation of Smad2/3 via the type I receptor
(Tgfbr1) and pairs with Smurf2 to trigger degradation of this
receptor.51,52 Other TGFb target genes such as Ski and SnoN
disrupt the transcriptional activity of intranuclear Smad2/3/4.53

As a result of these feedback mechanisms, or others that have not
yet been defined, TGFb signaling is temporally constrained and
appears to be most responsive to changes in TGFb ligand avail-
ability rather than the total amount of active TGFb.54

Modulating TGFb signaling

By pre-receptor/receptor signaling
TGFb receptor function can also be modulated by accessory

receptors such as endoglin (Eng). Endoglin is expressed in a

subset of HSCs and is upregulated during hematopoietic stress55

but it is not known how endoglin affects TGFb signaling in adult
HSCs. In endothelial cells, endoglin directs TbRII to signal via
ALK1 rather than ALK5.56 By re-partnering TGFb receptors,
endoglin abrogates the cytostatic response of TGFb mediated by
ALK5-phosphorylated Smad2/3, and activates a more prolifer-
ative/invasive program mediated by ALK1-activated Smad1/5.
Endoglin is not the only TGFb modulator that is differentially
expressed in HSPCs. Among partially understood signaling mod-
ulators, Grp78 (Hspa5), the receptor for the TGFb pathway
modifier CRIPTO (Tdgf1), distinguishes deeply quiescent HSCs
during homeostasis57,58 whereas the membrane protein GARP
(glycoprotein A repetitions predominant, Lrrc32) serves as a
membrane reservoir of latent TGFb.59

Non-canonical TGFb signaling
TGFb signaling independent of Smad activation via TAK1/

MAPK, Rho-like GTPase, and PI3K/AKT pathways is well
described.60-62 This non-canonical intracellular TGFb signaling
can oppose the cytostatic activity of TGFb to promote motility,
invasion, metastasis, and epithelial to mesenchymal transition
(EMT) and is particularly well described in malignant cells.63

Much of the non-canonical signaling is mediated by Tgfbr2 and
can occur independent of the type I receptor. Very little is known
about how these alternative signaling pathways affect the out-
come of TGFb signaling in HSCs and it is possible that TGFb
ligand traps and inhibitors specific for the type I or type II recep-
tor could have different effects.

TGFb Signaling Triggers the Return to Homeostasis

Hematopoietic stress sacrifices HSPC quiescence to meet
increased hematopoietic demands. Once these demands have
been adequately met, homeostasis must be restored. It has long
been assumed that this is a passive process with homeostasis
returning as stress mediators normalize, but researchers have
recently found that this assumption is incorrect.

The first evidence that homeostasis could be actively re-
imposed emerged from timed studies of HSC cell cycle during
recovery from myelosuppressive chemotherapy with 5-fluoroura-
cil (5FU). Most HSCs rapidly emerge from quiescence after 5FU
treatment and extensively proliferate for almost 2 weeks (Fig. 3)
but then abruptly return to quiescence just as bone marrow cellu-
larity has recovered and the blood counts normalize.1 A similarly
rapid return to quiescence was also seen during recovery from
acute hemolysis (modeled using phenylhydrazine) or sepsis
(modeled by LPS). It was later found that TGFb signaling is a
central mediator mandating the return of HSPCs to quiescence
after stress. During late hematopoietic regeneration, as homeosta-
sis is restored, the level of active TGFb spikes in whole bone mar-
row and downstream signaling (as reported by Smad2
phosphorylation) increases in hematopoietic stem and progenitor
cells (HSPCs), thus limiting HSC self-renewal.

TGFb blockade using a neutralizing antibody (Genzyme,
1D11) or a small molecule inhibitor of TbRI (Lily, LY2157299)
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after chemotherapy delayed the return of HSCs to quiescence
and promoted HSC self-renewal and hematopoietic regeneration.
Similarly, TGFb blockade during recovery from other stres-
sors—phenylhydrazine (PHZ)-induced hemolysis, LPS-modeled
sepsis, or syngenic HSCT using lethal radiation as condition-
ing—hastened blood count recovery, prolonged HSC cycling,

and expanded bona fide long-term engraftable HSCs. The dura-
tion of HSC cycling and hematopoietic stress differs significantly
from 5FU, LPS, and PHZ stresses and, unsurprisingly, different
schedules of TGFb blockade were required to modulate HSC
quiescence in these diverse settings. Whereas TGFb levels spike
approximately 10 days after 5FU treatment, TGFb1 expression

Figure 3. Quiescence is actively re-imposed by activation of TGFb signaling after myelotoxic stress. Mice (WT, C57BL/6) were treated with a single dose of
5-fluorouracil (5FU, 250 mg/kg) on day 0 and immunohistochemical (IHC) staining for pSmad2 (brown) was performed on bone marrow sections col-
lected before and after chemotherapy. The lifecycle of hematopoietic stem and progenitor cells (HSPC) after stress is represented: Homeostasis (D0),
early stress (D1-3), regeneration (D4-10), enforced quiescence (D13-15), return to quiescence by D21. Sections were counterstained with the nuclear stain
methyl green to assess cellularity. The percentage of quiescent LKSC (Lin-cKitCSca1C) cells in G0 phase is shown before treatment (D0) and at various
times after treatment with 5FU and the TGFb neutralizing antibody 1D11 (5FU-I, red bars) or the control antibody 13C4 (5FU-C, blue bars). (Adapted
from Brenet et al., 2013).
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is strongly induced in MPPs/ST-HSCs within 1 or 2 days of LPS
challenge.1,12,23 Nonetheless, the return of HSCs to quiescence
after LPS, 5FU, or PHZ-hemolysis tracks with intracellular
Smad2 phosphorylation in HSCs and is modulated by TGFb
blockade.1 Although the clinical significance of these vastly dis-
similar models is not known, these studies demonstrate that spa-
tiotemporally constrained activation of TGFb signaling during
bone marrow recovery from stress mandates the return of HSCs
to quiescence.

Although TGFb has pleiotropic activities and is known to
affect and be affected by many other signaling pathways
involved in demand hematopoiesis, it also modulates the bone
marrow microenvironment. Recently, genetic deletion of
SPARC produced by non-hematopoietic cells was found to has-
ten the return of HSC quiescence and limit the hematopoietic
toxicity of 5FU, but no linkage to TGFb signaling could be
made.12 CD81 expression modestly promotes the return of
HSCs to quiescence after 5FU but CD81 is not a target of
TGFb in HSCs and unlike TGFb, which is known to block
receptor clustering into lipid rafts, CD81 appears to require
clustering to induce its effects on HSCs.64-66 These results sug-
gest that other signaling pathways likely help mediate the return
to quiescence in some contexts.

Confusion from Murine Genetic Studies

TGFb is one of few negative regulators of hematopoiesis
66,67 and is known to be a potent inhibitor of cytokine-driven
HSC proliferation in vitro,66,68-71 but its role in hematopoiesis
has been hard to establish in vivo.72-76 Constitutive knockout of
signaling components causes embryonic lethality or a lethal
inflammatory disorder that precludes routine analysis of steady-
state adult hematopoiesis.74,77-79 Genetic deletion of TbRI
(ALK5) does not appear to affect HSC quiescence or exhaus-
tion75 and ALK5 may not even be expressed in homeostatic
HSCs.65 In contrast, HSC self-renewal during stress is strongly
influenced by knockout of TbRII and by manipulation of the
downstream effectors Smad4 and Smad7.48,80,81 As a result,
available studies provide a confusing picture: on the one hand
canonical TGFb signaling from Tgfbr2 is critical for control of
HSC quiescence and self-renewal48,80,81 while on the other
hand Tgfbr1 (ALK5), Eng, and TGFb1 have no effect on these
same processes.74-76,82

The reasons for the conflicting results of murine genetic
studies have not been defined. It is plausible that experimental
details play a significant role in determining the TGFb pheno-
types assessed. For example, the consequences of TGFb signal-
ing appear to be at least partially dependent on dose, duration,
and context. TGFb signaling cues HSCs to return to quiescence
during recovery from hematologic stress, but the role of TGFb
in homeostasis, when many niche signals are available, may be
redundant and possibly dispensable.1,83,84 Experimental systems
that use chemotherapy, retroviral transduction, transplantation,
or poly(I:C) for Mx1-Cre induction or surgical alteration of the
bone marrow are all necessarily influenced by hematopoietic

stress; this may accentuate or mask the phenotypes observed.
HSPCs also appear to be sensitive to the concentration of avail-
able TGFb, with high concentrations being inhibitory and low
concentrations augmenting cytokine-driven proliferation, possi-
bly via non-canonical signaling.85,86 Although TGFb has been
known to affect HSPCs for 15 years, the receptors mediating
these effects and the downstream targets remain largely unde-
fined. TGFb signaling is adaptive and can be much more
sensitive to changes in TGFb ligand concentrations than to
steady-state ligand availability.54 Indeed, such adaptive signaling
is expected to enhance the responsiveness of HSPCs to the spike
in bone marrow TGFb levels during recovery from hematologic
stress.1 The outcome of TGFb signaling and the regulation
of HSPCs in the bone marrow microenvironment is more
complex than previously appreciated but a fuller understand-
ing of the spatiotemporal context of signaling during bone
marrow regeneration promises new classes of therapy to treat
myelosuppression.

TGFb Blockade as a Double-Edged Sword
to Fight Cancer

Blockade of TGFb signaling after myelosuppressive chemo-
therapy delays the return of cycling HSPCs to quiescence.1,12

Unlike current approaches using cytokines (e.g., G-CSF) with
their regenerative activity restricted to a single lineage, TGFb
blockade after chemotherapy promotes recovery of all in vivo lin-
eages because it acts on HSCs and early multilineage progeni-
tors.1 This suggests that TGFb blockade could be an effective
way to promote multilineage bone marrow regeneration after
injury or hematopoietic stem cell transplantation. Nonetheless,
successful translation of this research to clinical care will require a
more complete understanding of the mechanisms of TGFb acti-
vation within the bone marrow, and the safety and feasibility of
this approach has to be fully evaluated.

Basic and clinical research has shown that transient blockade
of TGFb signaling does not cause the toxicities (e.g., autoim-
mune organ damage) in mice and humans that have been
observed with genetic deletion of TGFb signaling components
in engineered mouse models. Thus, it is evident that the conse-
quences of prolonged and short-term TGFb inhibition are
important determinants of potential toxicity. Because TGFb
blockade after chemotherapy prolongs HSC self-renewal, a
potential concern is that this approach could lead to HSC
exhaustion. Preliminary studies begin to alleviate this concern
because HSCs obtained from mice treated with 5FU and then a
TGFb neutralizing antibody outcompete HSCs obtained from
mice treated with the same chemotherapy and a control anti-
body.1 Similarly HSCs from mice deficient in the critical down-
stream TGFb target gene Cdkn1c/p57 have a competitive
advantage over wild-type HSCs after chemotherapy.1,66 Impor-
tantly, cycling HSCs return to quiescence after TGFb blockade
or when p57 is deleted, suggesting that, rather than permanently
disrupting homeostasis, these approaches simply reschedule
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homeostasis for a later time and in so doing promote hematopoi-
etic regeneration.

The timing of TGFb blockade during demand hematopoiesis
is important. For instance, administering a TGFb neutralizing
antibody on days 5, 7, and 9 after 5FU chemotherapy improved
blood count recovery and delayed HSC quiescence to a greater
degree than the same antibody doses administered before or after
this time (Brenet & Scandura, unpublished). Similarly, the
schedule of TGFb blockade after LPS challenge (day 1), PHZ
(day 3), or after lethal radiation and HSCT (second week)
needed to be tailored to the type of hematopoietic stress. The
schedule of TGFb blockade is also potentially important because
delayed HSPC quiescence could sensitize hematopoiesis to
repeated chemotherapy cycles. However, preliminary testing sug-
gests that this need not be the case. Cyclic chemotherapy actually
caused less toxicity in mice deficient in the TGFb target gene
p57.1 The TGFb blocking agent used and its dose schedule will
likely influence the risk of chemosensitization from closely spaced
repetitive cycles of S-phase active chemotherapeutics. For exam-
ple, the pharmacology of TGFb inhibition using the 1D11 neu-
tralizing antibody differs significantly from blockade of Tgfbr1
using the small molecule inhibitor LY2157299. Murine IgG1

such as 1D11 has a terminal half-life of 3–5 days whereas the
half-life of LY2157299 is just a few hours.87 Although both
agents promote hematopoietic recovery after chemotherapy, the
long half-life of antibodies in the circulation makes it infeasible
to rapidly “turn off” TGFb blockade using 1D11. In principle, a
short-acting inhibitor such as LY2157299 allows for tighter con-
trol over the timing of TGFb signaling blockade (albeit some-
what at the expense of efficacy). Further work is necessary to
determine how finely the return to quiescence can be modulated
by TGFb pathway inhibitors after chemotherapy.

The context of TGFb inhibition is also important. Interest-
ingly, it was only during recovery from demand hematopoiesis
that TGFb blockade using a pan-TGFb neutralizing antibody
(1D11) prolonged HSPC proliferation and augmented blood
count recovery. In homeostatic mice, this same inhibitor failed to
induce quiescent HSCs to enter the cell cycle and did not increase
blood counts or bone marrow cellularity. The context-dependent
activity is important because TGFb signaling seems to be dispens-
able for the maintenance of quiescence during homeostasis
whereas it is a central mediator mandating the return of HSPCs to
quiescence after stress.1 This finding potentially conflicts with
recent work demonstrating a role for glial fibrillary acidic protein
(GFAP)C Schwann cells as a source of bone marrow TGFb that
can control the dormancy of HSCs.48 This discrepancy can be
explained by either exclusion of 1D11 from homeostatic HCS
niches or by the use of experimental methods that could deviate
from homeostasis. For instance, the functional role of GFAPC

cells was demonstrated by unilateral mobilization of HSPCs after
unilaterally transecting postganglionic sympathetic nerves in the
lumbar trunk. However, surgical trauma or the resulting unilateral
bone marrow inflammation due to degenerating neurons could
have mobilized HSCs from the marrow instead of the loss of
homeostatic TGFb signaling. Genetic studies using GFAP-Cre
deleter strains may help resolve this question.

TGFb blockade also has potential application in the setting of
HSCT. The availability of suitably HLA-matched adult donors
remains a major obstacle that prevents many patients from receiv-
ing a curative allogeneic HSCT.88 As a cryopreserved product,
publicly banked umbilical cord blood (CB) is a readily available
source of HSPCs for transplantation of patients lacking a suitable
donor. CB has many appealing features88 and greatly extends
HSCT access, but the low number of HSPCs available in CB
leads to prolonged cytopenia following HSCT. Delayed engraft-
ment is a major problem because it is associated with prolonged
hospitalization, increases transplant-related mortality, and
increases the cost of CB-HSCT. Resolving this issue by blocking
TGFb to enhance HSPC engraftment after CB-HSCT would
fulfill a significant unmet need and expand the pool of suitable
donors for HSCT. However, new research must first determine
the extent to which interfering with TGFb signaling promotes a
graft versus leukemia effect or graft versus host disease (GvHD).

The biology of TGFb is complex; its cytostatic properties
have led to its categorization as a tumor suppressor gene, but
TGFb signaling also has well-recognized effects on the microen-
vironment, cell motility, and immune surveillance. It is now evi-
dent that malignant cells can selectively shed the growth
suppressive functions of TGFb while retaining signaling that
promotes local tumor growth and metastasis by driving invasion
and migration within the microenvironment and allowing the
tumor cells to evade the immune system. The effects of onco-
genic TGFb signaling are the best studied and can be summa-
rized as an epithelial to mesenchymal transition (EMT) in breast
cancer, but similar themes have been described in other tumor
types. Several classes of TGFb inhibitors under development
loosely fall into 4 major classes: TGFb ligand trap; peptide
aptamers; antisense oligonucleotides 5; and small molecule recep-
tor kinase inhibitors.89 Details of these agents and the early clini-
cal and preclinical studies are beyond the context of this review
but these agents have shown promise in many solid tumors.90-93

This suggests that TGFb blockade after chemotherapy could
provide a double-edged sword to attack cancer by blocking
aggressive tumor phenotypes while limiting chemotherapy-
induced myelotoxicity.

Major Gaps in our Understanding of TGFb
Signaling in Hematopoiesis

More research is needed before we can realize the full potential
of modulating the return to steady-state hematopoiesis for thera-
peutic purposes. Because TGFb exerts its activity in tightly con-
strained spatiotemporal contexts it should be possible to design
highly specific inhibitors capable of regional context-dependent
activities. For instance, pre-receptor inhibitors could be designed
if the mechanism for regional activation of latent TGFb were
known. Similarly, a more complete understanding of the activa-
tion of TGFb signaling during bone marrow regeneration could
yield new approaches to target the important receptor/accessory
protein complexes and kinase activity, promote internalization or
degradation of receptors, or interfere with downstream TGFb
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target genes. Major gaps in our current understanding of how
this pathway is activated during regeneration indicate that this
potential is not yet mature.

It is likely that counter-regulatory TGFb signaling will be
mechanistically linked to other signaling pathways involved in
demand hematopoiesis but the connections have not been estab-
lished. The surge in TGFb during recovery from hematopoietic
stress could limit signaling from CTLs because TGFb suppresses
the production of inflammatory mediators such as INF-g, poten-
tially curtailing HSC proliferation driven by IFN-g during cer-
tain chronic infections.24,94 Indeed, HSCs appear to be resistant
to long-term interferon signaling, possibly as a result of induction
of interferon regulatory factor 2 (Irf2) in HSCs.95,96 The mecha-
nism by which HSCs become refractory to repeated interferon
dosing is not well defined, but TGFb is implicated because acute
INF-a modulates the expression of mediators of TGFb signaling
in HSCs.96 Similarly, TGFb could safeguard HSCs during
recovery from stress by antagonizing the production of granzyme
B (Gzmb), which has recently been found to mediate HSC apo-
ptosis after LPS challenge via TLR4/TRIF/NF-kB signaling.97

TGFb and thrombopoietin (Thpo) are the only 2 factors known
to induce p57 (Cdkn1c), a critical regulator of quiescence, in
HSCs.1,65,66,84,98 Although no clear linkage between these signal-
ing pathways has been established during homeostasis or stress, it
is possible that Thpo and TGFb regulate p57 in different con-
texts, with Thpo maintaining HSC quiescence during homeosta-
sis7,84 and TGFb driving p57 expression and the return to
quiescence during stress conditions, when high Thpo levels
appear to be incapable of restricting HSC cycling and may even
augment it.84 It will be critical to understand how divergent ini-
tiators of hematologic stress each trigger TGFb pathway activa-
tion during recovery.

Although many cell types produce latent TGFb it cannot
bind TGFb receptors until LAP is shed. Diverse mechanisms of
TGFb activation likely underlie the context-dependent, down-
stream biological effects of TGFb, but little is known about how
they function in hematopoiesis. This gap in our understanding
of pre-receptor spatiotemporal activation of TGFb in bone mar-
row severely limits the study of TGFb in hematopoiesis.
Although it is generally accepted that TGFb signaling is initiated
by the availability of ligand, this has never been definitively
shown and alternative hypotheses have not been tested. While
the canonical TGFb signaling pathway is well appreciated, it is
not clear how this critical pathway is interpreted by HSCs during
homeostasis nor it is known how the signaling mechanism is
altered by stress. For instance, altered expression of TGFb recep-
tors, receptor modulators, or downstream target genes during
homeostasis and recovery from hematopoietic stress could lead to
different signaling outcomes. Indeed, the role of non-canonical
TGFb signaling in HSCs has not been fully explored. Without

understanding these mechanisms, it will be difficult to modulate
TGFb signaling to selectively regulate HSC quiescence in partic-
ular physiologic contexts. This is important because disruption
of homeostatic HSC quiescence can lead to exhaustion of
HSCs65 whereas blockade of this pathway during hematopoietic
regeneration can mitigate the effects of bone marrow injury.1

Once these gaps in our understanding are filled, locally active,
context-dependent inhibitors of TGFb signaling will be possible
because the cellular source of TGFb and its mechanism of activa-
tion will be known in homeostasis and during recovery from
hematopoietic stress. Ultimately, this should permit tight phar-
macologic control over HSPC quiescence and promote hemato-
poietic regeneration after myelosuppressive chemotherapy while
minimizing potential toxicities.

Summary and Closing Statement

The de facto paradigm that homeostasis is passively re-estab-
lished as stress mediators normalize is incorrect: rather than being
a passive process, steady-state hematopoiesis is actively re-
imposed. TGFb pathway activation marks the return of regener-
ating HSPCs to quiescence and this context-depending signaling
helps re-establish homeostasis during recovery from chemother-
apy. Therefore, myelosuppression does not drive hematopoiesis
using only a cytokine-fueled gas pedal but also taps an active
braking mechanism once sufficient recovery has been attained.
TGFb pathway inhibitors could promote multilineage hemato-
poietic reconstitution. However, the lack of mechanistic details
and poor understanding of the context-dependent activities of
TGFb has confounded prior attempts to unravel TGFb signaling
in HSCs. Nonetheless, efforts to understand the spatiotemporal
aspects of TGFb signal transduction hold the promise that mod-
ulation of TGFb signaling could permit tight control of HSC
quiescence and hematopoietic function during recovery from
myelosuppression, massive infection, and hemolysis/hemorrhage.
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