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BACKGROUND: Individuals typically show a childhood nadir in adiposity termed the adiposity rebound (AR). The AR serves as an
early predictor of obesity risk, with early rebounders often at increased risk; however, it is unclear why this phenomenon occurs,
which could impede understandings of weight gain trajectories. The brain’s energy requirements account for a lifetime peak of
66% of the body’s resting metabolic expenditure during childhood, around the age of the AR, and relates inversely to weight
gain, pointing to a potential energy trade-off between brain development and adiposity. However, no study has compared
developmental trajectories of brain metabolism and adiposity in the same individuals, which would allow a preliminary test of a
brain-AR link.
METHODS: We used cubic splines and generalized additive models to compare age trajectories of previously collected MRI-
based 4D flow measures of total cerebral blood flow (TCBF), a proxy for cerebral energy use, to the body mass index (BMI) in a
cross-sectional sample of 82 healthy individuals (0–60 years). We restricted our AR analysis to pre-pubertal individuals (0–12
years, n= 42), predicting that peak TCBF would occur slightly after the BMI nadir, consistent with evidence that lowest BMI
typically precedes the nadir in adiposity.
RESULTS: TCBF and the BMI showed inverse trajectories throughout childhood, while the estimated age at peak TCBF (5.6 years)
was close but slightly later than the estimated age of the BMI nadir (4.9 years).
CONCLUSIONS: The timing of peak TCBF in this sample points to a likely concordance between peak brain energetics and the
nadir in adiposity. Inverse age trajectories between TCBF and BMI support the hypothesis that brain metabolism is a potentially
important influence on early life adiposity. These findings also suggest that experiences influencing the pattern of childhood
brain energy use could be important predictors of body composition trajectories.
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INTRODUCTION
In humans, fat stores typically decrease from infancy to childhood,
reach a nadir in middle childhood, and then rebound as adiposity
begins to increase from adolescence into adulthood. The age at
which this “adiposity rebound” (AR) is experienced determines
when individuals start to regain adiposity and is an important
predictor of long-term trajectories of body composition and risk
for overweight, obesity, and related metabolic diseases [1–4]. The
age at rebound varies widely from 3 to 8 years [1, 5], with a study
finding that a one year change in AR timing was associated with a
2.5 kg/m2 difference in the body mass index (BMI) in young
adulthood [6]. These findings point to the AR, and factors that
influence its timing, as an important predictor of population
variation in risk for obesity.

One question that has received little attention, but that could
provide important insights into variation in adiposity across
populations, is why an AR occurs during childhood. It is generally
assumed that changes in body composition during infancy and
childhood trace to shifts in energy balance related to changes in
intake and expenditure. For instance, it has often been noted that
the tendency for adiposity to decline after infancy might relate to
increases in physical activity during childhood [7, 8]. However,
another potentially important influence on patterns of energy
expenditure at this age, and which could shed light on the AR, was
recently inspired by work documenting age-related changes in
brain energy requirements [9, 10]. In humans, the cerebral
metabolic rate of glucose (CMRglu), the principal substrate used
by the brain, rises rapidly during the first few years of life and
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peaks during childhood [11] when the brain consumes twice the
quantity of glucose of the adult brain [10, 11]. These changing
energetic costs trace to developmental shifts in brain size, but
more importantly, to neuronal processes related to cognitive
development. Human brain development involves overproduction
of energetically demanding synaptic connections, which peak in
density in childhood and is followed by experience-dependent
pruning and a corresponding reduction in energy expenditure
[12–14]. At the brain’s lifetime peak energy expenditure at 4–5
years of age, its rate of glucose consumption accounts for an
estimated 66% of the body’s resting energy expenditure, or
roughly three times the fraction of the body’s metabolism
devoted to the brain in adulthood (20–25%) [10].
The high energy demands of the brain have been implicated in

the slowed growth observed during childhood [15]. Specifically,
average growth velocities across childhood vary in a tight linear,
inverse relationship with estimated average CMRglu: when brain
expenditure is rising during infancy and childhood, the rate of body
weight gain declines in parallel [10]. The childhood peak in brain
expenditure coincides with the slowest rate of weight gain in the
lifecycle, before weight gain begins to increase again at ages when
synaptic pruning diminishes cerebral metabolic rate [10]. In these
analyses, weight velocities and the percentage of resting metabolic
rate (% RMR) to the brain were linearly, inversely related from infancy
until approximately early adolescence (age 14), supporting the
hypothesis that the pattern of human growth evolved to balance the
shifting strength of energetic trade-offs with brain development.
A subsequent study replicated this finding although the age range of
the sample was narrower: in this second sample, declining % RMR
devoted to the brain in late childhood was linearly and inversely
related to the increasing rate of weight gain [16].
In addition to observed associations between brain energy

requirements and weight gain, converging evidence points to a
more generalized trade-off between energy expenditure on the
brain and adipose tissue across the lifecycle [9]. In both children
and adults, inverse associations have been found between
measures of adiposity such as BMI, and the volume or thickness
of cortical and subcortical structures throughout the brain [17–20].
Similarly, work identifying the genetic architecture of obesity points
to strongest and most consistent links between adiposity and
brain- and neuronally-expressed genes, some of which influence
energetically demanding processes like synaptic function, long-
term potentiation and neurotransmitter signaling [21–23].
Based upon these various lines of evidence, it has been

proposed that the developmental nadir in adiposity may represent
an outcome of peak energy requirements of brain development
[9]. If this hypothesis is correct, factors that influence the timing or
magnitude of brain energy use, whether environmental factors
that shift the pace of cognitive development, or educational or
other features of the rearing environment that influence peak brain
expenditure, could influence individual and population variation in
the trajectory of body composition development [9]. As a first step
in exploring this hypothesis, here we compare age trajectories of
the BMI and total cerebral blood flow (TCBF), quantified in vivo
using advanced, non-invasive 4D-flow magnetic resonance ima-
ging (MRI), in a sample of 82 healthy participants ages 0–60 years.
We report the relationship between BMI and TCBF across the full
age range for reference purposes. However, since the AR is a
childhood phenomenon, we focus our AR analysis specifically on
the pre-pubertal members of the sample (0–12 years, n= 42).
Previous studies have shown that local glucose metabolism is
closely coupled to cerebral blood flow [24, 25]. Moreover,
developmental changes in TCBF show close parallels to the age-
related trajectory in CMRglu [16, 26, 27], indicating that TCBF can
serve as a non-invasive proxy for CMRglu. We hypothesized [1] that
developmental changes in average TCBF will inversely track
changes in average BMI in this sample and [2] that age at peak
TCBF will closely approximate the age at AR. We hypothesized that

the BMI nadir would slightly precede the TCBF peak, based on
previous studies reporting that the developmental nadir in the BMI
occurs earlier than the nadir in directly-measured adiposity,
ranging from several months to a few years prior [28–30]. This
reflects the fact that the BMI captures both lean and fat tissue and
that, unlike fat stores, lean mass is not lost at the nadir but
continues to increase in parallel with linear growth.

SUBJECTS AND METHODS
The data used here include measures of TCBF and BMI (kg/m2) obtained from
82 Chicago area residents ranging in age from 0 to 60 years and acquired as
part of a larger investigation of blood flow changes with age, as detailed
elsewhere [27]. Briefly, individuals were screened for cardio- and cerebrovas-
cular problems, ECG and high blood pressure (>160/90mm Hg). Data were
collected under IRB approval and in accordance with the Health Insurance
Portability and Accountability Act guidelines. Parental consent was obtained
for individuals ages 0–11 years, while adolescent assent was obtained for
participants aged 12–17 years in addition to parental consent. Children ages
0–5 years were anesthetized or sedated using inhalational anesthetics
(sevoflurane, Ultane; Abbott Laboratories, Inc). Flow imaging was successfully
performed in all participants on clinical MRI scanners (Magnetom 1.5 T Aera or
3 T Skyra, Siemens Healthineers, Erlangen, Germany). 4D flow data preproces-
sing to filter background noise and correct for velocity aliasing and phase
offset errors was done using custom Matlab tools (MathWorks, Natick, MA).
Imaging data were imported into commercial software (EnSight; CEI, Apex, NC)
for individual vascular flow quantification, using the 3D phase-contrast MR
angiogram (PC-MRA, calculated from 4D flow MRI based on absolute velocities
weighted by magnitude data) for anatomic orientation, as detailed elsewhere
[27, 31]. The PC-MRA was used to mask velocity vectors allowing blood flow
visualization and quantification within vessel walls. 2D analysis planes were
manually positioned at predefined anatomic landmarks for internal carotid
arteries (ICAs; straight section between lacerum C3 and cavernous
C4 segments) and the basilar artery (BA; middle portion between anterior
inferior cerebellar artery and superior cerebellar artery). Mean blood flow over
the cardiac cycle was automatically calculated for each plane. TCBF was
quantified as cumulative flow measured over the cardiac cycle in left and right
ICA’s and BA [32, 33].

Statistical analysis
Generalized additive models (GAM) were used to describe and model age-
related changes in TCBF and BMI as well as to provide predicted ages for the
AR and peak TCBF in the pre-pubertal subsample (ages 0–12, n= 42). GAM
allowed implementation of penalized cubic regression splines to model non-
linear trends in both measures. In addition, GAM allowed a test of whether
individuals with higher TCBF for their age also had lower BMI (statistical
significance determined at p< 0.05). A TCBF-to-CMRglu conversion was used
based on a previous study [34], allowing comparison of our data to direct
CMRglu measurements published by Kuzawa et al. (2014). The analysis was
conducted in R (version 4.0), while the mgcv package [35] was used to fit GAM.

RESULTS
For reference, Fig. 1 plots BMI and TCBF across the full age range
of the sample (n= 82), illustrating the general tendency for
changes in BMI and TCBF to relate inversely across the lifecycle.
Figure 2 visualizes the relationship between TCBF and BMI across
ages using GAM-predicted standardized mean values (mean= 0,
SD= 1), again including adults for reference. TCBF increases
sharply until the peak around age 5 years. Although BMI changes
inversely track with these changes in early life, they are relatively
modest as reflected in the shallow slope. Beginning in adoles-
cence and persisting into adulthood, changes in BMI continue to
inversely track changes in TCBF but with proportionate changes,
indicated by the data points falling largely on the dotted line
representing a slope of −1.
Among the 42 children (0–12 years of age) selected for the analysis

of the AR, there were 25 girls and 17 boys (Table 1). GAM-predicted
mean values for TCBF and BMI across ages indicated an age of 5.6
years for peak TCBF and a BMI nadir age of 4.9 years (Table 2), close to
the peak CMRglu age of 5.2 years reported by Kuzawa et al. (2014).
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We also include age trajectories of brain volume and ascending aortic
output, reflecting total cardiac output, for reference in Supplementary
Table S1. Both show steady increases with age, including while TCBF
is declining following the peak at 5.6 years. Using the TCBF-to-CMRglu
conversion derived from Settergren et al. (1980), estimated peak
CMRglu for our sample was 143.2 g/day, very close to the PET-based

peak estimate of 146 g/day for girls from Kuzawa et al. (2014), but
lower than the 167 g/day for boys. After accounting for the effect of
age using a GAM shown in Table 3, TCBF and BMI were not associated
(p ~ 0.8), indicating that having a higher or lower TCBF than predicted
for one’s age did not predict corresponding differences in the BMI in
this sample.

Fig. 1 Age trajectories of BMI and TCBF (full sample, n= 82, ages 0–60 years) for reference. Lines are predicted means from fitted GAM.
Values were standardized (mean= 0, SD= 1) to provide unitless comparison. Note: analysis sample consisted only of the 42 individuals ages
0–12 years.

Fig. 2 Association between standardized (mean= 0, SD= 1) TCBF and BMI predicted means across ages 0–60 years (full sample, n= 82)
for reference. Predicted means were obtained from GAM shown in Fig. 1. Dotted line represents a slope of −1.
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DISCUSSION
While much attention has been paid to the widely observed
phenomenon of the AR, the question of why the AR occurs during
childhood has been understudied. Clarifying the determinants of
the AR could help facilitate a deeper understanding of lifecourse
influences on body composition trajectories and related disease
risk. Here we present evidence that TCBF peaks at around the
same age as the AR, as indexed using the BMI. The age of peak
TCBF in our sample, 5.6 years, is close to the age of peak CMRglu
reported elsewhere using PET and MRI data (Kuzawa et al. 2014).
We also find that age trajectories of TCBF and BMI in the sample
are inversely correlated, suggesting brain energy requirements
might be linked developmentally with changes in adiposity [9].
This finding has implications for understanding risk for overweight/

obesity and metabolic disease and is consistent with converging
evidence linking brain metabolism and adiposity. In both children and
adults, negative associations have been reported between certain
cognitive functions like executive function and adiposity [36].
Similarly, adiposity has been found to be inversely associated with
frontal gray matter volumes as well as global gray matter blood flow
[17, 37–39]. While most studies are cross-sectional, emerging
longitudinal evidence also supports an association between the
energetics of brain development and body composition trajectories.
For example, the rate of decline in BMI preceding the AR has been
associated with greater gain in executive function, which is largely
orchestrated by the prefrontal cortex, a region with particularly high
energy demands during childhood [9, 40]. Taken together, these
findings point to brain metabolism as a potentially promising research
area for clarifying developmental processes that contribute to body
weight and composition trajectories.
There are likely multiple pathways regulating both brain energy

consumption and adiposity during childhood that could be the
target of future studies. For example, the brain has direct control

over physiological mechanisms regulating its own metabolism as
well as adiposity stores, including insulin production and stimulation
of lipolysis [41, 42]. This relationship is also potentially bidirectional.
For instance, as adiposity increases, adipocytes and resident
macrophages secrete pro-inflammatory cytokines, such as inter-
leukin-6, that have been associated with reduced brain volumes and
cognitive function [43–45], potentially diminishing energy expendi-
ture in parallel. Adipose-tissue secretion of adiponectin, which has
anti-inflammatory effects in the brain, also decreases with increasing
adiposity, potentially reinforcing a pro-inflammatory state [46, 47].
Secretion of leptin, which promotes brain growth and development,
increases with greater adiposity, although this eventually leads to
leptin-resistance that is thought to impair brain function [47–49].
Finally, genetic pleiotropy is another likely mechanism. Previous
studies have identified genes involved in both brain function and
adiposity development [21–23], while a meta-analysis identified
BMI-associated gene variants that have co-expression patterns
associated with synaptic maintenance and function, a major
component of the brain’s metabolic requirements [50].
The apparent concordance between the developmental trajec-

tories of the brain and adiposity also highlights the brain as a
potential pathway linking early life experiences with obesity risk.
Recent work has shown that total energy expenditure during
childhood is similar across populations varying widely in patterns of
physical activity and environmental exposures [51], suggesting that
trade-offs operate between the body’s various functions to
maintain total expenditure within a constrained range. In light of
this, it is of interest that measures reflecting the magnitude of
investment in brain structures, including cortical thickness, gray
matter volume and even brain volume, are increased among
children in higher socioeconomic and enriched rearing environ-
ments [52, 53], while conversely cerebral blood flow is decreased in
the context of low SES or traumatic experiences [54]. We speculate
that factors influencing early cognitive stimulation, or stressors that
impair cognitive development, could have long-term impacts on
the fraction of the body’s total expenditure devoted to the brain,
with possible impacts on competing expenditures like growth and
fat deposition [9]. Early adversity and stressors could similarly alter
body composition trajectories by accelerating brain maturation [54],
possibly leading to an earlier peak in brain metabolism and
resulting in an earlier AR and greater adiposity.
Our study also has implications for the impact of early nutritional

adversity on brain development in lower resource settings, where
undernutrition may be more prevalent and severe. The AR generally
occurs at later ages in children from lower income and under-
nourished populations [5, 55]. This raises the question of whether
the age of peak brain energy needs is also delayed, matching the
AR, with possible implications for cognitive development. Numer-
ous studies have found relationships between undernutrition in
childhood and cognitive deficits [56–58], which might be reflective
of a later peak in energetically costly developmental processes.
Testing this possibility will require obtaining measures of brain
metabolism, or reliable proxies, across infancy and childhood in
populations varying in nutritional status and timing of the AR.
Although obtaining 4D-flow TCBF requires MRI facilities and
operator training that may be prohibitive in some research settings,
other options, such as ultrasound [59–61], near infrared spectro-
scopy (NIRS) [62] and portable low-field MRI units [63] provide
opportunities to test these hypotheses. There are important trade-
offs that must be considered with each method. For instance, it has
been argued that the childhood peak in CMRO2 could be blunted
by as much as 30% compared to CMRglu [26], which, if correct,
would obscure the apparent strength of the relationship between
brain metabolism and adiposity if changes in cerebral oxygen
metabolism are assessed. Similarly, studies that report age
trajectories in TCBF using ultrasound show a markedly attenuated
childhood increase in TCBF relative to adult values, compared to the
4D-flow based measures reported here [59]. These and other

Table 1. Descriptive statistics for the analysis sample spanning
infancy-12 years (n= 42).

Mean ± SD Range

Age (years) 6.2 ± 3.9 (0, 12)

TCBF (ml/s) 19.5 ± 3.9 (10.9, 27.3)

BMI (kg/m2) 18.1 ± 3.6 (14.3, 30.0)

% Female 60%

Table 2. Predicted mean values for BMI nadir, peak TCBF, and
estimated peak CMRglua for the analysis sample spanning infancy-12
years (n= 42).

AR TCBF peak CMRglu peak (estimatedb)

Age (years) 4.9 5.6 5.6

BMI (kg/m2) 16.6

TCBF (ml/s) 24.1

CMRglu (g/day) 143.2
aPredicted mean values were obtained from fitting GAM. Values at yearly
intervals are reported in Supplemental Table S1.
bCMRglu was estimated from TCBF using a conversion obtained from
Settergren, Lindblad, & Persson, 1980.

Table 3. GAM predicting BMI after adjusting for non-linear age effect
(n= 42) for the analysis sample spanning infancy-12 years (n= 42).

β (SE) P value

Female −0.75 (1.03) 0.47

TCBF 0.05 (0.18) 0.78
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measurement challenges underscore that nuance will be required
in testing for relationships between brain metabolism and body
composition change.
There are important limitations to this study. Most notably,

these data are cross-sectional, which does not allow us to observe
changes in the BMI or TCBF within individuals over time. We also
did not have direct measures of CMRglu, which are necessary to
quantify energy substrate use by the brain. However, cerebral
blood flow is closely coupled to glucose metabolism, while TCBF
and CMRglu follow similar, parallel age trajectories in humans
[16, 24–27]. Further, the exposure to radiation involved in direct
CMRglu measurement using PET presents ethical concerns that
will likely constrain most studies of brain metabolism to blood
flow estimates. We also relied on the BMI, which is a reflection not
only of adiposity but also of lean mass. This could help explain
why we did not see proportional declines in BMI matching
increases in TCBF leading up to the AR (Fig. 2), as lean mass
increases while fat mass decreases at this age [29].
Our reliance on the BMI also likely explains why the AR age was

slightly earlier than peak TCBF, since previous studies have shown
AR age estimates can be 0.4–2.9 years earlier when using the BMI
compared to direct adiposity measures due to developmental
increases in lean mass throughout childhood [28–30]. However,
there could be other explanations for the lack of precise
developmental concordance between the BMI nadir and peak
TCBF in our sample. Although it is theoretically possible that
reduced expenditure on physical activity could offset the brain’s
energy needs and free up energy to store as adipose tissue, levels
of physical activity increase from infancy through adolescence
[7, 64] suggesting that this is an unlikely explanation. While we do
not have data on immune function expenditure, lymphocyte
numbers decline from infancy to adulthood [65], possibly allowing
declining immune function expenditure to partially offset the
brain’s needs. Finally, we do not have data on age-related changes
in metabolism of other metabolically costly organs, which could
also be a contributing factor.
Based on a collection of previous studies reporting inverse

associations between adiposity and both cognitive function and
frontal gray matter volumes [17, 36–38, 40], we predicted that
individuals with lower TCBF for their age would also have
relatively higher BMIs. Our small sample was likely underpowered
to test this association, and the confounding influence of lean
mass on the BMI could have also contributed to our null findings,
as individuals with greater lean mass for their age could have both
greater BMI and TCBF. However, brain volume was not associated
with BMI after adjusting for age (p > 0.80; analysis not shown),
arguing against this interpretation. Our null results testing a TCBF-
BMI association at the individual level might suggest the
relationship is more easily detectable at the aggregate, population
level, owing to the greater reliability in mean changes, but with
individual-level differences more challenging to detect.
In conclusion, we find that blood flow to the brain and the BMI

follow inverse developmental trajectories during infancy and
childhood, with peak TCBF occurring around the same age as
the AR. These findings represent the first empirical test, and
support, for the hypothesis that the AR is linked developmen-
tally to the high energetic requirements of brain development at
this age. These findings also raise the question of whether
population differences in the timing of the AR are associated
with corresponding variation in the time course of peak brain
energetics and underlying developmental processes of cognitive
development. The relationship between brain metabolism and
adiposity during childhood points to the need for longitudinal
studies with direct adiposity measures while also considering
factors that could moderate or alter the timing or magnitude of
brain cognitive development, including factors like environ-
mental adversity, childhood nutritional sufficiency, or early
educational enrichment programs.

CODE AVAILABILITY
The analysis code is available at: https://github.com/jakearonoff/blood-flow-bmi.
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