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Abstract

This study investigated sensory and motor nerve excitability properties to elucidate the

development of diabetic neuropathy. A total of 109 type 2 diabetes patients were recruited,

and 106 were analyzed. According to neuropathy severity, patients were categorized into

G0, G1, and G2+3 groups using the total neuropathy score-reduced (TNSr). Patients in the

G0 group were asymptomatic and had a TNSr score of 0. Sensory and motor nerve excit-

ability data from diabetic patients were compared with data from 33 healthy controls. Clinical

assessment, nerve conduction studies, and sensory and motor nerve excitability testing

data were analyzed to determine axonal dysfunction in diabetic neuropathy. In the G0

group, sensory excitability testing revealed increased stimulus for the 50% sensory nerve

action potential (P<0.05), shortened strength-duration time constant (P<0.01), increased

superexcitability (P<0.01), decreased subexcitability (P<0.05), decreased accommodation

to depolarizing current (P<0.01), and a trend of decreased accommodation to hyperpolariz-

ing current in threshold electrotonus. All the changes progressed into G1 (TNSr 1–8) and

G2+3 (TNSr 9–24) groups. In contrast, motor excitability only had significantly increased

stimulus for the 50% compound motor nerve action potential (P<0.01) in the G0 group. This

study revealed that the development of axonal dysfunction in sensory axons occurred prior

to and in a different fashion from motor axons. Additionally, sensory nerve excitability tests

can detect axonal dysfunction even in asymptomatic patients. These insights further our

understanding of diabetic neuropathy and enable the early detection of sensory axonal

abnormalities, which may provide a basis for neuroprotective therapeutic approaches.

Introduction

Type 2 diabetes mellitus (DM) is an alarming health concern worldwide [1]. Among its

complications, diabetic neuropathy is a major cause of morbidity in DM, and may affect up to

50% of long-standing diabetic patients. Sensory symptoms are much more prominent than

motor in typical diabetic neuropathy [2]. It is known that the majority of patients have distal
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symmetrical peripheral neuropathy [3], and neuropathic pain has a detrimental impact on

quality of life [4, 5].

Despite recent evidence suggesting that intensive therapy might reduce the risk of develop-

ing diabetic neuropathy, once it has developed, even strict glycemic control cannot reverse

neuropathic symptoms and pathological changes [3]. This fact underlines the importance of

early detection and treatment of diabetic neuropathy.

Many aspects of the pathogenesis of diabetic neuropathy remain to be explored, but

recently, a number of well conducted studies have broadened our understanding on the sub-

ject [6–9]. Although the exact molecular basis underlying diabetic neuropathy is complex, met-

abolic alterations such as glucose toxicity, alteration of insulin receptors, glucose uptake and

utilization may affect neurons early in the disease process. These metabolic alterations would

lead to ATP depletion, mitochondrial dysfunction, and changes in ion conductance [9]. These

defects would then set the stage for further structural and functional defects, eventually com-

promising axonal integrity and function. Recent evidence also suggests that sensory symptoms

in diabetic patients may be related to dysregulated ion channel expression in sensory axons

[10–12].

Nerve excitability testing is a useful tool to provide further understanding regarding the

pathogenesis of diabetic neuropathy. Previously, we demonstrated that the test can provide

valuable electrophysiological data that added to our understanding of how diabetes causes

dysfunction in motor nerves. It was also able to detect motor axonal dysfunction in diabetic

patients even before the onset of diabetic neuropathy [13]. Nevertheless, as sensory symptoms

are typically more prominent than motor symptoms [2], an assessment of sensory nerve excit-

ability could provide even more important insights into the pathogenesis of diabetic neuropa-

thy from a nerve excitability viewpoint. It also has the potential to provide greater sensitivity in

the detection of early axonal dysfunction.

Materials and methods

Clinical assessments, conventional nerve conduction studies (NCS), and nerve excitability test-

ing were performed in patients with type 2 DM. All the patients met the American Diabetic

Association criteria for diabetes diagnosis [4]. Patients with carpal tunnel syndrome, cervical

radiculopathy, myopathy, hyperkalemia/hypokalemia, or with other potential causes for sen-

sory polyneuropathy such as vitamin B12 deficiency, alcohol abuse, uremia, or autoimmune

diseases were excluded based on clinical assessments and NCS results. All patients enrolled in

the study were recruited from the Wan Fang Hospital, Taipei Medical University, Taipei, Tai-

wan. Control nerve excitability data were obtained from 33 healthy control (HC) subjects that

were age- and sex-matched with the patients’ cohort. The study was approved by the Joint

Institution Review Board of Taipei Medical University. All the subjects gave their signed

informed consent for inclusion in the study.

Clinical assessments and NCS

Standard neurological examinations were performed for all patients. To quantify the neuro-

pathic symptoms, the TNSr was obtained in each patient [14]. The reduced version of the total

neuropathy score used is focused on the symptomatic presentation. The scoring criteria

include the extent and severity of the following subscore items: sensory symptoms, motor

symptoms, autonomic symptoms, deficit in pin sensibility, deficit in vibration sensibility, and

deficit in muscle strength with a score of 0 corresponding to no symptoms and a score 4 to

severe symptoms in each criterion. Patients were then categorized into three grades based on

the TNSr, corresponding to neuropathy severity: grade 0 (G0) with no symptoms (TNSr 0),
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grade 1 (G1) with mild symptoms (TNSr 1–8), and grade 2+3 (G2+3) with moderate/severe

symptoms (TNSr 9–24). A detailed patient classification scheme can be seen in Fig 1.

Conventional NCSs were performed for all subjects. To determine the diagnostic utility of

sensory nerve excitability test in early diabetes, we compared nerve excitability test parameters

of HCs with patients who had yet to develop clinically relevant NCS changes for diabetic neu-

ropathy, as defined in criterion 3 of the American Academy of Neurology diagnostic criteria

[15]. Routine blood tests, glycosylated hemoglobin (HbA1c) level, and serum creatinine level

were also obtained.

Nerve excitability testing

Nerve excitability studies were performed by stimulating the nerve median at the wrist accord-

ing to previously described protocols, with skin temperature over the wrist maintained at least

32.0 degrees Celsius [16, 17]. Paired recordings of motor and sensory nerve excitability indices

were obtained for each subject. Sensory nerve action potentials (SNAPs) were recorded from

the index finger, while compound muscle action potentials (CMAPs) were recorded from

the abductor pollicis brevis muscle. Stimulation and recording were controlled by software

(QTRAC version 28/10/2011; Institute of Neurology, London, U.K.) and the stimulus current

was administered using an isolated linear bipolar constant-current stimulator (DS5; Digitimer,

Welwyn Garden City, U.K.). Surface electrodes were used during recording. The changes in

current required to produce a target potential corresponding to 50% of the maximal CMAP or

SNAP were tracked. Latency was defined as the time delay (ms) between stimulus onset and

peak CMAP or SNAP response. The stimulus threshold was defined as the current (mA) that

was required to produce amplitudes of CMAP or SNAP responses of half maximal amplitude.

The nerve excitability protocol incorporated the following recordings: 1) a stimulus re-

sponse (SR) curve; 2) strength-duration (SD) relationship which also determined rheobase

and strength-duration time constant (SDTC); 3) threshold electrotonus (TE) utilizing sub-

threshold 100-ms polarizing currents in both depolarizing (TEd; +40%) and hyperpolarizing

(TEh; -40%) directions to change the potential difference across the internodal membrane;

and 4) recovery cycle (RC) using a paired pulse paradigm with a supramaximal conditioning

stimulus followed by a test stimulus at interstimulus intervals from 2 to 200 ms. Superexcitabil-

ity was measured as the maximal threshold reduction, and subexcitability as the maximal

threshold increase after an interstimulus interval of 10 ms.

Statistical analysis

Nerve excitability data of diabetic patient groups and HCs were compared with one-way

ANOVA with post hoc analysis. Correlation studies were performed with Pearson R. Data

analysis was performed using the Statistical Package for the Social Sciences (SPSS) for Win-

dows version 21 (SPSS Inc., Chicago, U.S.A.).

Results

We obtained adequate sensory nerve excitability testing results from 109 patients. Of these, 2

were excluded for having carpal tunnel syndrome, and 1 was excluded for having comorbid

myopathy (Fig 1). The demographics and clinical profiles for the 106 patients are shown in

Table 1. They were further subdivided by TNSr score: 27 patients were categorized in the G0

group, 51 were categorized in the G1 group, and 28 patients in the G2+3 group. Although the

mean body weight of diabetic patients was higher than healthy controls, the increment was not

statistically significant. Compared to the G0 group, G1 and G2+3 groups had longer diabetes

duration since diagnosis.
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A summary of conventional NCS results is shown in Table 2. A trend of decreasing ampli-

tude and nerve conduction velocity could be observed in sural and median nerves. The mean

sural NCV data (41.03 m/s) in the G2+3 group was abnormal when compared to the normal

range of this laboratory (41.5–58.3 m/s).

Sensory and motor axonal excitability indices in patients are listed in Table 3 and Fig 2. In

the G0 cohort, sensory excitability indices in patients differed from HCs in the stimulus for

Fig 1. This flowchart depicts the recruitment and the subjects involved in the final data analysis.

Patients were divided into group G0, G1, and G2+3 based on total neuropathy score-reduced (TNSr).

doi:10.1371/journal.pone.0171223.g001

Table 1. Patient demographics and clinical and electrophysiological profiles.

Variable Healthy

controls

Type 2 diabetes

G0 G1 G2+3

TNSr (score) - 0(0.00) 4.06(2.28) 11.46(2.05)

Sex: male/

female

(number)

14/19 9/18 26/25 18/10

Age (yr.) 62.11

(7.51)

61.19(8.15) 62.37(12.90) 63.00(10.85)

HbA1c (mg/dl) 5.90(0.51) 7.12(0.76)*** 7.77(1.42)*** 7.82(1.76)***

Creatinine

(mg/dl)

0.75(0.16) 0.78(0.24) 0.87(0.32)* 1.26(1.73)

Body weight

(kg)

61.07

(10.21)

65.89 (10.80) 67.34 (12.68) 68.81 (12.09)

Diabetes

duration

(yr. since

diagnosis)

N/A 3.27 (3.39) 5.79 (4.31) 6.48 (4.48)

Diabetes

medications

N/A Insulin (8%), Biguanides (58%), SU

(16%), Acarbose (13%), Meglitinides

(3%), DPP-4i (34%), Thiazolidinediones

(0%)

Insulin (22%), Biguanides (76%), SU

(27%) Acarbose (5%), Meglitinides

(2%), DPP-4i (27%), Thiazolidinediones

(0%)

Insulin (19%), Biguanides (67%), SU

(48%), Acarbose (10%), Meglitinides

(0%), DPP-4i (29%), Thiazolidinediones

(5%)

The reported values of laboratory data represent the mean (standard deviation).

TNSr = Total neuropathy score-reduced [14], SU = sulfonylureas, and DPP-4i = dipeptidyl peptidase 4 inhibitors.

*t-test P<0.05 vs. healthy controls and

***t-test P<0.001 vs. healthy controls.

doi:10.1371/journal.pone.0171223.t001
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Table 2. Summary of conventional nerve conduction study results.

Variable Healthy controls Type 2 diabetes

G0 G1 G2+3

Sural NCV (m/s) 60.27(7.97) 54.00(7.79) 49.25(12.29) 41.03(18.46)*

Sural amplitude (μV) 16.33(6.17) 15.46(5.61) 14.19(9.73) 8.96(8.16)

Median sensory NCV (m/s) 57.88(8.86) 55.15(5.64) 51.43(6.61) 49.59(8.06)

Median sensory amplitude (μV) 35.39(14.26) 31.94(16.50) 28.94(10.58) 22.00(10.22)

Median motor NCV (m/s) 55.64(4.31) 52.89(11.68) 51.71(5.30) 50.28(5.39)

Median motor amplitude (mV) 7.47(2.63) 7.36(2.60) 7.44(2.08) 7.25(1.98)

The reported values of laboratory data represent the mean (standard deviation).

NCV = nerve conduction velocities.

*The mean data are out of normal range for this NCS laboratory. The normal ranges in this NCS laboratory were: sural NCV 41.5–58.3 m/s, sural amplitude

5–37.16 μV, median sensory NCV 48.7–65.5 m/s, median sensory amplitude 10.0–72.6 μV, median motor NCV 49.2–64.8 m/s, and median motor

amplitude 3.0–15.4 mV.

doi:10.1371/journal.pone.0171223.t002

Table 3. Comparison of sensory and motor nerve excitability parameters between groups.

Axonal properties HC (n = 33) Type 2 diabetic patients (n = 106) P value (F)†

G0 (n = 27) G1 (n = 51) G2+3 (n = 28)

Sensory stimulus-response curve

Stimulus for 50% SNAP (mA) 2.24±0.18 3.66±0.58** 4.06±0.22*** 4.27±0.27*** <0.001 (8.44)

Peak response (μV) 39.36±2.47 37.96±3.19 38.79±2.94 24.00±2.52*** <0.001 (7.52)

Latency (ms) 3.33±0.06 3.51±0.06 3.87±0.11*** 3.87±0.07*** <0.001 (8.11)

Sensory SDTC (ms) 0.62±0.02 0.54±0.02** 0.55±0.02** 0.55±0.03* 0.011 (3.87)

Sensory recovery cycle

RRP 3.44±0.12 3.28±0.12 3.43±0.12 3.36±0.12 NS (0.28)

Superexcitability (%) -16.61±1.06 -22.65±1.50** -22.70±1.28** -21.53±1.41* 0.004 (4.65)

Subexcitability (%) 12.39±0.61 10.46±0.57* 9.64±0.53** 8.22±0.78*** <0.001 (7.38)

Sensory threshold electrotonus

TEd(peak) (%) 59.36±0.51 62.59±0.90* 62.44±0.65** 63.10±1.36** 0.016 (3.54)

TEh(90–100 ms) (%) -145.44±4.35 -143.68±5.43 -148.54±3.17 -150.08±4.46 NS (0.41)

Motor stimulus-response curve

Stimulus for 50% CMAP (mA) 2.76±0.14 5.33±0.81*** 4.73±0.28*** 5.70±0.30** <0.001 (7.18)

Peak response (mV) 8.31±0.46 7.94±0.97 10.17 ±2.33* 9.80±0.54 NS (2.16)

Latency (ms) 6.62±0.17 6.78±0.16 6.98±0.09 6.93±0.17 NS (1.45)

Motor SDTC (ms) 0.46±0.01 0.47±0.02 0.44±0.01 0.53±0.02** 0.001 (5.65)

Motor recovery cycle

RRP 3.12±0.09 3.15±0.12 3.33±0.09 3.47±0.12* NS (2.27)

Superexcitability (%) -23.98±0.98 -24.07±1.76 -22.56±0.97 -21.80±1.43 NS (0.72)

Subexcitability (%) 16.44±0.94 14.47±0.81 12.40±0.57*** 11.15±0.68*** <0.001 (9.23)

Motor threshold electrotonus

TEd(peak) (%) 68.33±0.69 66.85±1.16 67.25±0.84 63.99±1.11** 0.022 (3.31)

TEh(90–100 ms) (%) -129.87±3.82 -127.22±5.00 -120.50±3.04 -112.91±3.07** 0.014 (3.66)

The reported values represent the mean ± standard error.

HC = healthy control; SNAP = sensory nerve action potential; CMAP = compound muscle action potential; SDTC = strength-duration time constant;

RRP = relative refractory period; and NS = not statistically significant.

†P values and F from one-way ANOVA between groups.

*Post hoc analysis P<0.05 vs. healthy controls

**Post hoc analysis P<0.01 vs. healthy controls, and

***Post hoc analysis P<0.001 vs. healthy controls.

doi:10.1371/journal.pone.0171223.t003
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50% SNAP, SDTC, superexcitability, subexcitability, and TEd(peak). However, motor excit-

ability indices showed significant changes only in stimulus for 50% CMAP.

Comparison of sensory and motor SR curve is shown in Fig 2A and 2B. Both sensory (stim-

ulus for 50% SNAP, 3.66±0.58 mA; P< 0.01) and motor (stimulus for 50% CMAP, 5.33±0.81

mA; P< 0.001) SR curve shows a right shifting of the curve in the G0 group compared to that

of HC, and the trend persisted into the G1 (sensory: 4.06±0.22 mA; P< 0.001, motor: 4.73±
0.28 mA; P< 0.001), and G2+3 groups (sensory: 4.27±0.27 mA; P< 0.001, motor: 5.70±0.30

mA; P< 0.01). This indicates that both sensory and motor axons have increased thresholds.

In addition, in SNAP peak response decreased as the disease progressed in the G2+3 group

(24.00±2.52 μV; P < 0.001), suggesting axonal loss in the G2+3 group. One-way ANOVA

confirmed increased stimulus for 50% SNAP (P < 0.001, F = 8.44) and CMAP (P< 0.001,

F = 7.18), decreased sensory peak response (P <0.001, F = 7.52), and increased sensory latency

(P<0.001, F = 8.11) across groups.

The sensory and motor SD relationship can be seen in the threshold charge vs stimulus

width plot in Fig 2C and 2D. Sensory SDTC in the diabetic group were shorter than that of

HCs (G0 group: 0.54±0.02 ms; P < 0.01, G1 group: 0.55±0.02 ms; P < 0.01, G2+3 group: 0.55±
0.03 ms; P< 0.05). The motor SDTC of patients showed prolongation late in G2+3 group

(0.53±0.02 ms; P< 0.01). One-way ANOVA showed results consistent with shortening of sen-

sory SDTC (P = 0.011, F = 3.87) and prolongation of motor SDTC (P < 0.001, F = 9.23) across

diabetic patient groups.

The results of RC are shown in Fig 2E and 2F. In sensory axons, increased superexcitability

(-22.65±1.59%; P< 0.01) and decreased subexcitability (10.46±0.57%; P< 0.05) from the G0

group were noted. Changes in superexcitability remained as the disease progressed further

(G1 group: -22.70±1.28%; P< 0.01; G2 group: -21.53±1.41%; P< 0.05). Subexcitability also

remained decreased into the advanced stage of the disease (G1 group: 9.64±0.53%; P< 0.01,

G2+3 group: 8.22±0.78%; P < 0.001). One-way ANOVA also supported increased subexcit-

ability (P = 0.004, F = 4.65) and decreased superexcitability (P< 0.001, F = 7.38) in diabetic

groups. There was a trend of shortening of the mean RRP in later diabetic neuropathy (G2+3

group: 3.36±0.12 ms).

In agreement with the previous study by Sung et al., 2012, the motor RC curve showed

no significant difference in superexcitability. The motor subexcitability was significantly

decreased in the G1 group (12.40±0.57%; P< 0.001) and worsened as the disease progressed

(G2+3 group: 11.15±0.68%; P< 0.001), a change confirmed by one-way ANOVA between

groups (P< 0.01, F = 9.23). The motor mean RRP also showed a trend of prolongation in the

late stage (G2+3 group: 3.47±0.12).

The plotting of sensory and motor TE is shown in Fig 2G and 2H. The sensory TE showed

progressive axonal dysfunction from G0 to the G2+3 group. Under depolarizing conditioning

current, sensory TE showed increasing TEd(peak) (G0 group: 62.59±0.90%; P < 0.05, G1

group: 62.44±0.65%; P< 0.01, G2 group: 63.10±1.36%; P < 0.01). Although insignificant,

there was a trend for decreased accommodation toward hyperpolarizing current in the later

stage of disease, which could be seen as “fanning-out” of TEh(90–100 ms) (G0 group: -143.68±
5.43%; G1 group: -148.54±3.17%; G2+3 group: -150.08±4.46%). The “fanning-out” of TEd

(peak) across groups was supported by one-way ANOVA (P = 0.016, F = 3.54).

Fig 2. (A and B) Comparison of the stimulus response curve, (C and D) strength-duration time constant, (E

and F) recovery cycle, and (G and H) threshold electrotonus in diabetic patients (G0: empty circle, G1: filled

circle, and G2: triangle) and healthy controls (line). Sensory profiles are shown in the left column, while motor

profiles are shown in the right.

doi:10.1371/journal.pone.0171223.g002
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TE in motor axons showed a gradual “fanning-in” in later stages of diabetes both toward

depolarizing and hyperpolarizing current. “Fanning-in” toward depolarizing current was seen

in TEd(peak) showing more significant decrement in the G2+3 group (63.99±1.11%; P<

0.01). In addition, “fanning-in” toward hyperpolarizing current could be seen as TEh (90–100

ms) showing changes in the G2+3 group (-112.91±3.07%, P< 0.01). One-way ANOVA results

were consistent with “fanning-in” in TEd(peak) (P = 0.022, P = 3.31) and TEh(90–100 ms)

(P = 0.014, F = 3.66) across groups.

Nerve excitability in patients not meeting diabetic neuropathy criteria

To assess the early changes in sensory nerve excitability indices of patients prior to developing

conventional NCS changes, we compared the sensory excitability indices of normal controls

(n = 33) with patients who had not yet developed clinically relevant NCS changes for diabetic

neuropathy (n = 78) using an unpaired t-test. There are several significant differences between

HCs and the patients in their sensory nerve excitability indices (Fig 3), including: elevated

stimulus for 50% SNAP, (3.41±1.05 vs. 2.25 ±0.18 mA; P < 0.001), prolonged latency (3.65

±0.04 vs. 3.33±0.06 μV; P< 0.001), shortened SDTC (0.55±0.01 vs. 0.62±0.02 ms; P< 0.01),

increased superexcitability (-22.2±0.90 vs. -16.61±1.06%; P< 0.001), increased subexcitability

Fig 3. The difference between healthy control (HC, white bar) and type 2 diabetic patients who have no clinical

neuropathy (no clinical neuropathy, black bar) in sensory nerve excitability parameters. (A) No clinical neuropathy

group shows greater threshold stimulus for 50% SNAP, (B) shorter strength-duration time constant (SDTC), (C) increased

superexcitability, (D) decreased subexcitability, (E) greater peak of TEd, and (F) the TEh in a 90–100 ms time window. *P<0.05;

** P<0.01; *** P<0.001

doi:10.1371/journal.pone.0171223.g003
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(9.99±0.38 vs. 12.39±0.61%; P< 0.01), and increased TEd(peak) (61.99±0.47 vs. 59.36±0.51%;

P< 0.01). These results reveal that diabetic sensory axonal excitability was altered prior to

developing clinically relevant changes in NCS.

Correlation studies between clinical parameters and nerve excitability

The correlations between HbA1c and nerve excitability parameters were investigated in

patients who had not yet developed clinical neuropathy. The results of the analysis show corre-

lations between HbA1c level and motor subexcitability (P<0.05, R = -0.26) as previously

reported [13]; sensory superexcitability (P< 0.001, R = -0.38) and latency (P<0.05, R = 0.23)

both correlate with HbA1c level (Fig 4A and 4B).

Furthermore, in all diabetic patients, longer duration since diabetic diagnosis was corre-

lated with increased latency in sensory (P<0.05, R = 0.24) and motor axons (P<0.05, R =

0.24), and increased motor TEh(90–100 ms) (P<0.05, R = 0.21)

To further dissect the relationship between sensory and motor axons in the same DM

patient, the correlation between paired sensory and motor excitability parameters was also eval-

uated: sensory superexcitability was statistically correlated to motor superexcitability (P<0.01,

R = 0.32) (Fig 4C) and motor TEd(peak) (P<0.05, R = -0.27). Where sensory subexcitability

also correlated to motor subexcitability (P< 0.001, R = 0.49) (Fig 4D), the results confirmed

concurrent changes of the motor and sensory excitability parameters in the same patients.

Discussion

This study is the first to explore the progression of diabetic neuropathy in sensory axons in

asymptomatic patients with severe diabetic neuropathy, using an array of examinations includ-

ing standard neurological examinations to quantify the neuropathic symptoms, TNSr, and

nerve excitability testing. Substantial insights into the underlying pathophysiological mecha-

nisms were obtained utilizing these tests. The findings suggest that sensory axons developed

nerve dysfunction prior to and in a different fashion than that of motor axons. These striking

results enable us to detect abnormalities in sensory axons at asymptomatic stages. In the fol-

lowing section, the mechanisms involved and underlying voltage-gated ion channel functions

that may contribute to the differences between sensory and motor axons and the phenotype of

diabetic neuropathies will be discussed.

Nerve excitability dysfunction reflects the pathogenesis of diabetic

neuropathy

Abnormal excitability parameters developed over the course of the disease, reflecting gradual

progression from metabolic alteration, to impairment of ion conductances, to further struc-

tural defects including dysfunction of the Na+/K+ pump, culminating in distal axonal degener-

ation [9]. (Fig 5A)

This study indicates that sensory axons develop axonal dysfunction earlier than motor

axons: more sensory nerve excitability parameters were changed in the early stage in the G0

cohort, reflecting Na+/K+ pump or nodal Na+ channel impairment in the beginning of diabetic

neuropathy. In contrast to motor axons, only increased stimulation threshold and decreased

subexcitability were noted in G0. Sensory axons are liable to damage caused by hyperglycemia

and mitochondrial dysfunction [9]. In G2+3 group, sensory axons eventually developed distal

axonal loss, as evidenced by reduced peak amplitude; however, in the same group, motor

axons did not develop significant axonal loss. Our findings support the concept that sensory

axons are more sensitive to pathological changes in diabetes, compatible with the fact that sen-

sory symptoms usually arise earlier than motor [3].
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Differences in the development of sensory and motor axonal dysfunction

Hofmeijer and colleagues found that sensory axons were more vulnerable to ischemia and

hyperglycemic hypoxia than motor axons, presumably due to the greater sensory nerve depen-

dency on the Na+/K+ pump [18]. Pump activity is also physiologically higher in sensory axons

Fig 4. Correlation analysis in patients without clinically relevant neuropathy (n = 78). (A) Correlation between sensory superexcitability and HbA1c

level. (B) Correlation between motor subexcitability and HbA1c level. (C) Correlation between sensory and motor superexcitability parameters. (D) Correlation

between sensory and motor subexcitability parameters.

doi:10.1371/journal.pone.0171223.g004
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than in motor axons [19]. It has also been established that various biophysical differences in

sensory and motor axons might lead to their different excitability properties in healthy as well

as in diseased states [20, 21]. By studying the same patients’ motor and sensory axons, the pres-

ent results indicate that excitability changes in sensory axons occur earlier and progress in a

different fashion to motor axons.

Fig 5. Progression of diabetic neuropathy from pathophysiologic, symptomatologic, and nerve excitability

viewpoints. (A) Pathogenesis of diabetic neuropathy typically progresses from metabolic alteration, to ion current

defect, and then the development of further structural and functional defects. (B) Both positive and negative clinical

signs/symptoms would also progress in extent and severity as diabetic neuropathy worsens. (C) Sensory excitability

changes, reflecting sensory axonal dysfunction, could be detected even in asymptomatic patients. Superexcitability,

subexcitability, SDTC, and TEd parameter changes progress over the course of diabetic neuropathy, and eventually

the peak response decreases, reflecting axonal loss. (D) Motor excitability changes in superexcitability, SDTC, TEh,

and TEd parameters could be detected in later stages of diabetic neuropathy compared to sensory axons.

doi:10.1371/journal.pone.0171223.g005
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In sensory axons of DM patients, right shifting of the SR-curve, shortening of SDTC,

down-shifting of RC curve, together with a trend of RRP shortening and TE “fanning-out,”

suggested that the sensory axon is possibly in a state of hyperpolarization [22]. These changes

in excitability indices are also similar to changes observed in sensory axon during the post-

ischemic period [23].

Sensory axons might be hyperpolarized at the early stage of DM due to the reduction of

Na+ conductances in sensory axons, which could produce hyperpolarization. Reduction of

nodal Na+ permeability has been observed in later stages of diabetic neuropathy in animal

models [24–26]. This decrease in Na+ permeability might be due to progressive redistribution

of nodal Na+ channels across the paranodal barrier into the paranodal and internodal domains

[24]. Na+ channel expression might also be affected in DM by post-translational modification

[27].

This study has shown that SDTC was progressively shortened, reflecting a decrement of

persistent Na+ conductance in diabetes. Transient Na+ channels were probably also affected, as

a trend of shortening in RRP was observed as the disease progressed, which could be responsi-

ble for the parathesia that patients suffer.

The motor nerve excitability dysfunction seen in this study are in agreement to those

previously reported [7, 13, 28, 29]. The right-shifting of the SR curve, flattening of RC curve,

and “fanning-in” of TE parameters are compatible with a reduction of Na+/K+ pump activity

[7, 29]. The reduction of the pump activity itself might be related to either hyperglycemia,

increased levels of sorbitol with consequent myo-inositol depletion, and/or reduction in pro-

tein kinase C activation [13]. Nerve sonographic study has revealed diffuse median nerve

swelling from the wrist to forearm segment; the nerve swelling and the resultant ischemia

might have affected the median nerve excitability indices in this study [30, 31].

Correlation between nerve excitability and clinical parameters

Previous studies found evidence that glycemic control is associated with changes in axonal

properties [28, 32–34]. Furthermore, membrane property changes were found to be correlated

with neuropathy-specific quality-of-life measures and severity [35, 36]. This study found that

higher HbA1c levels were correlated with increasing superexcitability and decreasing subexcit-

ability in sensory axons of patients without clinically relevant neuropathy. This suggest that in

patients with higher HbA1c, the inhibitory function of paranodal potassium channels might

be weaker and that nerve excitability techniques can be a useful tool for future study on the

effect of blood sugar control on nerve function, in particular, parameters such as motor subex-

citability and sensory superexcitability. Positive correlation between diabetic duration and

latency in motor and sensory axons indicated that axonal dysfunction tended to worsen during

the later stages of diabetes.

Concurrent changes in paired motor and sensory excitability

Correlation between numerous sensory and motor excitability parameters in the paired sen-

sory and motor study confirmed concurrent pathological sensori-motor axonal changes in the

same patients. While correlation between sensory superexcitability and motor superexcitability

suggested that nodal and internodal potassium channels are affected in the same patients, the

correlation between sensory subexcitability and motor subexcitability suggested slow potas-

sium channels in the paranodal region might also be similarly affected [37]. Previous studies

had suggested that potassium channels are affected by ischemia in both motor and sensory

axons [37, 38].
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Possible implications for early neuroprotective therapeutic approaches

This study revealed that sensory nerve excitability indices showed axonal dysfunction earlier

than motor. Sensory nerve excitability testing could be a potential screening tool for the early

detection of peripheral nerve involvement. Among all parameters, sensory superexcitability

appeared to be the most sensitive in the detection of early sensory axonal dysfunction. Clearly,

more studies are needed to further establish the diagnostic utility of sensory excitability indices

in diabetic neuropathy. Earlier detection of sensory axonal dysfunction would prompt earlier

neuroprotection for diabetic neuropathy. Taken together, insights from this study provide a

basis for new therapeutic approaches aimed at delaying or reversing diabetic neuropathy with

the potential to further change clinical practice such that early neuroprotection can be

initiated.
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