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Abstract

Genome-wide association studies (GWAS) have enabled the discovery of candidate mark-

ers that play significant roles in various complex traits in plants. Recently, with increased

interest in the search for candidate markers, studies on epistatic interactions between single

nucleotide polymorphism (SNP) markers have also increased, thus enabling the identifica-

tion of more candidate markers along with GWAS on single-variant-additive-effect. Here,

we focused on the identification of candidate markers associated with flowering time in soy-

bean (Glycine max). A large population of 2,662 cultivated soybean accessions was geno-

typed using the 180k Axiom® SoyaSNP array, and the genomic architecture of these

accessions was investigated to confirm the population structure. Then, GWAS was con-

ducted to evaluate the association between SNP markers and flowering time. A total of 93

significant SNP markers were detected within 59 significant genes, including E1 and E3,

which are the main determinants of flowering time. Based on the GWAS results, multilocus

epistatic interactions were examined between the significant and non-significant SNP mark-

ers. Two significant and 16 non-significant SNP markers were discovered as candidate

markers affecting flowering time via interactions with each other. These 18 candidate SNP

markers mapped to 18 candidate genes including E1 and E3, and the 18 candidate genes

were involved in six major flowering pathways. Although further biological validation is

needed, our results provide additional information on the existing flowering time markers

and present another option to marker-assisted breeding programs for regulating flowering

time of soybean.

Introduction

A genome-wide association study (GWAS) is one of the promising approaches for the identifi-

cation of genomic variants responsible for specific phenotypes [1]. With the introduction of

PLOS ONE | https://doi.org/10.1371/journal.pone.0228114 January 22, 2020 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Kim KH, Kim J-Y, Lim W-J, Jeong S, Lee

H-Yeon, Cho Y, et al. (2020) Genome-wide

association and epistatic interactions of flowering

time in soybean cultivar. PLoS ONE 15(1):

e0228114. https://doi.org/10.1371/journal.

pone.0228114

Editor: Istvan Rajcan, University of Guelph,

CANADA

Received: August 29, 2019

Accepted: January 7, 2020

Published: January 22, 2020

Copyright: © 2020 Kim et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: SNP Genotype data

of 2,662 soybean cultivars are publicly available at

http://github.com/kyounghyoun/Soybean_

epistasis.

Funding: This work is supported by grants from

the National Research Foundation of Korea (NRF-

2014M3C9A3064552), Rural Development

Administration, Republic of Korea (Project No.

PJ01313201) and the KRIBB Initiative program.

The funders had no role in study design, data

http://orcid.org/0000-0002-7652-1879
http://orcid.org/0000-0002-8557-0998
http://orcid.org/0000-0002-0038-461X
https://doi.org/10.1371/journal.pone.0228114
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0228114&domain=pdf&date_stamp=2020-01-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0228114&domain=pdf&date_stamp=2020-01-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0228114&domain=pdf&date_stamp=2020-01-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0228114&domain=pdf&date_stamp=2020-01-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0228114&domain=pdf&date_stamp=2020-01-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0228114&domain=pdf&date_stamp=2020-01-22
https://doi.org/10.1371/journal.pone.0228114
https://doi.org/10.1371/journal.pone.0228114
http://creativecommons.org/licenses/by/4.0/
http://github.com/kyounghyoun/Soybean_epistasis
http://github.com/kyounghyoun/Soybean_epistasis


high-density marker arrays, GWAS has been actively used in many crop species [2] and has

enabled the discovery of single nucleotide polymorphism (SNP) markers associated with

numerous agronomic traits [3]: flowering time [4, 5], cold tolerance [6], salt tolerance [7, 8],

drought tolerance [9], disease resistance [10, 11], plant height [12, 13], leaf architecture [14,

15], and seed weight [16, 17]. The knowledge of the trait-related SNP markers has served as

the genetic basis for the improvement of various traits in crop breeding programs [18].

Days to flowering (DTF) is a crucial agronomic trait that regulates the maximum use of

sunlight and temperature [19], and affects the growth and yield potentials [20]. Many GWAS

on single-variant-additive-effect thus have carried out to improve yield productivity, and have

led to identify DTF markers in many crops. For example, three candidate genes including

Nsn1, Fpa, and Zmm22 were identified in 942 maize samples (Zea mays) [21]; two candidate

genes, CO1 and BFL, were identified in using 218 barley samples (Hordeum vulgare) [22];

eight candidate genes including Hd1 were confirmed in 950 rice samples (Oryza sativa) [23];

and ten candidate genes including SOC1, AGL6, and ELF8 were reported in 309 soybean sam-

ples (Glycine max) [13]. These findings have presented valuable information to various breed-

ing programs focused on DTF, but have a limitation to further improve DTF, because they are

not sufficient for explaining all of the phenotypic variations in DTF such as interaction effects

between markers [24].

Epistasis is defined as the interaction between genes or SNP markers that influences a trait

[25]. Each SNP marker above a significant level in GWAS has a strong effect on the determina-

tion of a trait, but non-significant markers that interact with each other could also have a large

influence on the trait [24]. Therefore, considering epistatic interactions for multi-variant non-

additive effects, enables to discover more markers associated with traits, together with GWAS

on single-variant-additive-effects [26]. For this reason, many GWAS studies have utilized epi-

static analysis as a complementary approach, and have reported significant epistasis and

GWAS markers associated with various traits: 12 epistatic markers with 12 GWAS markers for

sudden death syndrome resistance in soybean [27], ten epistatic markers with 33 GWAS mark-

ers for iron deficiency-related chlorosis in soybean [28], nine epistatic markers with 14 GWAS

markers for seed weight in soybean [29], and 38 epistatic markers with 113 GWAS markers for

DTF in barley [30]. Significant markers controlling many traits have been investigated through

these studies; however, soybean’s DTF markers related to both epistasis and GWAS have not

been investigated in depth as other traits.

Twelve major genes affecting DTF have been identified in soybean, including E1–E10 [31–

41], J [42], and Dt1 [43, 44]. To better understand the DTF-related genetic factors beyond the

twelve major genes, an epistasis study with GWAS is needed. Here, we genotyped 2,662 culti-

vated soybean accessions using the high-density Axiom1 180k SoyaSNP array developed by

our team in 2016 [45]. Also, we evaluated the DTF trait of all accessions through a phenotypic

survey. The aims of this study were: 1) to examine population structures of the 2,662 accessions

for GWAS; 2) to identify significant markers associated with DTF through GWAS; 3) to reveal

epistatic markers with interactions between significant and non-significant GWAS markers;

and 4) to present final candidate markers with the relation to major DTF pathways.

Materials and methods

Plant materials and genotyping

A total of 2,872 soybean (Glycine max) accessions were collected from the National Agrobiodi-

versity Center in the Rural Development Administration (RDA, Jeonju, Korea), and were gen-

otyped using the Axiom1 180k SoyaSNP. Of these, 210 hybrid accessions were excluded from

the analysis. The remaining 2,662 accessions originated from South Korea (2,415), North
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Korea (96), the USA (60), China (59), and Japan (32), and comprised 335 improved cultivars

(ICs), 2,175 landraces (LRs), and 152 unknown cultivars (UCs) (S1 Dataset). These accessions

belonged to the following seven maturity groups: I (2), II (31), III (60), IV (187), V (88), VI

(16), and VII (3); however, the maturity group of most of the Korean accessions (2,275) was

not reported. After genotyping, 180,961 SNP markers were detected, and haplotype phasing

and imputation were conducted using BEAGLE version 3.3.1 [46]. Then, 78,427 SNP markers

with a minor allele frequency (MAF) > 0.05 were obtained. The non-MAF filtered SNPs were

used to examine the genomic structure and relationship, and the MAF filtered SNPs were used

to perform the GWAS. The genotype data of all 2,662 accessions, which were generated in col-

laboration with the RDA, is available at http://k-crop.kr and https://github.com/

kyounghyoun/Soybean_epistasis [47]. Phenotypic evaluation was conducted in the experimen-

tal field of the National Institute of Crop Science (NICS, Jeonju, Korea) (35˚50’26.7" N, 127˚

02’42.7" E), and the DTF trait was measured from June to October in 2014. Because of an

agreement on limited disclosure with our phenotypic evaluation team, the raw DTF values are

provided in the distribution plot and categorical data (Fig 1f, S1 Dataset).

Analysis of the genomic structure of and relationship among soybean

accessions

Phylogenetic analysis was conducted based on the identity-by-state coefficient matrix calcu-

lated using Plink v1.90b [48]. The phylogenetic tree was reconstructed using the BIO-neigh-

bor-joining algorithm [49] and FigTree v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/) (Fig

1a). Structure analysis was conducted using fastSTRUCTURE v1.0 [50], based on a variational

Bayesian framework (Fig 1b). The number of genetic clusters (K) was set at six, considering

the error values of 10-fold cross-validation (S1 Fig). The error value was the lowest at K = 6.

Principal component analysis (PCA) was performed by applying singular value decomposition

to the distant matrix calculated using the Kimura two-parameter model [51], and then dis-

played using the PC axes 1, 2, and 3 (Fig 1c and 1d). The linkage disequilibrium (LD) pattern

was computed using PopLDdecay v3.2 [52]. The mean value of LD was calculated within 100

and 500 kb regions (S1 Table), and the degree of LD up to 500 kb is displayed in Fig 1e. Nucle-

otide diversity (π) was calculated using a 10 kb slide size with a 100 kb window size using

VCFtools v4.2 [53], and inbreeding coefficient (F) was estimated using the method of

moments in VCFtools (S1 Table). Additionally, using the same software, fixation index value

(Fst) was calculated using a 10 kb slide size with a 100 kb window size.

GWAS

An association study between genomic regions and flowering time was conducted using a

compressed mixed linear model within Genomic Association and Prediction Integrated Tool

[54]. The MAF-filtered 78,427 SNP markers (MAF > 0.05) was used to consider common

markers (S2 Dataset), and a statistically significant cut-off value was adopted to −log

(p-value) = 7. To minimize false-positive results, the cut-off was set slightly higher than the

Bonferonni-corrected −log(p-value) of 6.2. The extent of model fitting was confirmed using a

quantile–quantile (Q-Q) plot for the expected and obtained p-values. After GWAS based on

SNP markers, gene annotations were performed using SnpEff v4.3 [55]. All results are summa-

rized in S3 Dataset, and genome-wide plots including the Q-Q plot are shown in Fig 2.

SNP marker set for epistatic analysis

To construct an SNP marker-set for multilocus epistatic interaction analysis, a biological filter-

ing approach was conducted. First, genes affecting DTF and maturity in Arabidopsis were

GWAS and epistasis for flowering time in soybean
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Fig 1. Genomic structure of 2,662 cultivated soybean accessions and their relationship among each other. a. Phylogenetic tree

computed using the identical-by-state coefficient. b. Population structure analysis using the number of genetic clusters (K)

ranging from K = 2 to K = 6, based on the maximum likelihood-based clustering algorithm. c. Principal component analysis

(PCA) plot of PC1 and PC2 derived using the Kimura two-parameter model. d. PCA plot of PC2 and PC3. e. Extent of linkage

disequilibrium (LD) decay computed up to 500 kb. f. Distribution of the flowering time of soybean LRs and ICs. Abbreviations,

KN, JN, CN, and OT, indicate accessions collected from Korea, Japan, China, and the other regions, respectively.

https://doi.org/10.1371/journal.pone.0228114.g001
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Fig 2. Manhattan plot for the DTF trait of soybean accessions. a. Manhattan plot of all 20 chromosomes. b. Manhattan plot of

chromosome 6 harboring the E1 gene. c. Manhattan plot of chromosome 19 harboring the E3 gene. Red horizontal lines indicate the

statistically significant cut-off of −log(p-value) = 7.

https://doi.org/10.1371/journal.pone.0228114.g002

Table 1. Significant genes related to DTF derived from GWAS, and non-significant genes related to DTF and maturity in Arabidopsis.

DTF Number of Arabidopsis genes Corresponding soybean genes Genes on the 180k SoyaSNP array SNP markers on the 180k SoyaSNP array

GWASa 55 59 59 93

Related genesb 353 (3) 2,639 (4) 2,184 (4) 5,441 (6)

Total 408 2,698 2,243 5,534

aSignificant genes related to DTF derived from GWAS
bNon-significant genes related to DTF and maturity in Arabidopsis. Values in parenthesis indicate the number of genes that overlapped with significant genes in GWAS.

https://doi.org/10.1371/journal.pone.0228114.t001
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examined [56–59], and a total of 356 Arabidopsis genes were identified (Table 1, S4 Dataset).

Second, nucleotide sequences of these Arabidopsis genes were mapped onto the soybean refer-

ence genome Wm82.a2.v1 using tBLASTx [60] with matching identity >80% and alignment

length>70 bp options, and a total of 2,643 homologous soybean genes were identified. Third,

2,188 genes belonging to the Axiom1 180k SoyaSNP array were identified among the 2,643

soybean genes, and 5,447 SNP markers contained in the 2,188 genes were obtained. Finally,

the 5,447 SNP markers were combined with 93 significant genic SNP markers derived in the

GWAS (-log(p-value) > 7), and a total of 5,534 SNP markers (excluding 6 overlapping SNP

markers) was constructed as the final SNP marker-set for the multilocus epistatic analysis. All

results, including the number of SNP markers per gene, are summarized in S4 Dataset, and a

brief summary is provided in Table 1.

Multilocus epistatic interactions

Multilocus interactions among the 5,534 SNP markers related to DTF were examined using

Bayesian High-order Interaction Toolkit (BHIT) [61] with 1,000,000 iterations and 990,000

burn-in periods. The relationship between SNPs (X) and trait (Y) in multilocus interactions

was inferred as P(Y, H|I, H) by grouping dependent genotypes (I) and phenotypes (H) [61].

Then, the likelihood was estimated using the following equation:

PðY;HjI;HÞ ¼ PðYjXfI¼1gÞ
YH

h¼1

PðXfI¼hgjIÞ ¼ ð
YM

m¼1

ðPðYfmgjXfI¼1g ¼ mÞÞð
YH

m¼1

PðXfI¼hgjIÞÞ

where, X{I=h} indicates all X in the hth group, and Y{m} indicates Y in the mth cluster. For P
(X{I=h}|I), Dirichlet prior distribution and multinomial distribution were used as the Bayesian

partition model [62]. The threshold for the posterior probabilities on the dependency for mul-

tilocus and phenotype was set at 0.5. A Markov Chain Monte Carlo approach was then used to

search potential epistatic marker sets, and a Bayesian computational approach was utilized to

detect final high-order epistatic market sets. All results of multilocus epistatic interactions are

summarized in Table 2, and displayed in Circular-Manhattan plots in Fig 3. To more comple-

ment the multilocus epistasis, two-locus epistatic interactions were investigated to the BHIT

results. The two-locus epistatic test was conducted using a fixed linear regression model of the

Plink v1.90b [48], and the resulting p-values are summarized in Table 2.

Results

Genomic structure of cultivated soybeans

A large data set of 2,662 cultivated soybean accessions, originated from Korea (2,511), the USA

(60), China (59), and Japan (32), were used in this study. These accessions included 335 ICs,

2,175 LRs, and 152 UCs (S1 Dataset). Korean accessions accounted for approximately 94.33%

of the entire soybean collection, and covered with most of the soybean accessions in Korea.

These 2,662 accessions were genotyped using the Axiom1 180k SoyaSNP array developed by

our team in 2016 [45], and a total of 180,961 SNP markers were identified. These SNP markers

represented 39,674 soybean genes, with an average number of 2.80 SNP markers per gene.

Prior to GWAS, the genomic structure of 2,510 accessions (2,175 LRs and 335 ICs, excluding

152 UCs) was examined using the SNP markers (Fig 1). These 2,510 accessions represented a

single large population with considerable genomic diversity. A phylogenetic tree was con-

structed to radial forms rather than branched forms with distinct clades, and LRs and ICs

exhibited a mixed aspect with each other (Fig 1a). Structure analysis revealed similar genomic

composition and proportion between LRs and ICs at K = 2 (Fig 1b; green and blue). With the

GWAS and epistasis for flowering time in soybean
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Table 2. Multilocus epistatic interactions among 5,534 SNP markers related to DTF.

Groupa Chr. Position

(bp)

Soybean gene ID Gene

symbolb
p-value

(min, max)c
Protein Quantitative trait loci (QTLs) Related

pathwayd

A. Significant interaction groups including significant DTF-related genes in GWAS

G1 6 20,208,679 Glyma.06G207800 �E1 (3.69E-03,

3.69E-03)

AP2/B3-like transcriptional factor

family protein

First flower 4–1, 5–1, 12–2, 23–1,

26–9, 26–12

P

16 1,855,885 Glyma.16G020400 GIF3 (3.69E-03,

3.69E-03)

GRF1-interacting factor 3 Pod maturity 9–1 FPI

G2 6 20,207,322 Glyma.06G207800 �E1 (5.36E-03,

8.21E-03)

AP2/B3-like transcriptional factor

family protein

First flower 4–1, 5–1, 12–2, 23–1,

26–9

P

2 45,220,188 Glyma.02G267800 COP1 (8.21E-03,

1.56E-02)

Transducin family protein/WD-40

repeat family protein

- P

13 37,658,295 Glyma.13G274900 SPL12 (5.36E-03,

1.56E-02)

Squamosa promoter-binding

protein-like 12

Plant height 38–2 FMI

G3 6 20,207,322 Glyma.06G207800 �E1 (3.97E-04,

7.40E-01)

AP2/B3-like transcriptional factor

family protein

First flower 4–1, 5–1, 12–2, 23–1,

26–9, 26–12

P

4 6,893,070 Glyma.04G081800 EMF1 (1.27E-25,

7.25E-02)

Embryonic flower 1 - V

6 19,585,253 Glyma.06G205800 FUL (2.61E-04,

9.17E-02)

AGAMOUS-like 8 First flower 4–1, 5–1, 12–2, 26–9,

26–12

FMI

8 3,655,383 Glyma.08G046500 FKF1 (1.27E-25,

2.26E-02)

Flavin-binding, kelch repeat, f box 1 - P

10 42,450,765 Glyma.10G192000 NF-YB8 (3.97E-04,

9.17E-02)

Nuclear factor Y, subunit B8 Pod maturity 14–2, 15–2 FPI

G4 19 47,638,344 Glyma.19G224200 �E3 (1.84E-03,

1.84E-03)

Phytochrome A First flower 4-g80 P

15 8,774,152 Glyma.15G111900 STM (1.84E-03,

1.84E-03)

KNOX/ELK homeobox transcription

factor

First flower 12–3 P

G5 19 47,638,344 Glyma.19G224200 �E3 (2.46E-06,

5.94E-03)

Phytochrome A First flower 4-g80 P

3 44,468,848 Glyma.03G248200 FLK (4.85E-03,

5.94E-03)

RNA-binding KH domain-

containing protein

Plant height 26–17 AU

10 42,457,595 Glyma.10G192000 NF-YB8 (2.46E-06,

4.85E-03)

Nuclear factor Y, subunit B8 Pod maturity 14–2, 15–2 FPI

B. Significant interaction groups among non-significant DTF-related genes

G6 4 46,807,590 Glyma.04G196200 HAP5A (3.89E-10,

1.82E-01)

Nuclear factor Y, subunit C1 Plant height 5–4; Pod maturity

6–3, 6–6, 32–1

FPI

6 26,630,946 Glyma.06G221000 ARP6 (1.64E-03,

2.52E-01)

Actin-related protein 6 First flower 3–1, 8–1, 22–2, 23–1,

26–10, 26–11, 26–13, 26–16

AU

6 19,586,329 Glyma.06G205800 FUL (3.89E-10,

2.53E-06)

AGAMOUS-like 8 First flower 4–1, 5–1, 12–2, 26–9,

26–12

FMI

10 49,716,656 Glyma.10G274300 BBX15 (2.53E-06,

2.52E-01)

B-box type zinc finger protein with

CCT domain

- P

G7 2 1,109,049 Glyma.02G012100 SWN (1.04E-03,

2.20E-01)

SET domain-containing protein - AU, V

9 6,040,554 Glyma.09G063100 FVE (2.13E-12,

1.04E-03)

Transducin family protein/WD-40

repeat family protein

- AM, AU

15 22,687,645 Glyma.15G196500 PHYE (1.93E-04,

4.36E-01)

Phytochrome E Pod maturity 31–2, 37–2 P

15 40,764,606 Glyma.15G223700 CRY2 (2.13E-12,

4.36E-01)

Cryptochrome 2 Plant height 26–10 P

�Major DTF-related genes (E1 and E3) identified from GWAS.
aInteraction group derived from multilocus epistatic analysis for DTF.
bRepresentative gene symbol corresponding the soybean gene.
cRange of minimum and maximum p-values for two-locus interactions, calculated pairwisely among SNP markers in an interaction group.
dDTF-related pathways: AM, ambient temperature; AU, autonomous; FPI, floral pathway integrator; P, photoperiod; FMI, floral meristem identity; V, vernalization

https://doi.org/10.1371/journal.pone.0228114.t002
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increase in the value of K, the entire IC group showed a unique genomic composition, which

slightly distinguished from the LR group; however, each accession in the IC group exhibited

an aspect of inclusion in the LR group, with varying levels of genomic composition. The results

of PCA showed that the LR and IC groups formed a single group with large diversity, and the

IC group overlapped with the LR group, consistent with the results of structure analysis (Fig 1c

and 1d). Average values of LD, π, and DTF showed differences between the IC and LR groups.

Due to the impact of conscious selection for improvement, the IC group showed slightly

higher average values of LD (0.121583) (Fig 1e, S1 Table), and lower π (2.22E-5) and DTF

(42.16) (Fig 1f, S1 Dataset) than the LR group (0.112253, 2.39E-5, and 45.86, respectively). Val-

ues of inbreeding coefficient were all high (IC, F = 0.9710; LR, F = 0.9731) because of the char-

acteristics of inbreeding and stringent cleistogamy (S1 Table). Also, a numeric value Fst,

supported the results of various population analyses. The Fst between the IC and LR groups

was 0.0581 and was small enough to be regarded as a single group. Based on these results, a sin-

gle dataset consisting of all 2,662 accessions was constructed, and used for subsequent GWAS

and epistatic analysis. The results of PCA indicated that 132 UCs overlapped between the LR

and IC groups; these accessions were included in GWAS to reflect as much genomic diversity

of cultivated accessions as possible.

GWAS of DTF

Of the 180,961 SNP markers identified in 2,662 accessions, 78,427 SNP markers with

MAF > 0.05 were selected as common SNP markers for GWAS. These SNP markers were dis-

tributed on all 20 soybean chromosomes and represented 26,162 genes, with an average num-

ber of 2.07 SNP markers per gene (S2 Dataset). Then, the association between these SNP

markers and DTF was examined using a compressed mixed linear model that adjusts popula-

tion structure and kinship (Fig 2, S3 Dataset). Statistically significant cut-off was set at −log(p-

Fig 3. Epistatic interactions among DTF-related genes. a. Epistatic interactions between non-significant genes and significant genes (E1 and

E3). Inner curved lines indicate interaction groups, G1 (navy), G2 (red), G3 (orange), G4 (green), and G5 (purple) (Table 2). b. Epistatic

interaction between non-significant genes. Inner curved lines indicate interaction groups, G6 (green) and G7 (navy) (Table 2). Red dotted

lines in the two plots indicate statistically significant cut-off thresholds of −log(p-value) = 7.

https://doi.org/10.1371/journal.pone.0228114.g003
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value) = 7, which was higher than the Bonferroni-adjusted p-value = 6.2, to minimize false-

positive results. A total of 132 significant SNP markers including 93 genic SNP markers were

detected, and all mapped to chromosomes 6 and 19 (Fig 2a). Among these 93 significant genic

SNP markers, 78 SNP markers mapped to 51 soybean genes on chromosome 6 (Fig 2b), and

15 SNP markers mapped to eight genes on chromosome 19 (Fig 2c).

The two major DTF-related genes, E1 and E3, were identified from the 59 significant genes.

The E1 gene has the largest influence on the determination of DTF [37, 63] and affects vegeta-

tive development by regulating multiple genes related to plant growth [64]. The E1 gene was

located at the 20,207,322 bp position on chromosome 6 (Glyma.06G207800), and showed a

considerably significant −log(p-value) of 14.23. The E3 gene regulates DTF under short-day

and long-day conditions, and affects plant maturity [65]. This gene was positioned at

47,638,344 bp on chromosome 19 (Glyma.19G224200) and exhibited a significant −log(p-

value) of 9.75. Two additional major genes affecting DTF, E2 and E4 [66, 67], were not

detected as significant genes in this study. The E2 gene was located at nucleotide positions

45,295,453, 45,295,508, 45,296,750, and 45,300,271 bp on chromosome 10 (Gly-

ma.10G221500), but all showed non-significant p-values of 2.00, 2.43, 2.31, and 2.43, respec-

tively (Fig 2a). Also the E4 gene was positioned at 33,236,286, 33,236,286, and 33,241,589 bp

on chromosome 20 (Glyma.20G090000), but all were excluded from the GWAS because of low

MAF (0.000187, 0.000909, and 0.002441, respectively).

Epistatic interaction among DTF-related genes

Interaction effects on DTF among significant SNP and non-significant SNP markers were

examined to complement GWAS single-variant-additive-effect. Significant SNP markers con-

sisted of 93 genic SNP markers belonging to 59 soybean genes derived from the GWAS, as

described above. To focus on interactions among DTF-related genes, 5,441 non-significant

SNP markers in 2,184 soybean genes (Table 1) were selected from a set of 356 DTF-related

Arabidopsis genes on the Axiom1 180k SoyaSNP array (S4 Dataset) (see Materials and meth-

ods for details). In the 356 Arabidopsis genes, a total of 2,188 homologous soybean genes were

identified, but four genes (Glyma.06G205700, Glyma.06G207800-E1, Glyma.06G221000, and

Glyma.19G224200-E3) with six SNP markers were excluded from the non-significant SNP

marker-set since these markers were already included in the significant marker-set in GWAS.

Also, when detecting homologous genes, the non-MAF filtered SNPs were used in order to

consider various DTF-related genes which were excluded from the GWAS due to

MAF < 0.05, such as E4 gene (Glyma.20G090000). Finally, a total of 5,534 SNP markers

belonging to 2,243 soybean genes were selected and used for analyzing multilocus epistatic

interactions. The results revealed five interaction groups (G1–G5) containing two significant

and nine non-significant genes (Fig 3a) and two interaction groups (G6, G7) containing only

eight non-significant genes (Fig 3b, Table 2).

The interaction groups G1, G2, and G3 contained two, three, and five genes, respectively,

each including the significant DTF-related E1 gene (Fig 3a, Table 2). The non-significant

genes, identified in GWAS, included GIF3 (belonging to G1 group and quantitative trait locus

(QTL) of pod maturity 9–1), which is involved in regulating cell expansion and meristem of

leaves [68]; SPL12 (G2, plant height QTL 38–2), which affects plant growth and development

[69]; COP1 (G2), which regulates photomorphogenesis and skotomorphogenes, and is related

to growth and development [70]; FUL (G3, first flower QTLs 4–1, 5–1, 12–2, 26–9, and 26–

12), which functions early in controlling flowering time [71, 72]; EMF1 (G3), which is involved

in DTF through the regulation of reproductive development [73, 74]; FKF1 (G3), involved in

DTF by regulating changes in photoperiod and temperature [75, 76]; and NF-YB8 (G3 and G5,
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pod maturity QTLs 14–2 and 15–2), which regulates leaf development and maturity [77]. The

interaction groups G4 and G5 possessed the E3 gene in common, together with one and two

other genes, respectively (Fig 3a, Table 2), including STM (G4, first flower QTL 12–3), which

is related to flower meristem and DTF [78]; FLK (G5, plant height QTL 26–17), which regu-

lates DTF through the repression of FLOWERING LOCUS C expression and its post-transcrip-

tional modification [76]; and NF-YB8 (G5), also detected in G3, as described above.

The G6 and G7 interaction groups contained only eight non-significant genes identified in

GWAS, but were detected as significant interaction groups on DTF in the epistatic analysis

(Fig 3b, Table 2). These eight genes included HAP5A (G6, one plant height QTL and three pod

maturity QTLs), related to earlier flowering [79]; ARP6 (G6, eight first flower QTLs), involved

in plant growth and development [80, 81]; FUL (G6), also identified in G3, as described above;

BBX15 (G6), indirectly related to light reaction [82]; SWN (G7), involved in the regulation of

flowering and development [83, 84]; FVE (G7), associated with the regulation and control of

DTF [85, 86]; and PHYE and CRY2 (G7, two pod maturity QTLs and one plant height QTL),

related to light reaction during flowering [87, 88].

Pathways of epistatic genes related to DTF

To identify the degree of involvement in DTF, two significant and 16 non-significant genes

in all interaction groups were examined on DTF-related pathways. These 18 candidate

genes were involved in the following six major DTF-related pathways [56]: ambient temper-

ature (AM), autonomous (AU), flowering pathway integrator (FPI), photoperiod (P), floral

meristem identity (FMI), and vernalization (V) (Table 2, Fig 4). The V and P pathways con-

trol the overall flowering process [89] and the AM pathway regulates flowering time [90,

91], as external factors. The AU pathway promotes induction of flowering as an internal fac-

tor [89]. The FPI pathway regulates the other pathways and triggers the induction of FMI

[89], and the FMI pathway induces flowering. The P pathway contained eight candidate

genes including the E1 and E3 genes; A and AM pathways contained two candidate genes

each; AU and FPI pathways contained four candidate genes each; and the FMI pathway con-

tained three candidate genes. These results confirmed that all 18 candidate genes are

involved in major DTF-related pathways, and presented that they have a wide effect on DTF

while interacting with each other.

Discussion

The Axiom1 180k SoyaSNP array was developed by our team mainly based on Korean soy-

bean accessions, with the aim to perform GWAS using a large number of high-density markers

[45]. Of the 2,662 soybean accessions used in this study (S1 Dataset), 94% were of Korean ori-

gin and therefore suitable for genotyping with the Axiom1 180k SoyaSNP high-density array,

generating 180,961 SNP markers. These 2,662 soybean accessions mainly comprised two sub-

groups, LRs and ICs, and have a tendency to form a single large population with considerable

genomic diversity (Fig 1). The Fst value, a numeric value indicating population structure, was

also sufficiently small (0.0581) for the two subgroups to be considered as a single group (S1

Table). Based on the results of population structure analyses, we conducted GWAS on all

2,662 soybean accessions and identified 59 soybean genes, including E1 and E3, as candidates

associated with DTF (Fig 2, S2 and S3 Datasets).

Genes E1–E10 [31–41], J [42], and Dt1 [43, 44] are known as major DTF-related genes in

soybean. Among these, genes E1–E4 act as the major determinants of DTF, as these genes

account for approximately 62–66% of variation in DTF [40, 57]. The E1 gene has the largest

effect on DTF and photoperiod sensitivity [37, 63] through regulations of GmFT2a, GmFT5a,
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and GmFT1a genes [92, 93]. The E2 gene enhances photoperiod response and contributes to

early flowering by regulating GmFT2a [66, 94]. Genes E3 and E4 are involved in the regulation

of E1 and affect DTF through the regulation of the far-red light ratio [65, 67]. Above all, E1
functions as a key regulator of DTF in soybean [95]. In our GWAS, E1 and E3 genes showed

significant p-values, whereas E2 and E4 genes were not detected (Fig 2). The E2 gene showed a

non-significant p-value and the E4 gene was excluded from the GWAS because of considerably

low MAF of SNPs. According to previous studies, the E1–E4 genes in soybean are considerably

affected by habitat ecology and latitude [57, 96–98]. The soybean population used in this study

consists mostly of Korean accessions and therefore reflects the Korean environment. Korean

soybeans are also reported to possess high genomic diversity, unlike soybean accessions from

other regions [99–101]. Considering the genomic characteristic of our population, the GWAS

result suggests that E1 and E3 genes play a significant role in the regulation of DTF trait in

Korean soybean population.

In addition to GWAS results, the interaction effects between 59 significant genes and the

remaining non-significant genes on DTF were examined (Table 1). Identification of epistatic

interactions could help in the detection of a greater number of candidate genes, since the

Fig 4. Genes in major pathways regulating plant growth from the vegetative stage to the flowering stage. Representative genes are displayed in corresponding

pathways. Candidate genes identified from interaction groups are shown in red (“Related pathway” column in Table 2).

https://doi.org/10.1371/journal.pone.0228114.g004
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complex DTF trait is affected by interactions among multiple genes [29, 102]. In our epistatic

analysis, non-significant genes were utilized as 2,188 soybean genes which are homologous

genes to 356 DTF-related Arabidopsis genes (S4 Dataset). This approach of marker reduction,

called biological filtering, has been reported as one of the effective approaches for epistatic

analysis [103, 104], as it allows the overcoming of computational limitations caused by a con-

siderable number of marker combinations [105]. Therefore, we selected 356 Arabidopsis genes

based on previous reports on DTF and maturity (S4 Dataset), and used to analyze the interac-

tion effects of various DTF-related genes on DTF. The results of epistatic analysis revealed

seven interaction groups and 18 candidate genes with significant influence on DTF (Table 2);

E1 and E3 genes, which were detected in GWAS, also played a major role in the interaction

groups (Fig 3).

DTF is regulated by complex networks of biological processes [106, 107], and is character-

ized to six representative pathways from vegetative to flowering stages in Arabidopsis [108,

109]: P (response to day length and light), V (cold exposure), AU (flowering promotion), FPI

(floral transition), AM (time of floral transition), and FMI (floral development) (Fig 4). To bet-

ter understand the genetic effects of candidate genes on DTF, it is necessary to identify the

extent to which these candidate genes are involved in the six major pathways. Among the 18

candidate genes identified in this study, eight genes including E1 (interaction groups G1–G3)

are involved in P, FPI, FMI, and V pathways; four genes including E3 (G4 and G5) are associ-

ated with P, AU, and FPI pathways; and eight genes (G6 and G7) are related to P, V, AU, AM,

FMI, and FPI pathways (Table 2, Fig 4). Thus, all of these 18 candidate genes were evenly dis-

tributed in the six major pathways and affected DTF while interacting with each other in the

corresponding interaction groups. Overall, our results of GWAS and epistatic analysis suggest

that these 18 candidate genes play a significant role in the regulation of DTF in soybean, at

least in the Korean population.

However, our findings have several limitations. First, the DTF-related candidate markers

identified in this study do not represent the worldwide soybean population. It is possible that

these candidate markers are specific to Korean soybean accessions because 94% of the soybean

population was of Korean origin. Second, the epistatic analysis was restricted to only 356 DTF-

related Arabidopsis genes. The 356 genes were used to reduce computational overload; how-

ever, markers excluded in the epistatic analysis could also have a significant effect on DTF

while interacting with each other. Finally, our candidate markers have not been validated by

biological experiments. To minimize this limitation, we examined the genomic characteristics

of the soybean population before GWAS and used a conservative cut-off in GWAS, which was

higher than the Bonferroni-adjusted p-value. Despite these efforts, our candidate markers

need further experimental validation, but they are expected to present valuable information to

soybean breeding programs aimed at improving the DTF trait.

Conclusion

DTF is an important agronomic trait relevant to plant growth, development, and productivity

in soybean. This trait is regulated by complex biological processes and is affected by endoge-

nous genetic factors as well as environmental cues. Many researches have demonstrated the

effect of genotype × environment interaction on DTF; however, studies on epistatic interac-

tions among genetic factors have rarely been reported. Although our study is restricted by the

origin of soybean accessions and also requires further biological validation, candidate markers

identified in this study provides not only additional information for understanding the DTF

trait in soybean but also a valuable genetic basis for soybean breeding programs aimed at

improving DTF.
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