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detection with confidence regions using
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Abstract

Background: Despite the integral role of cephalometric analysis in orthodontics, there have been limitations
regarding the reliability, accuracy, etc. of cephalometric landmarks tracing. Attempts on developing automatic
plotting systems have continuously been made but they are insufficient for clinical applications due to low
reliability of specific landmarks. In this study, we aimed to develop a novel framework for locating cephalometric
landmarks with confidence regions using Bayesian Convolutional Neural Networks (BCNN).

Methods: We have trained our model with the dataset from the ISBI 2015 grand challenge in dental X-ray image
analysis. The overall algorithm consisted of a region of interest (ROI) extraction of landmarks and landmarks
estimation considering uncertainty. Prediction data produced from the Bayesian model has been dealt with post-
processing methods with respect to pixel probabilities and uncertainties.

Results: Our framework showed a mean landmark error (LE) of 1.53 ± 1.74 mm and achieved a successful detection
rate (SDR) of 82.11, 92.28 and 95.95%, respectively, in the 2, 3, and 4 mm range. Especially, the most erroneous
point in preceding studies, Gonion, reduced nearly halves of its error compared to the others. Additionally, our
results demonstrated significantly higher performance in identifying anatomical abnormalities. By providing
confidence regions (95%) that consider uncertainty, our framework can provide clinical convenience and contribute
to making better decisions.

Conclusion: Our framework provides cephalometric landmarks and their confidence regions, which could be used
as a computer-aided diagnosis tool and education.

Keywords: Artificial neural networks, Bayesian method, Cephalometry, Orthodontics, Machine vision, Deep learning,
Artificial intelligence, Orthodontic(s), Radiography, Orthognathic/orthognathic surgery, Oral & maxillofacial surgery,
Dental anatomy
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Background
From the classic to contemporary orthodontics, treat-
ment modalities of analyzing the spatial relationships of
teeth, jaws, and cranium rely heavily on the cephalom-
etry. Using standardized cephalometric x-ray, predefined
anatomic landmarks are marked so that various ortho-
dontic and facial morphometric analyses can be applied
for the diagnosis and treatment planning. Despite the
several methodological limitations such as nonlinear
magnification and distortion of images, its integral role
in orthodontics, as well as orthognathic and facial plastic
surgery is indisputable [1–3].
The accuracy of marked cephalometric landmarks can

affect the results of the clinical performance of analyses
and resulting treatment decisions [4, 5]. Since the
boundary of distinguishing abnormalities is concentrated
within the unit range of millimeters or several degrees,
even a slight error can have the potential to cause mis-
classification that can lead to malpractice. What makes
this even more challenging is that a human skull is a
highly sophisticated 3D object, whereas in a lateral
cephalogram which has its model projected onto a sagit-
tal plane, causes cubic features of the direction perpen-
dicular to the plane to be overlapped [6, 7].
Although cephalometric tracing is generally conducted

by trained orthodontists in clinical practice, numerous
reports were concerned about the significant intra- and
inter-observer variabilities among them due to the vari-
ous limitations and its time-consuming nature [7, 8]. To
achieve better accuracy and reliability for cephalometric
tracing, the need for fully automatic tracing software has
constantly been raised [9].
Throughout the decades, there have been several stud-

ies on computer-aided landmark detection. Template
matching and gray-scale morphological operator was
used for works of Cardillo and Sid-Ahmed, et al [10].
Ibragimov et al. used Random Forest and Game Theor-
etic techniques on the ISBI grand challenge 2014 for
good performance [11]. Tree based approaches such as
random forest regression with a hierarchic framework
and binary pixel classification with the randomized tree
were used by Chu et al. and Vandaele et al. respectively
[12, 13]. Despite these efforts, the developed methods
have shown limitations over the accuracy and the uncer-
tainty issues, proposing around 70% of estimated land-
marks within the clinically acceptable range of 2 mm
distance from the ground truth points [9].
Through the last decade, various clinical fields have re-

ported an increase in clinical efficiency according to the
application of artificial intelligence. In particular, recent
studies in the dental field have shown excellent perform-
ance in clinical applications as a diagnostic aid system
for deep learning models [14, 15]. Many deep learning
based computer aided landmark detection studies have

performed better than previous studies. Lee et al. and Arik
et al. adopted the basic concept of CNN for pixel classify-
ing algorithm [16, 17]. U-shaped deep CNN has widely
been used to precisely estimate their points [18–21]. How-
ever, in the case of a single CNN model, there is no uncer-
tainty provided over model calculations, which works as a
medical obstacle for the users to accept the outcome pro-
duced from the algorithm.
In this paper, we propose the novel framework for lo-

cating cephalometric landmarks with confidence regions
based on uncertainties using Bayesian Convolutional
Neural Networks (BCNN) [22]. With Bayesian inference
over iterative CNN model calculations, we can derive
the confidence region (95%) of an identified landmark
considering model uncertainty, and significantly higher
the in-region accuracy. Given the uncertainty and confi-
dence areas of the estimated location, clinicians are ex-
pected to determine whether the results of the
framework are reliable and to make a more accurate
diagnosis.

Methods
Dataset description
The material used in this study consisted of sets of data
from 400 subjects provided by the ISBI 2015 challenge
[23] (website: http://www-o.ntust.edu.tw/~cweiwang/
ISBI2015/challenge1/). Each set comprised one lateral
cephalogram, and two coordinate sets of landmark
points manually plotted by two experts respectively (jun-
ior and senior orthodontic specialists). The mean intra-
observer variability of landmark points was 1.73 and
0.90 mm for two experts [17]. In this study, the mean
position of the two points was used as the ground truth,
in a way that the inter-observer variability can be com-
pensated. An image had a size of 1935 × 2400 pixels, and
one pixel corresponded to a square size of 0.1 mm in
length on one side. Each pixel had a single channel gray-
scale value range in [0, 255]. To be consistent with the
study preceded in the challenge, 150 images proposed
from the ISBI were used for training, and the remaining
250 images were tested to examine the overall
performance.
This study was performed within the guidelines of the

World Medical Association Helsinki Declaration for bio-
medical research involving human subjects. It was ap-
proved by the institutional review board of the Ewha
Womans University Medical Center, Seoul, Korea.
(EUMC-2017-12-031-002).

Overall algorithm of the landmark detection framework
In this study, the entire framework was divided into two
procedures: Low-Resolution Screening (LRS) and High-
Resolution Screening (HRS). This allowed for higher
performance by separating complex tasks into easier
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subtasks. The objective of the LRS was to produce the
ROI of the corresponding landmark and that of HRS
was to estimate the exact landmarks considering the un-
certainty. Once the center of the expected region is de-
termined from the LRS, every single pixel within the
ROI is then to be judged whether it corresponds to the
target landmark point (Fig. 1).

Low resolution screening
To produce the ROI of the target landmark from LRS,
first, pixel positions were sampled with the stride of 3
mm (30 pixels) along the width and height direction
from the entire lateral cephalogram. Since it is not pos-
sible to determine whether it is the target landmark or
not merely with its pixel value alone, a square image
with an ith pixel position (pi

!¼ ðxi; yiÞ) at the center was
constructed (9.1 mm × 9.1 mm) and denoted as Iðpi!Þ .
From a CNN model trained for the target landmark k
(Ck), It is determined whether Iðpl!Þ resembles the target
landmark as the following relation, Ck : Iðpl!Þ→½0; 1� ,

where the output from the model indicated true or false
by corresponding to a value of 1 or 0 respectively.
Let the center point of the ROI of landmark k from

LRS be ð bxLk ; byLkÞ . Then, for the ith position classified as

true ( pti
!

) from LRS among the nT total true images, it
can be determined as the following equation.

bxLk ; byLk
� �

¼ 1
nT

XnT
i¼1

pti
!

High resolution screening – score weighting method

From the center point from LRS ð bxLk ; byLkÞ , a square-
shaped ROI was constructed based upon a reference side
length. The reference side length was set to 40mm
where 99% of the ground truth had positioned within.
Every pixel position ph

! within the ROI was then sam-
pled and imaged in a similar way to that of LRS, Iðph!Þ ,
to be an input for HRS. A Bayesian CNN model of the
landmark k, Bk, conducted a forward-propagation with

Fig. 1 Schematic of the overall detection framework. a Original lateral cephalogram (lat ceph) gets downsampled by a factor of 3. b From the

downsampled lat ceph, image batches (Iðpl!Þ) are sampled with a stride of 3 mm along the width and the height direction from all over the lat
ceph. c From the LRS calculation, CNN model provides a region of interest for the target landmark to be located in. d Every single pixel from the
ROI is, again, sampled as an image batch (Iðph!Þ) to be put into Bayesian CNN(B-CNN) model for iterative calculations. e HRS provides the final
predicted target position for the target landmark
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the sampled image batches and produced mean (μi) and
the uncertainty (σi) with respect to the corresponding
softmax values of each input. Since those of the pixels
which have a higher Bayesian mean and a lower uncer-
tainty are likely to be the target landmark, this study
proposed a simple post-processing method – Score
Weighting Method – which can successfully consider
the relation of the two as the following.

scorei ¼ e10μi − 1
� �

tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j¼1σ

2
j

q
sσσ i

0
@

1
A

From the score given to each pixel in the ROI, the

final estimated point of the landmark k, ðcxHk ;cyHk Þ; can be
derived. Similar to the mass center, the estimation can
be regarded as the ‘score center’ with the equation
below.

cxHk ;cyHk
� �

¼
P

i scorei � phi
�!� �

P
iscorei

The model architecture is illustrated in detail in Fig. 2
and the details on the BCNN for estimating uncertainty
are provided in the Method Detail of Appendix with the
set of formulas.

Model architecture and training details
BCNN utilizes the geographic characteristics of the in-
put data, similar to that of CNN, which generates infor-
mation by extracting location characteristics from the
kernel at each layer. As shown in the Fig. 2, the entire
model has a total of 4 Convolutional Cluster (CC) and 2

Fully Connected (FC) layers. Each CC contains the Batch
Normalization layer, Convolution layer, Non-linearity,
2D max-pooling, and dropout in the mentioned order.
The Batch normalization layer, the first layer of a CC, nor-
malizes input data batches with respect to their intensity
(γ) and bias (β) at the training time. At the test time, it
uses trained γ and β to remove the covariance-shifts
present in the test data batches. This process results in im-
proving the accuracy of 1 ∼ 2% than without it, and also
larger learning rate can be applied so that it takes less time
to train [24]. Lastly, the dropout layer randomly restricts
the activation of several neurons by the rate the user pro-
poses. Because of its randomness, a key role in Bayesian
inference, overfitting can be prevented.
The kernel has a size of 10 at one side each with a

depth of 32. As the layer deepens, size reduces from 7, 5,
to 1 and the depth increases from 64, 128 to 256 re-
spectively. The last dropout layer of the CC is then con-
nected to the first FC layer. The first FC layer has the
same number of neurons with the number of informa-
tion given from the last dropout layer, and the second
FC layer has several neurons identical to the number of
model outputs (True, False). The dropout rate, learning
rate, and weight decay are the hyper-parameter of our
model, and we have set them to 0.2, 0.05, and 0.001 re-
spectively in this study. We used softmax cross entropy
loss with weight decay for the loss function as shown in
[25]. This form of the loss function is the objective for
the proposed Bayesian approach. Adam with standard
parameters (beta_1 = 0.9, beta_2 = 0.999) were used for
the optimizer, and Glorot uniform initializer [26] for the
initialization. Transfer learning was not applied in this
study because the modality of our dataset is simple –

Fig. 2 The model architecture of our landmark detecting framework. The architecture has 4 Convolutional Cluster (CC) and 2 Fully Connected
(FC) layers. Each CC contains the Batch Normalization layer, Convolution layer, Non-linearity, 2D max-pooling, and dropout in the
mentioned order
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greyscale and small sized images due to cropping – and
hence, the architecture of our model is shallow to pre-
vent the possibility of overfitting. Existence of large
amount of the augmented training dataset also elimi-
nates the necessity of transfer learning.

Training set formation
Since the framework was divided into two (LRS and
HRS), which required their own convolutional neural
network model, each framework had to be trained indi-
vidually using the appropriate training data. To acquire
training materials for LRS, in training set, we used a dif-
ferent data augmentation technique introduced in [17].
According to this method, a large portion of the aug-
mentation is generated through cropping; we set ran-
domly extracted NT pixels within the boundary of 18
mm away from each landmark position (landmark-
neighboring pixels) to construct a true set, and similarly,
NF pixels out of the boundary (any pixels that are suffi-
ciently far from the landmark location) to make a false
set. We then created a cropped image centered on each
pixel as elements of a training batch. For the training
dataset of HRS, we take a radius of the true region to be
within 0.9 mm and our false region to be within the ra-
dius from 2.1 mm to 40mm [17]. Since the total amount
of data was insufficient in the case of the ISBI dataset,
we set NF = 500 and NT = 200 for both LRS and HRS
training materials. Therefore, a total of 105,000 (150 raw
training image * 700 augmented images-per-raw image)
training data were constructed. A total of 38 models (2
screening × 19 landmarks) were trained with 700 train-
ing data per training session.

Statistical analysis
The point to point error of each landmark was measured
with the absolute distance and averaged over the entire
test set. We defined such value as a landmark error (LE)

=
Pn

i¼1
k mi

*
− ai

* k
n ðmmÞ with mi

*
and ai

*
being the man-

ual and estimated landmark position of an image re-
spectively [27]. Standard deviation (SD) among all the
test data of a landmark was reported with the error. We
also measured the successful detection rates (SDR)
which indicate percentages of estimated points within
each precision range (z) of 2 mm, 2.5 mm, 3 mm, and 4

mm respectively; SDR = #fi:k mi
* − ai

* k < zg
n � 100 ð%Þ:

Results
Candidates of landmarks
Candidates of cephalometric landmarks in this study are
listed in Table 1. Those which were commonly used for
orthodontic diagnosis were chosen to be tested.

Landmark annotation results
The developed framework for automatic landmark es-
timation was compared with the ground truth land-
marks of the experienced clinicians. This involves 250
test data given from the ISBI challenge as the previ-
ous studies have conducted. A common way to find a
good place to stop training is to split a portion of the
data set into a validation set to track estimates of
generalization performance. However, there is no data
for validation in ISBI dataset. Therefore, we found a
training stop point through training loss, and selected
a point where training loss does not show a signifi-
cant difference for a certain period. We have attached
the plot for the training loss that clarifies the chosen
steps in Appendix Fig. 2. In this study, the selected
point is on 200,000 steps. One step included 128
image batches.
Figure 3 exemplifies the overall outcome produced

from an input cephalogram. The red pixels in Fig. 3a are
displayed with a log scale map of previously defined
scores. Blue dots represent estimated landmark posi-
tions, and ground truth points are plotted with green to
be in comparison. In Fig. 3b, ellipsoids around the

Table 1 Overall performance of detecting landmarks. The mean
landmark error with standard deviation of each landmark, and
successful detection rates (SDR) within the 2, 2.5, 3, 4 mm range
criteria are listed

Error (mm) SDR (%)

Mean SD 2mm 2.5mm 3mm 4mm

Sella 0.86 1.92 96.67 97.33 98.00 98.00

Nasion 1.28 1.03 81.33 86.00 90.00 96.67

Orbitale 2.11 2.77 77.33 87.33 94.00 96.67

Porion 1.89 1.67 58.00 66.00 72.67 86.67

A-point 2.07 2.53 52.00 62.00 74.00 87.33

B-point 2.08 1.77 79.33 88.67 93.33 96.67

Pogonion 1.17 0.81 82.67 90.67 96.00 100.00

Menton 1.11 2.82 95.33 97.33 98.00 98.67

Gnathion 0.97 0.56 92.00 97.33 98.67 98.67

Gonion 2.39 4.77 63.33 75.33 85.33 92.67

Lower incisal incision 1.35 2.19 84.00 90.67 93.33 96.67

Upper incisal incision 0.90 0.75 93.33 97.33 98.00 99.33

Upper lip 1.32 0.83 96.67 100.00 100.00 100.00

Lower lip 1.28 0.85 97.33 98.67 98.67 99.33

Subnasale 1.22 1.56 84.00 92.00 95.33 96.67

Soft tissue pogonion 2.62 2.07 82.67 92.67 95.33 97.33

Posterior Nasal Spine 1.23 0.91 90.00 94.00 95.33 98.00

Anterior Nasal Spine 1.52 1.56 78.67 87.33 90.67 93.33

Articulare 1.70 1.77 75.33 83.33 86.67 90.67

Average 1.53 1.74 82.11 88.63 92.28 95.96
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estimated points denote the corresponding confidence
regions (95%) of each landmark.
The manual inter-observer variability between senior

and junior doctors produced a LE of 2.02 ± 1.53 on the
test set. Whereas our framework has shown its variabil-
ity with the junior to be 1.79 ± 1.71, and 1.53 ± 1.67
when compared with the ground truth (mean position).
Since the produced mean error was less than that of the
other clinician-plotted landmarks, the developed frame-
work can obtain its status as a generalized method for
determining cephalometric landmarks. More detailed re-
sults for the landmark-specific annotations are listed in
Table 1. Our framework showed a mean landmark error
(LE) of 1.53 ± 1.74 mm and achieved a successful detec-
tion rate (SDR) of 82.11, 92.28 and 95.95%, respectively,
in the 2, 3, and 4mm range. In general, ±2 mm errors in
cephalometric analysis are clinically acceptable. Errors
higher than that can negatively affect orthodontic diag-
nosis and surgical treatment. The landmark of the lar-
gest LE among all was the Soft Tissue Pogonion, with a
mean error of 2.62 mm and a SD of 2.07. On the other
hand, the landmark which has the smallest LE was Sella,
which is very easy to identify its position. Compared to
other methods, one of the distinctive features of our
framework is the accuracy of the Gonion point. Every
method from the ISBI challenge in the year 2015 plots
Gonion point the most erroneously, that the smallest
error from the ground truth point came out to be more
than 4mm, whereas our framework produced the error
of nearly half of the others.
We used four NVIDIA GTX Titan X graphics process-

ing units (GPU) for training and inference. The learning
time using one GPU takes about 1.7 h for one landmark,
and the total time for learning 19 landmarks and two
models (HRS and LRS) is 64.6 (1.7 × 19 × 2) hours. If 4

GPUs are used in parallel, it takes 16.15 h. The inference
time using one GPU takes 8 s to perform Bayesian iter-
ation (17 times) for one landmark. Therefore, a total of
512 (8 × 19) seconds is required for 1 image (e.g., 19
landmarks). On the other hand, 38 s is required when
using 4 GPUs.

Classification result
Based on the estimated landmarks, the results were then
organized into a form of a confusion matrix to be com-
pared with the ground truth, shown in Table 2. The
label that outperforms the other the most was FHI.
(84.74%) Out of eight commonly used orthodontic pa-
rameters, we achieved four of them to be rated the high-
est performance among the other methods.

Discussion
Cephalometry is used as a very important criterion in
the diagnosis and treatment planning of orthodontics.
However, the lack of certainty about the definition of
cephalometric landmarks causes inter-observer variabil-
ity due to individual tendencies involved in the measure-
ment. Manual inspection errors due to fatigue can also
add to intra-observer variability. Moreover, plotting
cephalometric landmark in a manual manner is a time-
consuming behavior, and hence should be reduced in
their time requirement to be productive. Therefore, it is
necessary to establish an automatic framework of ortho-
dontic analysis that can rapidly estimate and analyze ac-
curate and reliable cephalometric landmarks.
We presented the automated framework for detecting

cephalometric landmarks which is the first attempt to
implement confidence regions (95%) around the esti-
mated positions of landmarks. By providing the confi-
dence regions, the clinician can intuitively gauge the

Fig. 3 Example of overall outcome. a Score plot. Red regions: log-scale score map, Blue dots: estimated positions, Green dots: ground truth. b
estimated landmarks and confidence regions (95%) in ellipsoid
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accuracy of the calculated landmark of the system, espe-
cially according to its location and size. Landmark detec-
tion along with confidence regions will not only inform
clinicians of the confidence on the estimated landmarks,

but also efficiently reduce time by narrowing areas to be
considered for clinicians’ decision making.
A considerable part of the result is that there is a dis-

tinct negative correlation between the error and SDR.

Table 2 Confusion matrix of orthodontic parameters for skeletal analysis and their comparison with others’ methods

Diagonal accuracy

Proposed Lindner et al. (Lindner et al. 2016) Arik et al. (Arik et al. 2017)

ANB Pred 1 Pred 2 Pred 3 80.72 79.90 77.31

True 1 65.75 10.96 23.29

True 2 23.64 70.91 5.45

True 3 4.96 0.83 94.21

SNB Pred 1 Pred 2 Pred 3 83.13 78.80 70.11

True 1 73.24 4.23 22.54

True 2 38.46 58.97 2.56

True 3 5.04 0.00 94.96

SNA Pred 1 Pred 2 Pred 3 72.69 73.81 66.72

True 1 67.62 16.19 16.19

True 2 18.89 80.00 1.11

True 3 25.93 3.70 70.37

ODI Pred 1 Pred 2 Pred 3 81.53 81.75 75.04

True 1 82.14 6.25 11.61

True 2 33.33 66.67 0.00

True 3 15.55 0.91 85.55

APDI Pred 1 Pred 2 Pred 3 84.34 89.26 87.18

True 1 82.14 6.25 11.61

True 2 33.33 66.67 0.00

True 3 15.55 0.91 85.55

FHI Pred 1 Pred 2 Pred 3 84.74 63.51 69.16

True 1 82.14 6.25 11.61

True 2 33.33 66.67 0.00

True 3 15.55 0.91 85.55

FMA Pred 1 Pred 2 Pred 3 81.93 81.92 78.01

True 1 82.14 6.25 11.61

True 2 33.33 66.67 0.00

True 3 15.55 0.91 85.55

MW Pred 1 Pred 3 Pred 4 Pred 5 80.32 79.59 81.31

True 1 75.00 1.19 17.86 5.95

True 3 0.00 89.76 2.04 8.16

True 4 13.89 0.00 86.11 0.00

True 5 15.91 13.64 0.00 70.45

Results are shown as percentage (%)
Abbreviations: ANB angle between A-point, nasion and B-point, SNB angle between sella, nasion and B-point, SNA angle between sella, nasion and A-point,
Overbite depth indicator (ODI) sum of the angle between the lines from A-point to B-point and from Menton to Gonion, and the angle between the lines from
Orbitale to Porion and from PNS to ANS, Anteroposterior dysplasia indicator (APDI) sum of the angle between the lines from Orbitale to Porion and from Nasion to
Pogonion, the angle between the lines from Nasion to Pogonion and from Subspinale to Supramentale, and the angle between the lines from Orbitale to Porion
and from PNS to ANS, Facial height index (FHI) ratio of the posterior face height (distance from Sella to Gonion) to the anterior face height (distance from Nasion
to Menton), Frankfurt mandibular angle (FMA) angle between the lines from sella to nasion and from gonion to gnathion, Modified Wits Appraisal (MW) the
distance between Lower incisal incision and Upper incisal incision
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The correlation is analyzed using the Pearson correlation
coefficient [28] and the coefficient between error mean
and SDR (2 mm) is − 0.689. It is natural that the larger
the error, the lower the SDRs, but exceptionally low
SDRs are observed for Porion and A-point. This is due
to low tracing accuracy. In fact, the difference between
the landmarks indicated by the two experts is 3.31 ± 2.29
and 2.89 ± 2.31 (mm), respectively, which shows a large
SD. This means that the tracing position of one or both
experts fluctuates greatly. Indeed, there is research
showing that Porion and A-point have low reliability of
manual tracing [29, 30]. The effect of A-point with low
reproducibility can also be seen in Table 2. SNA and
SNB have the same components other than A-point or
B-point, however, their diagonal accuracy is 72.69 and
83.13, showing a high difference. Labeling errors are in-
evitable in areas such as landmark detection, where there
is no golden standard and where ground truth must be
generated through manual labeling. This problem can be
mitigated with very large amounts of data or very accur-
ate landmark tracing.
There are landmarks that are difficult to identify: A-

point, Articulare, Soft tissue pogonion, Orbitale, and
Gonion [11, 20, 23, 31]. These landmarks show higher
errors or lower SDRs than other landmarks. We discuss
the reasons for the low performance of these landmarks.
A-point is a landmark located on the curve of the pre-
maxilla and is often influenced by the head position
which makes tracing difficult. It has been discussed in
preceding studies that A-point is one of the most com-
mon landmarks suffering from errors in identification
[29, 32]. Articulare, the intersection of the external dor-
sal contour of the mandibular condyle and the temporal
bone, is an example of the cephalostat affecting the per-
formance. When tracing Articulare, the ear rods of the
cephalostat used to fix the head position are also shown
on the lateral cephalogram. Those distract the model
from the temporal bone. In the case of Soft tissue pogo-
nion, as mentioned in [31], there is a large difference be-
tween annotations in test 1 and test 2. In this study, we
used both data for testing at once. Therefore, the aver-
age performance decreases. In addition, we confirmed
the same tendency in the annotation for Orbitale. Due
to the limitation of the lateral cephalogram of 2D, when
both jaws are not exactly superimposed, Gonion could
be marked on the left or right jaw. This could reduce
the performance.
There remain several limitations on the framework.

Because the model is trained on regional geometrical
features only, spatial relationships of landmarks are not
considered. This contributes to the aberrant outcome,
e.g. B-point plotted inside the mouth. In addition, the
proposed framework does not consider contours, so that
multiple landmarks lie directly on the edges of the bone

and on the skin, especially at the lower jaw. However, by
implementing a mechanism which considers spatial fea-
ture such as game theoretic framework [11] in the con-
volution structure, we expect our performance to
improve further. Moreover, image preprocessing tech-
niques, such as the Laplacian filter, to make the edges
more prominent, can improve the accuracy of landmarks
located on the lower jaw.
There are also issues regarding the generalizability and

reliability of ground truth. The study considered small
data (only 400 patients) but had a wide range of ages
(six to 60 years). In addition, the mean intra-observer
variability of the two experts was 1.73 and 0.90 mm, re-
spectively, and the manual inter-observer variability be-
tween two experts produced a LE of 2.02 ± 1.53 mm on
the test set. This is quite large variability, considering
that the first precision range is 2 mm. Therefore, there is
a high probability that unnecessary bias exists in the
trained model, suggesting that there is a limit to clinical
applications merely with this dataset. Many high-quality
data generated by consensus of several experienced spe-
cialists will solve this problem. As an extension of our
study, we plan to collaborate with several medical cen-
ters to collect patient data from various races and re-
gions in order to build a model that can be applied to
everyone.
An automated framework for the detection of cephalo-

metric landmarks using Bayesian BCNN is proposed in
this study. It not only has high overall accuracy within 2
mm range prediction but also provides a confidence re-
gion (95%) of each landmark. Accuracy rate within 2,
2.5, 3, and 4 mm range are recorded at 82.11, 88.63,
92.28 and 95.96% respectively.

Conclusions
This study differs from previous studies in that it pro-
vides confidence regions for cephalometric landmarks.
Our framework may serve as a computer-aided diagnosis
tool that improves the accuracy and reliability of deci-
sions by specialists. Improved models that present confi-
dence regions can serve as an efficient and powerful tool
for helping unexperienced dentists with cephalometric
tracing. In addition, it may be utilized for a training pur-
pose, e.g., training of residents by providing with pre-
dicted landmarks as well as their confidence regions.
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