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Abstract

Robots with the ability to actively acquire power from surroundings will be greatly beneficial

for long-term autonomy and to survive in uncertain environments. In this work, a scenario is

presented where a robot has limited energy, and the only way to survive is to access the

energy from an unregulated power source. With no wires or resistors available, the robot

heuristically learns to maximize the input voltage on its system while avoiding potential

obstacles during the connection. CircuitBot is a 6 DOF manipulator capable of drawing cir-

cuit patterns with graphene-based conductive ink, and it uses a state-of-the-art continuous/

categorical Bayesian Optimization to optimize the placement of conductive shapes and

maximize the energy it receives. Our comparative results with traditional Bayesian Optimi-

zation and Genetic algorithms show that the robot learns to maximize the voltage within the

smallest number of trials, even when we introduce obstacles to ground the circuit and steal

energy from the robot. As autonomous robots become more present, in our houses and

other planets, our proposed method brings a novel way for machines to keep themselves

functional by optimizing their own electric circuits.

Introduction

Recent developments in the fields of robotic hardware, sensing, and machine learning have led

to great progress in robotic applications in industrial settings [1–3]. These advances naturally

raise the demand for fully-autonomous, long-lasting and self-evolving robots [4], keeping

human efforts further out of the loop. As with living species, robots consume energy to per-

form different tasks. Industrial robots deployed in the real world are typically powered by an

uninterruptible power supply without the danger of running out of energy. For mobile robots,

however, have their mobility, operational time and performance limited by the low storage

capacity of batteries [5]. This prompts the benefits of an adaptable energy acquisition ability

for robots operating in inhospitable environments or away from human aid.

Previous works on self-recharging robots showed a framework for robots to navigate auton-

omously to a charging station [6]. They use cyclic genetic algorithm to optimize the control

program in simulation. In another work [7], researchers built an autonomous robotic system
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capable of plugging itself into electrical outlets to recharge. Mayton et al. [8] proposed a mobile

manipulation platform capable of plugging itself into a standard U.S. electrical outlet. Instead

of using vision to assist the process, the plugging was guided entirely by measurements of elec-

trical emissions from the outlets. However, outlets have different standards across regions and

they are not always available, especially in the field and unexplored areas. Batteries are more

often used in these scenarios, but the connection of cables to batteries by robots is difficult and

a fairly unexplored field of research.

Other researchers focus on the design of power systems for self-powered robots. Solar pan-

els are widely used for robots to harvest energy from ambient sources to recharge batteries.

They are normally low-cost and light-weight, but suffer from low efficiency and restrictive

application environment. In a series of works on energy harvesting [9–11], researchers demon-

strate the powering of nanobots from ambient mechanical energy. In a more recent work [12],

a novel robotic power system is powered by scavenging energy from external metals. However,

in these works the power harvested from the environment is very limited, and it can be hardly

used to power any standard robot.

This paper presents a novel approach for robots to leverage ambient electrical power

sources and survive in resource-limited, uncertain environments. Instead of using wires or

cables, CircuitBot learns to use conductive ink to build its own electrical path to a power sup-

ply. The robot learns to avoid environmental obstacles, which tries to steal energy from it, and

optimize the new solution. We adopt a novel Bayesian Optimization algorithm, capable of bal-

ancing continuous and categorical data sources, and the adopted algorithm outperforms both

traditional Bayesian Optimization and Genetic Algorithm given the same number of trials.

This paper shows that robots can optimize their own self-drawn electric circuits in very few tri-

als with Bayesian learning techniques, guaranteeing a recharge of their batteries when their

survival is at stake.

Materials and methods

Conductive ink

Graphene-based conductive ink has shown great potential in printing flexible electronics due

to its low cost, high connectivity and versatility, being applicable to textiles [13], papers, and

other diverse flexible substrates [14]. Compared to metal-based conductive ink, graphene is

low-toxic, environment friendly, easy to make and to store [15]. In this work, we follow the

instructions from [16] to fabricate customized graphene-based conductive ink. The ink is

made of 5 wt% graphene flakes, 0.5 wt% graphene dispersion, and 94.5 wt% water, which has a

sheet resistance of approximately 2 O/sq.

Circuit optimization

The conductivity of the connection between the robot and the power source is a major con-

cern. Connection with low resistance would provide lower loss and higher current when pow-

ering the robot. The conductivity of the ink can be enhanced by increasing the concentration

of the graphene flakes. However, adding more graphene would sacrifice the ink’s viscosity,

resulting in the soft pipe being jammed by the ink. Another method is to increase the speed of

the ink flow. However, the cardboard on which the robot draws has a very limited water

absorption, and with too much liquid on the surface the patterns are unstable and easy to

spread; meanwhile, the dry time for the ink to show conductivity increases significantly. The

approach we investigate in this work is to create parallel electrical paths, i.e. circular patterns,

to reduce the resistance of the connection.
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Experimental setup

The experimental setup is shown in Fig 1. The conductive ink is prepared and stored in a glass

jar placed on a magnetic stirrer to prevent the graphene from solidification. The glass jar is

linked to a soft pipe which is connected to a peristaltic pump. The pump pushes the ink

towards a nozzle which is held by a 3D-printed dispenser at the end-effector of the Kinova

6DOF Jaco Arm. An Arduino Uno is used to control the speed of ink flow. The robot arm is

controlled by Moveit (https://github.com/ros-planning/moveit). Two metal bars are fixed on

the cardboard, connected to the terminals of the robot and the power source. The circuit block

diagram of the robotic system is shown in Fig 2. The voltage of the robotic load (a resistor of

Fig 1. Experimental setup of the circuit drawing robot. The Kinova 6DOF Jaco Arm first moves to an initial

Cartesian coordinate with the end-effector (nozzle) at 5 cm from the paper. The ROS controller sends instructions to

both the arm and an Arduino to begin the circuit drawing. The circuit drawing movements are encoded as a list of

Cartesian coordinates and sent to the arm. The Arduino then receives the state of the arm through ROS and sets the

on/off of the peristaltic pump to control the ink flow. The robot draws a pattern on the cardboard connecting the two

metal bars. The connection starts to show conductivity after the ink dries (30 minutes). A voltmeter is used to measure

the load voltage as a feedback to optimize the drawing circuit. The load voltage is shown on an OLED display and the

cardboard is replaced after each drawing.

https://doi.org/10.1371/journal.pone.0265340.g001
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45 ohms) is measured by a voltmeter. The robot draws a circuit which is connected to the load

in series, forming a voltage divider.

Drawing procedure

The drawing procedure is illustrated in Fig 3, and a list of control parameters was identified, as

shown in Table 1. Two metal bars are placed on the cardboard with a distance of 380 mm. One

is connected to a 30 V DC power supply; the other one is connected to a resistive load (45O). A

total of five shapes are drawn sequentially to connect the two metal bars. The parameter s1 − s5
denotes the five shapes drawn from the left metal bar to the right. The parameter x1 − x3 are

the center coordinates of s2 − s4. The voltage of the load is measured by a voltmeter as an indi-

cator of the quality of the connection. We selected two categories of shapes, line and circle, to

Fig 2. Electrical and control architectures.

https://doi.org/10.1371/journal.pone.0265340.g002

Fig 3. Drawing procedure. Two types of circuit shapes (i.e., line and circle) are selected to form the connection

between two metal bars. The circle diameter and line length are both 100 mm. In total five shapes s1 − s5 are drawn

sequentially on a 380 × 100 mm2 workspace. The central coordinates of s1 and s5 are fixed. The central coordinates of

s2 − s4 are denoted as x1 − x3, which have a horizontal displacement range of ±20 mm.

https://doi.org/10.1371/journal.pone.0265340.g003
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represent series and parallel circuit patterns. For value of s1 − s5, 0 (zero) denotes line and 1

(one) denotes circle. The circle diameter and line length are both set to be 100 mm. The work-

space has a size of 380 × 100 mm2, the centers of s1 and s5 are fixed. The obstacle is placed in

the middle of the workspace. s3 will touch the obstacle if it is a circle while s2 or s4 touches the

obstacle if its center is too close to the middle of the workspace. The initial center coordinates

of s2 − s4 are evenly distributed across the workspace and can displace horizontally for ±20 mm
to avoid touching the obstacle. All the drawn circuits are dried for 30 mins before measure-

ment. The ink flow speed is kept constant and we replace the cardboard after each drawing.

We choose the shapes of line and circle to represent series and parallel circuit patterns for cer-

tain reasons. The decision between line and circle represents the choice faced by the robot to

reach survivability. Among all the shapes we have tried, circle, rectangle, and triangle showed a

similar resistance and similar difficulties for the whole circuit to be connected, so we chose cir-

cle as a representative. On the other hand, line and curve have a similar resistance and connec-

tivity, and we chose line as a representative. The choice between these two forces the robot to

take “gambles” between “safe” and “risky” to optimize its behavior, and this is analogous to

how humans and animals make everyday decisions to survive.

Bayesian optimization

Bayesian Optimization (BO) has shown great success in optimizing expensive black-

box functions [17–22], which is ideal for robotic applications where each experiment is expen-

sive to evaluate. BO is a Gaussian Processes-based optimization approach to find the best con-

figuration of x to maximize f(x)

x� ¼ argmax
x

f ðxÞ ð1Þ

BO first builds a surrogate model with Gaussian processes and then uses an acquisition func-

tion to choose where to probe for the next observation. The observation then updates the pos-

terior probability distribution (i.e. our current belief of how the system is supposed to behave)

and the best set of x to maximize f will be calculated after iterations.

In this work, however, shape types are encoded as categorical variables while shape loca-

tions are continuous, which defeats the common assumption that the BO acquisition function

is differential over the input space. Various approaches have been proposed to handle mixed-

type (i.e. categorical and continuous) inputs. The simplest method is to use one-hot encoding

[23] on the categorical space, which transforms categorical values to continuous ones on

which standard BO can perform. However, one-hot encoding significantly increases the

dimensions of the search space, making the continuous optimization of the acquisition func-

tion much harder [24], which is not feasible for context where there are only limited budget of

trials. This work adopts a state-of-the-art BO approach for optimizing mixed-type problems

called Continuous and Categorical Bayesian Optimization (CoCaBO) [25].

We consider the problem of optimizing an objective function f(z) where the input z consists

of continuous and categorical variables. The aim is to find the best configuration of z to

Table 1. Input variables.

Variable Name Quantity Type Value

s Shape Indicator 5 Categorical 0, 1

x Central Coordinate 3 Continuous (-20, 20)

https://doi.org/10.1371/journal.pone.0265340.t001
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maximize f(z)

z� ¼ ½h�; x�� ¼ argmax
z

f ðzÞ ð2Þ

where h = [h1, . . ., hc] are categorical inputs and x is a point in a d-dimensional space. The

algorithm first builds a multi-armed bandit (MAB) system to select promising categorical val-

ues and then applies BO on continuous variables. Authors of CoCaBO chose EXP3 [26] for the

MAB algorithm, which is a standard solution for adversarial MAB [27] where the reward dis-

tribution is affected by an adversarial agent. For BO, a Gaussian process surrogate model is

applied to define the probability distribution of f(x),

f ðxÞ � GPð�f ðxÞ; kðx; x0ÞÞ ð3Þ

where �f ðxÞ is the mean function and k(x, x0) is the covariance function. We have chosen

CoCaBO for two reasons: 1) the EXP3 algorithm enables fast selection of promising categories,

significantly reducing the number of iterations. 2) CoCaBO shares information across differ-

ent input types through a special kernel that efficiently leverages all available data. All these fea-

tures provide advantages for efficient learning which is important for robotic applications

where a limited budget of experiments are conducted.

To evaluate the performance of CoCaBO, we compared CoCaBO with traditional BO. For

CoCaBO, we modified the source code in the authors’ GitHub repository (https://github.com/

rubinxin/CoCaBO_code) to perform the optimization process. The implementation of the

algorithm is shown in Fig 4. For BO, the Gaussian Process (GP) employed a Matern kernel

(nu = 2.5) and the exploration parameter (k) of the acquisition function based on the GP

Upper Confidence Bound was set to be 2. In terms of traditional BO, we used a popular BO

package (https://github.com/fmfn/BayesianOptimization) and employed the same parameters

in CoCaBO. To deal with categorical values, the values suggested by BO are rounded to fall

between [0, 1].

Fig 4. Continuous and categorical Bayesian optimization. The continuous and categorical Bayesian optimization approach we investigate in this paper for circuit

optimization.

https://doi.org/10.1371/journal.pone.0265340.g004
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Genetic algorithm

Genetic Algorithm (GA) [28] is a classic and widely-used algorithm for optimization prob-

lems. It is inspired by the natural selection process that individuals with high fitness are chosen

to be parents to breed the next generation, normally by crossover and mutation. First, a set of

variables will form a chromosome and a number of chromosomes will be created as the first

generation. Then, each chromosome will be scored by a fitness function, and chromosomes

are selected proportionally to the fitness score. Dependent on the crossover rate crossover the

values from each chosen chromosome at a randomly chosen point. Based on the mutation rate

random the values at a randomly chosen point. Finally, repeating the above steps until reach-

ing the maximum iteration or a threshold. GA naturally copes with both categorical and con-

tinuous variables, making it a reasonable reference for CoCaBO. In our experiment, the

population size is 5 and the crossover and mutation ratios are set to be 0.5 and 0.1.

Circuit optimization in uncertain environments

To simulate the uncertain environment in the real world, we create the scenario where an obsta-

cle is placed in the workspace to interfere the energy transmission on the circuit path (shown in

Fig 3). The obstacle is a metal bar connected to ground which significantly decreases the voltage

that reaches the robot. This obstacle is unseen by the robot, as there are no cameras available.

Our preliminary results have shown that circular patterns are preferred over line connec-

tions, as these result in a parallel circuit. However, as circles occupy a larger space, the chance

of hitting the obstacle also increases. The task for the robot is to not only avoid touching the

obstacle but also draw optimal patterns to receive highest voltage from the power source.

For each of the three algorithms we applied for optimization (CoCaBO, BO, and GA), a

total of 30 circuit patterns were drawn. The random seed is set the same for all three algo-

rithms. The first five patterns of BO and CoCaBO are manually set, which are identical with

the five individuals in the first generation for GA. These five patterns were selected that the cir-

cuit would touch the obstacle leading to a low load voltage instead of patterns with high voltage

in order to better observe how optimization processes.

Results

Linear versus circular connections

We first conducted an investigation to examine the reliability of line and circle circuits. We

conducted 20 trials with each shape type centered at different locations across the workspace.

The results obtained are shown in Table 2. The length and resistance of lines and circles

showed a high repeatability, indicating a strong reliability on the pump-nozzle ensemble dur-

ing the drawing procedure.

We then tested the resistance of different patterns without the obstacles. The relationship

between resistance of circuits and circle numbers is shown in Fig 5. We can see that moderate

improvements are achieved by having one or two circles in the circuit patterns as circles have

smaller resistance than lines (parallel circuit). Interestingly, we observe significant improvements

in the mean resistance when the circle number increases from two to five. This can be explained

Table 2. Drawing reliability.

Shape Type Resistance (O) Length (cm)

Line 20±0.7 10±0.2

Circle 16±1.2 10±0.6

https://doi.org/10.1371/journal.pone.0265340.t002
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by the formation of bridge circuits as the result of circle-circle intersection. Note that patterns

with three circles present high variance in the resistance because the number of bridge circuits

can change from zero to two, depending on the order of circles. Having more circles is more

likely to create bridge circuits, which significantly reduces the overall resistance of the connec-

tion. This phenomenon is not observed when circles are tangent to each other, as the circular

path tends to be longer than the path created by a straight/semi-straight line. When compared to

the original single line connection the connection with circles presents half of its resistance.

Circuit optimization in uncertain environments

We add obstacles to our experiment to challenge the robot with a competitive and uncertain

environment. The obstacle is connected to the ground, and once the circuit connects to this

obstacle the voltage decreases significantly. As we have known from the results above, the load

voltage is mostly affected by the number of circles. The optimal patterns in this setting are

likely to have as many circles as possible while avoiding touching the obstacle. In order to

achieve optimal load voltage, the best strategy is to draw a line for s3 and draw circles for s2 and

s4 while keeping x1 and x3 far away from the obstacle. This strategy requires shared informa-

tion between categorical and continuous domains.

The observed load voltage is shown in Fig 6. It is clear in the figure that CoCaBO (orange

line) outperforms BO and GA not only in finding the highest voltage but also in the earlier

increase in output. The voltage of the optimal pattern CoCaBO found is respectively 12.8%

higher than BO and 71.9% higher than GA. A significant increase in the load voltage is seen

before iteration 15 for CoCaBO and BO, while GA only reaches a relatively high value after

performing 20 drawings. To have a better view of the parameters chosen by CoCaBO, a heat-

map was plotted (Fig 7).

Fig 5. Circle number versus resistance. The overall resistance of connections decreases as there are more circles in the

patterns. Significant reduction in resistance happens with 3 or more circles as more bridge circuits are created when

circles intersect with each other.

https://doi.org/10.1371/journal.pone.0265340.g005
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We further challenge CircuitBot with different obstacle patterns. Two obstacles were placed

respectively at 130 mm and 250 mm according to the axis, in Fig 3. The results are shown in

Fig 8. CoCaBO maintains superiority to BO and GA in respectively 21.3% and 25.7% higher in

load voltage. Examples of circuit patterns that were drawn during the optimization process are

shown in Fig 9.

Fig 6. Result of circuit optimization with one obstacle. Patterns that make contact with the obstacle result in a low

load voltage. Starting from low voltage values, CoCaBO achieves high load voltage values and outperforms both BO

and GA (12.8% and 71.9% higher, respectively). While simultaneously coping with discrete and continuous choices

GA shows the worst performance in this experiment.

https://doi.org/10.1371/journal.pone.0265340.g006

Fig 7. Heatmap of control parameters from CoCaBO. For s1 − s5, dark blue denotes circles and white denotes lines.

The obstacle can be avoided if s1, s2 and s3 are all lines or s1 and s3 are circles centered away from the middle of the

workspace. When s2 and s4 are both circles, the robot learns to constrain x1 and x3 in a small search area to prevent

connecting the obstacle.

https://doi.org/10.1371/journal.pone.0265340.g007
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Discussion

Superiority of CoCaBO over BO and GA

In our experiments GA showed the worst performance solving the circuit optimization prob-

lem. In a comparison between CoCaBO and BO, CoCaBO adopts a multi-armed bandit system

to cope with categorical values, which directly gives the probability of each categorical choice.

Fig 8. Result of circuit optimization with two obstacles. Similar performance is achieved by CoCaBO that

outperforms both BO and GA (21.3% and 25.7% higher respectively).

https://doi.org/10.1371/journal.pone.0265340.g008

Fig 9. Examples of circuit patterns drawn during optimization. The left patterns avoid obstacles and achieve high load

voltage. The right ones touch the obstacles and thus show a low voltage although they have more circles.

https://doi.org/10.1371/journal.pone.0265340.g009
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In contrast, due to the nature of Gaussian Processes embedded in BO, categorical variables

have to be treated as continuous in order to generate probability distributions. From binary

categorical variables, with two choices [0, 1] to a continuous space (0, 1), this conversion sig-

nificantly increases the search space making it more difficult to find optimal solutions given

limited trials. By combining Figs 6 and 8, we can see an obvious exploration stage in the

parameter search space before iteration 18. The values of parameters change significantly from

iteration to iteration, which provides the algorithm with information of different regions in

the search space. With a more comprehensive knowledge of the problem, CoCaBO is more

likely to find a global optimal. After the exploration stage, CoCaBO moves to an exploitation

stage. Parameters are constrained in very small ranges where the algorithm finds the most

promising to find solutions. In other words, as s2 and s4 are chosen to be circles, x1 and x3 (i.e.

the center of the shape) are constrained in a very small area to allow s2 and s4 to steer away

from the obstacle. Overall, CoCaBO manages the trade-off between exploration and exploita-

tion well, which is the key to achieve high performance in budget limited experiments.

Although we compared those three algorithms in scenarios which involved one and two obsta-

cles, we did not use an “obstacle free” scenario as the system would not have any incentive to

adopt straight lines in the solution.

Importance of circuit drawing for future robots

To the best of our knowledge, this is the only work where a robot learns to optimize circuits

with conductive ink to receive more energy. In previous approaches with robots charging

themselves, works like [7, 8] demonstrated the ability of robots plugging themselves to

recharge. However, robots can not always rely on outlets to recharge themselves (e.g. search

and rescue missions and other unstructured environments). The circuits drawn with

conductive ink have much higher flexibility and can be even three-dimensionally printed on

walls and ceilings, further increasing the likelihood of robots connecting themselves to poten-

tial power sources and staying functional. In other works on harvesting energy with specially

designed hardware [9, 12], the accumulation of energy is either slow or low in quantity. Mean-

while, the learning aspect of Robotics within their approaches was left aside. The crucial differ-

ence between those and the current work is that in our work the robot needs to learn to use

tools to access power, while in the previous works this feature is already embedded to those

robots.

Taking their own survival into consideration and adopting their lifespan as an objective

function to be optimized, robots have an incentive to “live longer” and thus reach a higher

level of autonomy. The stress of survival (e.g. limited energy, nearby hazardous areas,

mechanical damages) could potentially trigger the learning of intelligent robot behaviors that

are hard to program. It can be well foreseen that industrial robots self-optimize to achieve bet-

ter performance in exchange for more energy; mobile robots and self-driving cars discourage

themselves to attempt navigating through routes which are beyond their battery capacity; leg-

ged robots adjust themselves to new gaits after an injury; planetary rovers actively search

energy to stay alive and avoid hazardous areas on the planet millions of miles away from the

earth.

Study limitations

The robotic arm has a limited workspace at which the power supply is accessible at all times,

and this condition may differ from a real-case where this robot needs to power itself. Mobile

robots equipped with a drawing system, instead of a liquid ink, could be a better fit for real-

cases, as our experiments required a 30 minutes delay for the ink to dry. Another limitation is
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that the robot is not directly powered by the circuit it is optimizing, and this is because the gra-

phene-based conductive ink we used has a lower conductivity than metal wires (when our

robot moves many joints at the same time the current requirement exceeds the maximum cur-

rent). Considering current technological limitations the application of this robot on a real

problem are very limited, but advances in material science toward graphene-based 3D printed

wires and self-healing circuits will enable our methods to be deployed in inhospitable environ-

ments. This work is the first to successfully deploy and instantiate this system using current

technological resources, and in the future our results should be used to pave a creative way for

robots to access ambient energy and stay functional.

Conclusion

This paper presents the first robot capable of accessing and optimizing its energy intake

through self-drawn electrical connections. With properly designed optimization routines, the

robot can receive maximum power while avoiding obstacles within a small number of trials.

Although our experiments are performed in a simplified environment, using conductive ink (a

mean) and a power source (an end), this cable-free approach enables flexible deployment in

complex environments, which is a very useful proof of concept for autonomous robots (e.g. in

search-and-rescue missions). As robots become more present in our society and even reach

other planets, maximizing the capacity to stay alive is crucial to increase the odds of success.

Apart from energy, other resources are also crucial for robotic survival. Keeping the usage

of material (e.g., conductive ink) in the optimization routine is a further direction to explore.

For example, circles outperform lines in reducing resistance of the connection but cost more

ink. The robot should consider the trade-off between the usage of resources and the improve-

ment in received energy. Currently, we only implement circuit drawing on flat surfaces.

Applying circuit drawing in 3-dimensional space would be another interesting further

direction.

Supporting information

S1 Movie. Experiment description.

(MP4)

S1 Data.

(ZIP)

Author Contributions

Conceptualization: Xianglong Tan.

Data curation: Xianglong Tan.

Investigation: Weijie Lyu.

Writing – original draft: Xianglong Tan.

Writing – review & editing: Xianglong Tan, Andre Rosendo.

References

1. Rieffel J, Knox D, Smith S, Trimmer B. Growing and Evolving Soft Robots. Artif Life. 2014; 20(1):143–

162. https://doi.org/10.1162/ARTL_a_00101 PMID: 23373976

2. Duckett T, Pearson S, Blackmore S, Grieve B, Chen WH, Cielniak G, et al. Agricultural Robotics: The

Future of Robotic Agriculture; 2018.

PLOS ONE Learning to survive with robotic circuit drawing

PLOS ONE | https://doi.org/10.1371/journal.pone.0265340 March 24, 2022 12 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0265340.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0265340.s002
https://doi.org/10.1162/ARTL_a_00101
http://www.ncbi.nlm.nih.gov/pubmed/23373976
https://doi.org/10.1371/journal.pone.0265340


3. Birrell S, Hughes J, Cai JY, Iida F. A field-tested robotic harvesting system for iceberg lettuce. Journal

of Field Robotics. 2020; 37:225—245. https://doi.org/10.1002/rob.21888 PMID: 32194355

4. Rosendo A, von Atzigen M, Iida F. The trade-off between morphology and control in the co-optimized

design of robots. PLOS ONE. 2017; 12(10):1–14. https://doi.org/10.1371/journal.pone.0186107 PMID:

29023482

5. Yang GZ, Bellingham J, Dupont PE, Fischer P, Floridi L, Full R, et al. The grand challenges of Science

Robotics. Science Robotics. 2018; 3(14). https://doi.org/10.1126/scirobotics.aar7650 PMID: 33141701

6. Parker G, Zbeda R. Learning navigation for recharging a self-sufficient colony robot. In: 2007 IEEE

International Conference on Systems, Man and Cybernetics; 2007. p. 734–740.

7. Meeussen W, Wise M, Glaser S, Chitta S, McGann C, Mihelich P, et al. Autonomous door opening and

plugging in with a personal robot. In: 2010 IEEE International Conference on Robotics and Automation;

2010. p. 729–736.

8. Mayton B, LeGrand L, Smith JR. Robot, feed thyself: Plugging in to unmodified electrical outlets by

sensing emitted AC electric fields. In: 2010 IEEE International Conference on Robotics and Automation;

2010. p. 715–722.

9. Xu S, Qin Y, Xu C, Wei Y, Yang R, Wang ZL. Self-powered nanowire devices. Nature Nanotechnology.

2010; 5(5):366–373. https://doi.org/10.1038/nnano.2010.46 PMID: 20348913

10. Wang X, Song J, Liu J, Wang ZL. Direct-Current Nanogenerator Driven by Ultrasonic Waves. Science.

2007; 316(5821):102–105. https://doi.org/10.1126/science.1139366 PMID: 17412957

11. Pan ZW, Dai ZR, Wang ZL. Nanobelts of Semiconducting Oxides. Science. 2001; 291(5510):1947–

1949. https://doi.org/10.1126/science.1058120 PMID: 11239151

12. Wang M, Joshi U, Pikul JH. Powering Electronics by Scavenging Energy from External Metals. ACS

Energy Letters. 2020; 5(3):758–765. https://doi.org/10.1021/acsenergylett.9b02661

13. Karim N, Afroj S, Malandraki A, Butterworth S, Beach C, Rigout M, et al. All inkjet-printed graphene-

based conductive patterns for wearable e-textile applications. J Mater Chem C. 2017; 5:11640–11648.

https://doi.org/10.1039/C7TC03669H

14. Huang L, Huang Y, Liang J, Wan X, Chen Y. Graphene-based conducting inks for direct inkjet printing

of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano

Research. 2011; 4(7):675–684. https://doi.org/10.1007/s12274-011-0123-z

15. Pan K, Fan Y, Leng T, Li J, Xin Z, Zhang J, et al. Sustainable production of highly conductive multilayer

graphene ink for wireless connectivity and IoT applications. Nature Communications. 2018; 9(1):5197.

https://doi.org/10.1038/s41467-018-07632-w PMID: 30518870

16. Saidina DS, Eawwiboonthanakit N, Mariatti M, Fontana S, Hérold C. Recent Development of Gra-
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