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Simple Summary: Early prediction of significant alterations of head and neck (HN) cancer volume
due to radiation therapy (RT) could provide an indication for necessary planning adaptations of the
RT dose, tumor and organs at risk anatomy. However, the irregularities of the underlying cancer tissue
and the patient-specific responses to RT render the prognostics for the tumor’s behavior exceedingly
complex. In this study, a data-driven machine learning approach is proposed that incorporates the
radiomic features of the low-dosage cone beam CT (CBCT) images clinically used in image-guided
radiotherapy treatments in a feature selection and classification framework. The proposed model
achieved high prediction performance, while able to identify indicative image characteristics for early
prediction, further investigated in terms of their implications in HN cancer treated with RT.

Abstract: Background: During RT cycles, the tumor response pattern could affect tumor coverage and
may lead to organs at risk of overdose. As such, early prediction of significant volumetric changes
could therefore reduce potential radiation-related adverse effects. Nevertheless, effective machine
learning approaches based on the radiomic features of the clinically used CBCT images to determine
the tumor volume variations due to RT not having been implemented so far. Methods: CBCT
images from 40 HN cancer patients were collected weekly during RT treatment. From the obtained
images, the Clinical Target Volume (CTV) and Parotid Glands (PG) regions of interest were utilized to
calculate 104 delta-radiomics features. These features were fed on a feature selection and classification
procedure for the early prediction of significant volumetric alterations. Results: The proposed
framework was able to achieve 0.90 classification performance accuracy while detecting a small
subset of discriminative characteristics from the 1st week of RT. The selected features were further
analyzed regarding their effects on temporal changes in anatomy and tumor response modeling.
Conclusion: The use of machine learning algorithms offers promising perspectives for fast and
reliable early prediction of large volumetric deviations as a result of RT treatment, exploiting hidden
patterns in the overall anatomical characteristics.

Keywords: head and neck cancer; radiation therapy; machine learning; CBCT; early prediction

1. Introduction

Radiation Therapy (RT) is the primary treatment for Head and Neck (HN) cancer, de-
ployed either on its own or as adjuvant treatment together with surgery and/or chemother-
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apy, allowing for high tumor control and cure rates based on a planning process that
regulates the external radiation beams [1]. Although the treatment planning and dose
accumulation calculations predominantly utilize planning Computed Tomography (pCT)
images, additional information could be provided by images from other modalities, such as
low-dosage Cone Beam CT (CBCT), therefore enhancing clinicians for treatment schemes
decisions [2]. Such information can not only address spatial inaccuracies between the
initial and the repetitive target positioning during treatment sessions but also highlight
anatomical variations (such as weight loss and changes in tumor and organs at risk (OARs)
volume, position and shape) that affect tumor coverage and OARs overdose [3,4]. On
this premise, deviations between planned and delivered radiation dosage are reported to
cause various adverse effects ranging from xerostomia to Parotid Glands (PGs) dysfunction,
consequently affecting the patients’ wellbeing and thus underlying the pressing need for
planning adaptations [5,6]. In fact, recent evidence suggests that planning adaptations are
required during RT or between RT sessions, especially for patients who present more than
20–30% volumetric changes in parotid glands or Clinical Target Volume (CTV) [7,8]. To alle-
viate such anatomical differences, offline or online Adaptive Radiotherapy Treatment (ART)
has been implemented, adapting the patient’s initial volumes and planning to the current
anatomy and position [9,10]. However, ART’s complicated computations (where clinicians
have to constantly analyze new scans and create new plans), significantly increase the
overall workload and resource utilization burden, underlying the need for an efficient and
cost-effective approach for the identification of the patients that will benefit from ART [11].
To that end, a large number of studies have investigated the statistical relationship between
the need for ART and image-based characteristics [12,13]. Nevertheless, the development
of early prediction multivariate models for ART application presents several challenges as
a consequence of volume-related discrepancies, resulting from anatomical alterations in
cancer patients treated with RT [14,15].

Since treatment planning adaptation requires non-invasive approaches to account
for objective decision-making, image-based characteristics could provide robust measure-
ments for anatomical changes. Changes in radiomic features during RT can be used as
predictive factors, reflecting the tumor’s response to treatment and therefore offer effective
predictive representation [16]. From this perspective, machine learning algorithms have
proven to be valuable tools offering unique advantages in large multivariate data process-
ing, while allowing robust modeling of HN cancer progression and RT treatment course
outcomes [17,18]. More importantly, they can elucidate the complex relations between the
multiple image-related features, providing an insight into the effects of RT, thus alerting
clinicians to necessary treatment planning adaptations [19,20]. In this regard, they have
been implemented in numerous radiation oncology applications, automatizing clinical
procedures and improving auto-contouring efficiency, treatment planning, quality assur-
ance, motion management and outcome predictions [21]. Furthermore, machine learning
algorithms have demonstrated accurate prediction of tumor response to radiotherapy,
prediction of radiation-induced toxicities and other side effects [22]. For instance, Zhang
et al. [23] used diffusion kurtosis calculated from MRI images to predict radiotherapy effects
for esophageal carcinoma, while Liu et al. [24] employed delta-radiomics on CT images
for acute xerostomia early detection during RT for nasopharyngeal cancer achieving over
0.92 precision. To achieve that, patients were separated into classes based on the evaluation
for the amount of acute xerostomia using the RTOG acute toxicity scoring and the salivary
amount per case. Other research works have investigated significant prognostic features
based on a radiomic analysis of 440 features for lung and HN cancer, revealing that tumor
heterogeneity is correlated with poorer prognosis and that a more heterogeneous salivary
gland texture could be associated with adverse treatment outcomes [25]. More recently, a
study examined the characteristics extracted from contoured Regions of Interest (ROIs) and
on Dose-Volume Histogram (DVH) information, suggesting that salivary glands radiomic
features have the potential to predict late post-RT xerostomia beyond delivered radiation
dose [26]. Taking into consideration all the above, it can be inferred that machine learning
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methods can be employed for the development of clinical support systems in order to
provide early warnings of significant anatomical changes due to RT, assisting patients’
re-planning early in the course of radiation intervals.

However, limited research so far has investigated the feasibility of machine learning
applications based on radiomic-derived features for the early prediction of significant
tumor volume alterations necessitating adaptive radiotherapy. On that premise, Tanaka
et al., 2022 [27] employed machine learning on HN cancer patients to early indicate ART. By
incorporating radiomics features derived from CT images (one before the start of radiother-
apy and one during radiotherapy for boost planning) in a deep learning design, they were
able to obtain efficient predictive performance (Area Under the Curve = 0.73 to 0.75). In a
similar fashion, Alves et al., 2021 [28] utilized sematic features, radiomic features (extracted
from contrast-enhanced CT) and a combination of the two, to discriminate between replan
(ART) and control (no-ART) groups by applying an SVM classifier. Their proposed design
reported a radiomic-based mean accuracy of 0.78, with the feature combination further
increasing classification performance (mean accuracy = 0.82). Following on from this, the
scarcity of relevant research could be related to the fact that simple image features present
limited discrimination ability for the successful assessment of the RT effects, probably due
to the similarity of the soft tissues (tumor) and the normal (healthy) tissues surrounding
the tumor limits. In fact, early RT complications (as soon as the 1st week of treatment)
due to radiation-induced glandular hyperemia have been reported to affect gray values
and, as a consequence, the calculated feature variables [29]. To that end, sonographic
findings along with ultrasound clinical observations have reported disparities between
pre- and post-radiotherapy PG image textures, likely as a result of fibrotic scarring of RT
treatment [30]. The hypoxic microenvironment in HN squamous cell carcinoma areas has
also demonstrated dynamic variations in CT texture characteristics, such as entropy, since
it contains subpopulations of tumor cells exposed to the changing gradients of oxygen [31].

In this paper, we propose a CBCT radiomics-features machine-learning framework for
the early prediction of significant anatomical alterations attributable to RT in HN cancer
patients, indicating treatment planning adaptation Moreover, we focus on delineating the
significant radiomics characteristics in terms of classification discriminative ability and their
implications in the volumetric alterations early prediction. To the best of our knowledge,
this is the first study to apply radiomics features in clinically used CBCT images for the
early detection of tumor-volume significant deviations.

As such, we employ a Recursive Feature Elimination with Correlation Bias (RFE-CBR)
feature selection procedure paired with Support Vector Machine (SVM) classifiers to predict
anatomical alterations (significant anatomical changes are expected after the 3rd week of
RT as indicated by our previous work [8]), utilizing characteristics derived by Clinical
Target Volume (CTV) and Parotid Glands (PG) ROIs on CBCT images. The proposed
multi-variable framework resulted in high predictive power (0.90 accuracy) from the 1st
week of RT, while being able to identify a small set of image-based measures that can be
indicative of temporal changes in anatomy providing a better overview for the application
of ART.

2. Materials and Methods
2.1. Patients

The data were acquired from 40 HN cancer patients (25 male) with a mean age
of 56.6 ± 11.2 years. All patients had the same histology, by means of squamous cell
carcinoma of the HN, and were treated with volumetric modulated arc therapy (VMAT)
with a prescription dose of 66 Gy in 30 fractions, over 6 weeks (5 sessions per week). For
each patient, a standard clinical protocol for radiation treatment planning was applied,
while the planning CT (pCT) images, the Dicom-RT structure file, and the CBCT scans of
the first session per week (6 CBCT data sets) that were used for Image-Guided Radiation
Therapy (IGRT) were recorded per patient. All data used were anonymized and exported
in Digital Imaging and Communications in Medicine (DICOM) file format. Moreover, the
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contoured structures created for RT treatment planning were also anonymized and exported
in DICOM-RT file format. The study was approved by the ATTIKON University Hospital,
Athens, Greece relevant ethics committee (Protocol EB∆304/11-05-2022, 7 June 2022) in
accordance with the Declaration of Helsinki. All data used were anonymized and exported
in Digital Imaging and Communications in Medicine (DICOM) file format. Moreover,
the contoured structures created for RT treatment planning were also anonymized and
exported in DICOM-RT file format.

The study was conducted in accordance with the Declaration of Helsinki and approved
by the Institutional Review Board. Patient consent was waived as all patient data were
analyzed retrospectively after being anonymized. No additional images were acquired for
the purposes of this study.

2.2. Data Pre-Processing and Class Designation

As described above, each patient dataset incorporated a Dicom-RT structure file, a
pCT image, and six (6) CBCT scans for IGRT obtained at the start of each week of treatment.
After imaging data collection, a series of previously validated preprocessing steps took
place to correct for position and shape irregularities [8]. Specifically, Rigid and Deformable
image registration was used in order to align the initial planning-CT to the weekly CBCT
images. Furthermore, each patient’s anatomical structure, designed in the initial planning-
CT image, (i.e., the Clinical Target Volume (CTV) and Parotid Glands (PG)), were deformed
based on the corresponding CBCT scans. Deformed Regions of Interest (ROIs) (CTV and
PG volumes) were evaluated both visually and with the Mean Distance to Agreement
metric as the level of conformity between the deformed and the assessed-by-an-expert
ROI. To denote each class, the tumor volume (relative position change was not included in
the class designation criteria) of both CTV and PG ROIs was taken into account, based on
our previous observation that significant volumetric alterations (over 20%) are expected
after week 3 [8]. Consequently, the 40 total patients were divided into two classes (in a
binary fashion): Class 1 which included 19 patients (~48%) who presented a significant
volume change (>20%) CTV and/or PG ROIs after the 3rd week of treatment sessions (i.e.,
in CBCT4) and; Class 2 which incorporated 21 patients (~52%) who displayed smaller
anatomical structure variations (<20%) (Figure 1).
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Figure 1. CBCT scans for patients at baseline (week 0) and at the end of the RT treatment sessions
with significant and non-significant changes for the CTV tumor region (red mask) and the PG tumor
region (green mask). Specifically: (a) CTV ROI of patient #3 at baseline; (b) CTV ROI of patient
#3 at the end of the RT treatment sessions (non-significant changes); (c) CTV ROI of patient #14 at
baseline; (d) CTV ROI of patient #14 at the end of the RT treatment sessions (significant changes);
(e) PG ROI of patient #3 at baseline; (f) PG ROI of patient #3 at the end of the RT treatment sessions
(non-significant changes); (g) PG ROI of patient #18 at baseline; (h) PG ROI of patient #18 at the end
of the RT treatment sessions (significant changes).
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2.3. Feature Extraction

For the CBCT scans per patient, 3DSlicer and pyradiomics were utilized to facilitate
image feature calculation from the CTV and PG 3D ROIs [32,33]. As a baseline, the first
CBCT feature value (week 1) was calculated (delta-radiomics), therefore providing a feature
value as the percentage difference between the baseline and the latest measurement for
each subsequent week (weeks 2–4). Image features are categorized as follows: (a) Shape
features, referring to the position, shape and size characteristics of the ROIs; (b) First-order
texture features, providing information about the spatial arrangement of intensities in the
ROIs; and (c) Second-order texture features, representing the distribution of co-occurring
values between neighboring pixels [33]. In total, 104 image features were calculated per ROI
(i.e., CTV and PG), per week and per patient of which 12 were Shape, 17 were First-order
and 75 were Second-order variables. The distribution of the Second-order features includes:
(i) 14 Gray Level Dependence Matrix (GLDM) features that quantify the grey level values
correlation between voxels, (ii) 24 Gray Level Co-occurrence Matrix (GLCM) features that
represent the frequency that gray level value pairs with the same distance in the image
appear within a ROI, (iii) 16 Gray Level Run Length Matrix (GLRLM) features that express
the number of voxels in a row with the same gray level value, (iv) 16 Gray Level Size Zone
Matrix (GLSZM) features that quantify the grey level zones in the ROI (with Grey level
zone representing the number of voxels with the same grey value in the ROI) and (v) 5
Neighboring Gray Tone Difference Matrix (NGTDM) features that quantify the difference
in the gray level value of a voxel in relation to the average gray level value in its neighbors
(Table 1). A detailed description of each 104 features of the 7 feature families can be found
in [33].

Table 1. Delta Radiomics Feature Families.

Feature Family Number of Features Description

Shape 12
Descriptors of the two/three-dimensional size and shape of the ROI.

Gray level intensity distribution in the ROI does not affect these
feature values.

First Order 17 Describes the distribution of grey values within the image region.

GLDM 14
Quantifies gray level dependencies in an image. A gray level

dependency is the number of connected voxels within a specific
distance that are dependent on the center voxel.

GLCM 24 Represents the frequency that gray level value pairs with the same
distance in the image appear within an ROI.

GLRLM 16 Quantifies gray level runs. Run is the length in the number of
pixels, of consecutive pixels that have the same gray value.

GLSZM 16 Quantifies gray level zones in an image. A gray level zone is the
number of connected voxels that share the same gray level value.

NGTDM 5 Quantifies the difference between a voxel’s gray value and the
average gray value of its neighbor voxels within a specific distance.

2.4. Feature Selection

In view of our hypothesis that image-related features could provide indications of
anatomical changes at an early stage, binary classification was employed utilizing the fea-
tures that corresponded to the second week of CBCT (i.e., after the first week of treatment)
to discriminate between the significant (Class 1) and minor (Class 2) structural CTV and/or
PG alterations. However, due to the large number of features compared to the number
of samples, feature selection was employed to mitigate potential overfitting and remove
redundant features. As a general methodological procedure, feature selection was applied
to both CTV and PG features to isolate early anatomical information features and improve
the classification performance and highlight the importance of the features selected. A
schematic of the proposed framework is presented in Figure 2.
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Figure 2. A schematic of the proposed framework workflow. CBCT images from CTV and PG
ROIs are employed to calculate delta-radiomics features. The features from both ROIs are then
fed into a feature selection and classification scheme to identify the feature subset with the highest
discrimination power and assess overall performance.

To that end, a Feature Elimination Method with Correlation Bias Reduction (RFE-
CBR) method was utilized [34]. Specifically, RFE-CBR is a backward elimination feature
selection approach that applies an internal linear Support Vector Machine (SVM) classifier
to estimate each feature’s impact on the overall classification. As such, the internal SVM
splits the classes while maintaining a maximum margin between the hyperplane and the
example points [35] (more details regarding SVM can be found in the Section 2.5). RFE-CBR
utilizes the normal vector to the hyperplane as a feature-ranking criterion, recursively
removing minimal evaluated features from the total feature space, starting from a full set.
Furthermore, RFE-CBR addresses linear dependability issues by assessing the correlation
between the features, thus alleviating correlation bias in the classification results. After the
end of all repetitions, an RFE-CBR ranked feature set (based on the features’ prominence)
was produced by rearranging all the features in the reverse order of exclusion.

2.5. Classification

The subsequent classification process was performed by adopting a linear SVM classi-
fication design. SVM is a supervised-learning machine learning method to find the optimal
hyperplane in an N-dimensional space [35]. In detail, SVM maps the data points (features)
into multi-dimensional space taking into account the categories (classes) each data point
belongs to. Then, the optimal decision boundary (hyperplane) is calculated, being the one
that maximizes the distance between the two formed groups assuming linear separabil-
ity. To do so, the set of weights (normal vectors) are calculated for each feature, under
the premise that their linear combination predicts the class value. By maximization of
the decision boundary (utilizing Lagrange multipliers) the number of nonzero weights is
significantly reduced, thus resulting in a small subset of training samples that correspond
to nonzero weights (support vectors) to specify the decision function. The SVM models
then can be applied to new data points (examples), estimating the class they relate to by
mapping them into the same space and determining the side of the hyperplane they appear.
On this premise, by splitting the data into a training and a testing set, the SVM models can
be built (utilizing the training set) and subsequently validated (employing the testing set).

In the present study, feature selection and subsequent classification were employed as a
Leave-One-Out Cross Validation (LOOCV) procedure to identify subject-invariant features
and thus evaluate their performance towards early anatomical change discrimination.
LOOCV involves allocating all-but-one instances in a training set, while the excluded data
are considered a testing set. This process is repeated until all data are selected as a testing set.
In the feature selection processes, RFE-CBR was applied to the training sets, thus resulting
in 40 ranked feature sets. The final ranked feature sets were defined by the most frequently
shared features of all folds, determined by the subsequent classification procedure. In turn,
classification included the development of the SVM model based on the training and then
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the constructed model was evaluated in the testing set. Classification performance (i.e.,
the classification metrics including accuracy) was estimated as the average across all folds.
As such, each SVM model would repetitively assess the classification accuracy, adding in
each iteration the next RFE-CBR ranked feature to the feature subset, starting from a null
set. Consequently, an optimal feature subset (the one that provided the highest accuracy)
was generated. To handle the minor class imbalance, the weighted accuracy was employed
as the evaluation metric, although it is presented in the following sections as accuracy to
avoid readers’ confusion. Moreover, in order to assess that no overfitting or selection bias
was involved in the overall classification processes, complementary 1000 classifications
with random class label permutations were implemented under the same LOOCV design.
Accordingly, a p-value was estimated as the ratio of permutations that outperformed
the one obtained by the original samples to the number of total permutations [36]. All
feature selection and classification algorithms were implemented using MATLAB 2020b
(Mathworks Inc., Natick, MA, USA).

3. Results
3.1. Classification Performance

The highest performance achieved (in terms of prediction accuracy) was 0.90 accuracy
(p < 0.01), 0.95 sensitivity and 0.86 specificity (Table 2) employing 19 features. Of the total of
19 features, 13 were calculated from the CTV and 6 features from the PG ROI. Interestingly,
the associated machine learning model involved 5 out of 7 feature families (with the optimal
subset incorporating features from all but the Shape and NGTDM families), while 3 features
were common in both ROIs (i.e., Gray Level Non-Uniformity—GLDM feature family, Gray
Level Non-Uniformity—GLSZM feature family, Correlation). Although the descriptions of
all the estimated features used in this study are found in [33], a narrative of the selected
features is presented in Tables 3 and 4, as well as the ranking for the RFE-CBR procedure.

Table 2. Classification Performance Results.

Accuracy Sensitivity Specificity F1-Score Area Under the
Curve

0.90 ** 0.95 0.86 0.90 0.91
Note: Asterisks (**) marks the permutation significance testing (1000 permutations). ** p < 0.01.

Table 3. The CTV ROI Features Incorporated in the Optimal Classification Model.

Feature Feature Family Equation Ranking Definition

Gray Level
Non Uniformity GLDM GLN =

∑
Ng
i=1 ( ∑

Nd
j=1 P(i,j))

2

Nz

(15)

Quantifies the gray level
intensity values similarity in

the image. A lower GLN value
implies a greater similarity in

intensity values

Small Dependence
Low Gray Level Emphasis GLDM SDLGLE =

∑
Ng
i=1 ∑

Nd
j=1

P(i,j)
i2 j2

Nz

Lower gray-level values imply
a joint distribution of small

dependence.

Difference
Variance GLCM DV =

Ng−1

∑
k=0

(k− DA2)px−y(k) (8)

Measures the heterogeneity.
Higher weights on differing
intensity level pairs deviate

more from the mean

Correlation GLCM Cor =
∑

Ng
i=1 ∑

Ng
j=1 p(i,j)ij−µx µy

σx(i)σy(j)
(4)

Quantifies the linear
dependence of gray level
values to their respective

voxels in the GLCM
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Table 3. Cont.

Feature Feature Family Equation Ranking Definition

Cluster
Prominence GLCM

cl pr =
Ng

∑
i=1

Ng

∑
j=1

(
i + j− µx − µy

)4 p(i, j)
(16)

Quantifies the skewness and
asymmetry of the GLCM.

Lower values imply lower
asymmetry about the mean.

Interquartile
Range FIRST ORDER int ran = P75 − P25 (19) Difference between percentiles

of the image array

Energy FIRST ORDER en =
Np

∑
i=1

(X(i) + c)2 (3)

Measures the magnitude of
voxel values in an image.

Larger values show a greater
sum of the squares of these

values

Total Energy FIRST ORDER t en = Vvoxel

Np

∑
i=1

(X(i) + c)2 (7)
Is the value of energy feature
scales by the volume of the

voxel in cubic mm

Kurtosis FIRST ORDER kurt =
1

Np ∑
Np
i=1(X(i)−X)

4(
1

Np ∑
Np
i=1(X(i)−X)

2
)2

(18)

Measures the ROI’s
distributions of values

peakedness. The mass of the
distribution is concentrated
towards the tail(s) for higher

kurtosis values.

Short Run
Low Gray Level

Emphasis
GLRLM SRLGLE =

∑
Ng
i=1 ∑Nr

j=1
P(i,j|θ)

i2 j2

Nr(θ)
(17)

Measures the joint distribution
for shorter run lengths with

smaller gray level values

Low Gray Level Run
Emphasis GLRLM LGLRE =

∑
Ng
i=1 ∑Nr

j=1
P(i,j|θ)

i2
Nr(θ)

(11)

Measures the distribution of
low gray level values. Higher

values indicate greater
concentration of low gray level

values in the image

Gray Level
Non Uniformity GLSZM GLN =

∑
Ng
i=1 ( ∑Ns

j=1 P(i,j))
2

Nz
(2)

Measures the distribution of
large area size zones. Greater

value indicative larger size
zones and more coarse

textures

Long Run Low Gray Level
Emphasis GLRLM SRHGLE =

∑
Ng
i=1 ∑Nr

j=1
P(i,j|θ)

i2
j2

Nr(θ)
(14)

Quantifies the joint
distribution of shorter run

lengths with higher gray level
values

Table 4. The PG ROI Features Incorporated in the Optimal Classification Model.

Feature Feature
Family Equation Ranking Definition

Gray Level
Non Uniformity GLDM (10) Same as (Gray Level

Non Uniformity)

Low Gray Level
Emphasis GLDM LGLE =

∑
Ng
i=1 ∑

Nd
j=1

P(i,j)
i2

Nz
(12)

Measures the distribution of
low gray level values. Higher

values indicate greater
concentration of low gray level

values in the image

Maximum
Probability GLCM maxprob = max(p(i, j)) (6)

Measures the occurrences of
the most predominant pair of
neighboring intensity values

Correlation GLCM (1) Same as (Correlation)

Maximum FIRST
ORDER max = max(X) (9) The maximum gray level

intensity within the ROI
Gray Level

Non Uniformity GLSZM (5) Same as (Gray Level
Non Uniformity)

3.2. Delta-Radiomics Features

For the purpose of investigating the selected feature properties with respect to the
algorithmic prediction, further analysis was conducted on the value difference of the two
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classes and the features’ interrelationship with the two ROIs’ volume fluctuations. As such,
the analysis of the optimal delta-radiomics features revealed an increasing trend of the
feature values relevant to the two classes (Figure 3). Specifically, the majority of the features
(11 out of 13 CTV and 4 out of 6 PG ROI features) presented higher values in the significant
alteration group (Class 2) compared to the non-significant one (Class 1). By contrast, the
features “Correlation”, “Kurtosis” for CTV and “Maximum probability”, “Maximum” for
the PG ROI displayed overall decrements. To that end, a one-way ANOVA between the two
classes was performed on the individual features to provide indications as to the overall
feature significance in the classification paradigm. However, none of the selected features
presented a significant ANOVA p-value (<0.05), with the exception of First-order texture
features “Energy” and “Total Energy” for CTV and “Maximum” for the PG ROI.
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Figure 3. The radiomics feature incorporated in the optimal subset. The red central horizontal line in
each box indicates the mean value, with the edges designating the 25th and 75th percentile, while the
whiskers extend to the most extreme data points. Outliers are marked with the “o” symbol, whereas
“*” indicated the significant ANOVA p-value < 0.05. Regarding the Gray−Level Non−Uniformity
feature case, the number over the feature names indicates the different feature families with 1 being
GLDM and 2 GLSZM. The pie charts represent the distribution of the PG and CTV ROIs features
with respect to the feature families.

3.3. Model Stability Evaluation

In order to evaluate the model stability and the selected features’ robustness, additional
classification was performed employing the selected CTV and PG ROIs after the completion
of weeks 2, 3 and 4 of treatment (i.e., CBCTs 3, 4 and 5, respectively). In this regard,
the classification accuracy, sensitivity and specificity were assessed per treatment week
(Table 5). It is worth noting that although the proposed framework achieved over 0.72
accuracy regardless of the week of treatment (even after the week 3 landmark), the overall
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model efficiency deteriorates with respect to the early (week 1) prediction, indicating that
the selected features’ values display significant variations over the course of RT treatment.

Table 5. Model Performance Per Week of Treatment.

Week/CBCT Accuracy Sensitivity Specificity

1/2 0.90 ** 0.95 0.86
2/3 0.85 ** 0.86 0.84
3/4 0.75 * 0.76 0.74
4/5 0.72 * 0.73 0.72

Note: Asterisk (*) marks the permutation significance testing (1000 permutations). * p < 0.05; ** p < 0.01.

4. Discussion

In the current literature, adaptation in radiotherapy for head and neck cancer seems
quite timely and promising, especially in the era of image-guided radiotherapy. In a review
study, Avgousti et al. [37] evaluating 85 articles related to adaptive RT as an attempt to
classify criteria for adaption, reported that the current thresholds which lead to replanning
might be anatomical deviations > 1 cm in the external contour, average weight loss > 10%,
violation in the dose coverage of the targets > 5%, and violation in the dose of the peripher-
als. However, beyond the expert opinion, a machine learning procedure seems more than
necessary for routing clinical practice. In the current study, a machine learning framework
was proposed for the early prediction of possible anatomical alterations, necessitating treat-
ment planning adaptation. In this regard, feature selection and classification methods were
applied, employing CBCT image-based radiomic features in HN cancer patients in order to
predict significant volumetric changes in PG and/or CTV ROIs during RT treatment. Using
appropriate features of the CBCT images acquired after the completion of the first week
of RT treatment the proposed SVM model displayed high prediction accuracy of possible
volumetric changes after the 3rd week of RT treatment while prominent image-related at-
tributes that could potentially reflect RT effects regarding tumor and OARs’ characteristics
were identified.

Concerning classification performance, the optimal SVM model displayed 0.90 accu-
racy (0.95 sensitivity, 0.86 specificity), utilizing a small number of PG and CTV ROIs CBCT
image properties. In this context, it should be noted that more recent approaches (e.g., deep
learning classifiers) could theoretically achieve higher performance results. However, deep
learning methods encode the information in a way that is exceedingly difficult to interpret,
in the sense that the improved classification performance is achieved by providing “higher-
level abstractions” of the original data [38,39]. Therefore, the features that actually provide
the class discrimination tend to be rather distanced from the original features. Our objective
was not only to obtain high classification accuracy but also to provide indications of the
radiomic variables that can early predict ART necessity and thus, we opted for using more
conventional classification methods. Furthermore, additional classification methods were
applied (i.e., k-NN, gaussian SVM, LDA and Random Forest classifiers) to calculate the
overall optimal performance. However, all of the aforementioned classifiers were inferior
to the linear SVM (in terms of classification accuracy) and thus result comparisons were
omitted.

Moreover, the efficiency of the methodological scheme was further assessed by the
low p-values of the permutation tests, it should be pointed out that the estimation of a
global model irrespective of the RT week is exceedingly challenging. To that end, the
subsequent evaluation of the selected CTV and PG ROIs features calculated after the
completion of weeks 2–4 RT treatment (CBCTs 3–5), displayed significant deterioration in
classification performance. On this premise, it can be inferred that the effects of radiation
have a large impact on the extracted parameters. In fact, evidence suggests that HN
patients that undergo RT may be at risk of experiencing oral mucositis and mucosal edema
of pharyngeal and laryngeal walls due to induced glandular hyperemia, affecting gray
values and thus the calculated image features [29,40,41]. It is important to note that the
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nature of the feature selection method considers feature importance based on the overall
performance and may not directly associate with the underlying RT treatment volumetric
alterations. In this regard, the optimal subset obtained might be a result of unrelated noise
reduction and subsequently classification accuracy improvement [42]. Taking this into
account, the high feature variability between the various subject renders a global model
estimation more difficult. As such, statistical tests revealed significant differences in only
a small proportion of the total feature number (3 out of 19). Furthermore, subsequent
analysis was performed on the associations between the CTV and PG tumor volumes and
the variables incorporated in the optimal feature subset (via Pearson correlation) revealed
that the selected features demonstrate linear dependence with the CTV/PG volumes only
to a small degree (testing the null hypothesis of no relationship between the observed
phenomena (p-value smaller than the significance level of 0.05).

From this standpoint, the absence of a clear overall trend, suggests that the tumor(s)
and PGs respond to the RT treatment in a non-systematic patient-specific manner. Therefore,
since the input of the adopted feature selection procedure originated only from features
after the completion of week 1 (CBCT 2), the decrements in the classification accuracy
could be explained as a result of therapy-related feature value modifications. In this
regard, different input (e.g., for week 2) might result in a different subset elucidating
additional image-related characteristics that could achieve better differentiation properties
in a later RT stage. However, the scope of this study was to provide a framework for early
prediction, while in parallel illustrating the specific image attributes that correspond to
RT-related volumetric changes. Nevertheless, the fact that the selected features (estimated
in the various weeks) display high classification performance (Table 5) even after the 3rd-
week landmark, denotes their prominence as efficient indicators of RT-related anatomical
alterations.

Regarding the image-based delta-radiomic features incorporated in the optimal subset,
only a small fraction of the overall 208 (104 for each ROI) was selected as being the most
discriminative, reducing the complexity of the generated model and implying that no
overfitting occurred during the feature selection and classification processes. As such, most
of them (13 out of 19) originate from the CTV ROI with the PG ROI features representing
the minority group (6 out of 19). This could be attributed to the fact that the tumor ROI is
inside the high dose region during RT cycles, leading to texture variations for the majority
of cases while PGs are more protected in contrast to tumor ROI. In this context, it could
be conjectured that the employment of only the CTV ROI features might lead to similar
classification performance without the need for a 2-ROI intricate design of the machine
learning framework. However, this might result in substantial information loss in relation
to the tumor coverage that accounts for OARs’ radiation overdose [4]. On the other hand,
in the event of applying feature selection on CTV and PG features separately (with the
purpose of disentangling the two ROIs) and then combining the ensuing subsets, would
not account for potential bias due to the high correlation of the corresponding groups,
leading to the development of unreliable classification models [43].

In addition, the individual features integrated into the optimal subset belong to 5 (out
of 7) feature families with only shape and NGTDM being excluded. Although this does
not denote that usable information cannot be extracted from the latter categories, it implies
decreased differential characteristics compared to the other feature families that could
result from tumor shape irregularities, high variance and reduced neighboring gray level
difference [44]. Nonetheless, the GLCM feature family includes the “Difference Variance”,
“Maximum Probability”, “Correlation” (selected in both CTV and PG ROIs) and “Cluster
Prominence” features, suggesting distinct aspects of spatial gray-level variation within
local neighbors on a pixel basis. On this premise, the GLCM “Cluster Prominence” feature
could support early discrimination as it provides an intensity variability measure that can
detect small intensity differences between image voxels [45]. Furthermore, “Difference
Variance” has been consistently reported to be utilized as a measure of the heterogeneity in
an ROI [46]. Consequently, its discriminative ability is in accordance with previous studies
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in which “Difference Variance” was found to be prognostic for local tumor control in HN
cancer patients treated with chemo-radiotherapy [47]. In the same manner, “Correlation”
indicates a local gray-level dependency on the texture ROI. It has been reported to be able to
differentiate between benign and malignant solitary pulmonary nodules in lung cancer [48],
while a previous study (regarding the PG) reported that the correlation value appeared to
be decreased for an irradiated gland compared to a normal one [30]. Additional GLCM
characteristics have also been reported in other types of cancer. For example, “Maximum
Probability” has been considered an effective noninvasive predictive biomarker for a
pathological response from chemoradiation before surgery for Non-Small Cell Lung Cancer
patients [49]. Nonetheless, there is scarce evidence for a reliable interpretation of the
GLCM implications in the context of HN early anatomical alterations, necessitating further
future research [50]. The “Grey Level Non-Uniformity” feature was also designated as
important from both CTV and PG ROIs in two feature families (i.e., GLDM and GLSZM).
Interestingly, in both cases, the mean (and median) value after week 1 of the significant
alterations (class 2) is higher than the non-significant (class 1). Although no statistical
difference was found, this fact corroborates with other studies showing that smaller “Grey
Level Non-Uniformity” values display higher uniformity and therefore suggesting that
“Grey Level Non-Uniformity” represents the response to cancer treatment as regards to
radiotherapy [51]. As a result, other research works have proposed the employment of
CT-image “Grey Level Non-Uniformity” as a predictive marker for adaptive radiotherapy
and for local failure (disease persistence or reappearance) in HN cancer patients [28,52]. In
a similar fashion, “Kurtosis” measures the peakedness of the distribution values and the
complexity of the organizational structure and tumor heterogeneity. Congruent with recent
studies, our results demonstrated higher “Kurtosis” in the non-significant patient group as
increased values are correlated with more homogenous ROIs, which tend to have a better
response to radiotherapy [23,53].

While the proposed framework in the current study displays high performance, the
overall reliability of the selected features should be considered with caution. The key
concern is that the extracted values of features might be influenced by the data acquisition
and handling [54]. This is also illustrated in previous works that study the radiomics’
potential in order to enhance clinical decision-making, suggesting that the multiple steps
related to image acquisition, pre- and post-processing and feature extraction can affect the
radiomics computed values and thus the results’ reproducibility [55]. In this regard, we
opted to avoid utilizing absolute feature values, thus obtaining the different patient image
properties by comparing the delta-radiomics percentage alterations of the baseline CBCT
image (CBCT 1) to the following week’s images, using the same acquisition parameters. As
such, the acquired CBCT images during the course of RT treatment had the same field of
view, kVp, slice thickness, etc., as the baseline.

5. Conclusions

In this study, an early predictive machine learning model was implemented for the
identification planning adaptation requirement due to possible anatomical changes for
HN cancer patients treated with RT. The proposed framework was successful in obtaining
high classification performance from the 1st week of treatment. Moreover, it was able
to designate important CBCT image-based features, providing insights into the radiomic
characteristics related to significant tumor-volume deviations and thus paving the way for
a more rigorous, fast and cost-effective adaptive RT planning.
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