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ABSTRACT

Objective: Trauma quality improvement programs and registries improve care and outcomes for injured

patients. Designated trauma centers calculate injury scores using dedicated trauma registrars; however, many

injuries arrive at nontrauma centers, leaving a substantial amount of data uncaptured. We propose automated

methods to identify severe chest injury using machine learning (ML) and natural language processing (NLP)

methods from the electronic health record (EHR) for quality reporting.

Materials and Methods: A level I trauma center was queried for patients presenting after injury between 2014

and 2018. Prediction modeling was performed to classify severe chest injury using a reference dataset labeled

by certified registrars. Clinical documents from trauma encounters were processed into concept unique identi-

fiers for inputs to ML models: logistic regression with elastic net (EN) regularization, extreme gradient boosted

(XGB) machines, and convolutional neural networks (CNN). The optimal model was identified by examining

predictive and face validity metrics using global explanations.

Results: Of 8952 encounters, 542 (6.1%) had a severe chest injury. CNN and EN had the highest discrimination,

with an area under the receiver operating characteristic curve of 0.93 and calibration slopes between 0.88 and

0.97. CNN had better performance across risk thresholds with fewer discordant cases. Examination of global

explanations demonstrated the CNN model had better face validity, with top features including “contusion of

lung” and “hemopneumothorax.”

Discussion: The CNN model featured optimal discrimination, calibration, and clinically relevant features selected.

Conclusion: NLP and ML methods to populate trauma registries for quality analyses are feasible.
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INTRODUCTION

Trauma is the fourth leading cause of death in the United States (US)

across all age groups and accounted for an estimated 136 billion dol-

lars in healthcare costs in 2010.1 The development of statewide

trauma systems and registries have increased the amount of data

available to researchers to better understand the epidemiology of

trauma in the US, informing trauma quality programs to develop

practice changes and improve health outcomes.2 Trauma registries

rely on certified trauma coders to manually abstract relevant infor-

mation from the electronic health record (EHR) after discharge and

summarize patient injuries in the form of Abbreviated Injury Scores

(AIS). The manual calculation of injury scores is a requirement to re-

ceive state designation and the American College of Surgeons Com-

mittee on Trauma verification but it is time- and resource-intensive.3

In addition, an estimated 30%–50% of patients with major injuries

receive care at nontrauma centers, which may not have the same for-

malized programs or resources as state-designated trauma centers to

track pertinent epidemiologic data for quality improvement, re-

search, and planning.4–6 As a result, despite the accumulation of in-

formation in trauma registries across the US, a significant portion of

care after injury remains uncaptured.

Methods in machine learning (ML) and natural language proc-

essing (NLP) have the potential to automate data capture for clinical

registries. Information on mechanism and severity of the injury and

patient functional status and outcomes are embedded in the unstruc-

tured free text that makes up the majority of the EHR.7 With the use

of NLP techniques, this information can be incorporated into super-

vised ML algorithms that can learn from reference standards, such

as the manually generated AIS, to potentially automate the collec-

tion of data from centers without the need to manually input data

into a trauma registry. NLP can mine and analyze these data sources

to populate clinical registries, providing standardized, and compre-

hensive injury scoring for patients to accompany the conventional

discrete structured elements that make up a trauma registry. With

refinement, these automated tools may also allow injury scores to

become available at point-of-care for risk prognostication or better

allocation of hospital resources.8

In this study, we aim to determine the optimal ML algorithm for

a classifier using NLP methods to discriminate between cases of se-

vere and nonsevere chest injury using clinical documents from

trauma encounters. We have previously studied the optimal text pre-

processing and time after presentation to generate accurate predic-

tions from a single modeling approach; we expand upon this work

by examining multiple modeling approaches with a focus on model

interpretability and clinical relevance. We view this as initial steps

and proof-of-concept toward development of an automated classi-

fier for nontrauma centers. We hypothesize that similar predictive

validity metrics will be achieved across different ML approaches but

model interpretability and clinical face validity of the most impor-

tant text features will differ.

MATERIALS AND METHODS

Data source and study setting
The Loyola University Medical Center (LUMC) Level I trauma reg-

istry was queried for adult patients presenting between January 1,

2014 and October 22, 2018 as a trauma activation, trauma transfer,

or direct transfer after a mechanism attributed to trauma or burn in-

jury; the registry is manually generated by trauma registrars certified

by the Trauma Quality Improvement Program and serves as the

gold-standard reference label. Patients were linked between the

trauma registry and the EHR by medical record number. The AIS

for the chest was used to develop the outcome of interest for super-

vised ML; AIS is graded on a 6-point ordinal scale from minor to

unsurvivable. An AIS chest score greater than 2 served as the out-

come of interest, as it is considered a severe chest injury and is asso-

ciated with an increase in likelihood of mortality.9 The final analytic

cohort is depicted in Supplementary Figure S1. Comparisons in pa-

tient characteristics were made between those with and without se-

vere chest injury using the Wilcoxon rank-sum tests for continuous

variables and the chi-square test for categorical variables.

Text preprocessing from clinical documents
Clinical documents from the EHR were organized by entry time into

the EHR. Only clinical documents from the first 8 hours after pre-

sentation to the emergency department were included in the analy-

sis; no structured data elements (demographics, vitals, laboratory

values, and so on) were used in the analysis to minimize the amount

of feature engineering required. Prior work with a logistic regression

model demonstrated 8 hours as the minimum amount of data

needed to achieve optimal performance metrics for classification of

severe injury. Inclusion of additional data across the entire encoun-

ter only increased computational requirements without further im-

provement in model discrimination.10

Sensitivity analysis was performed to remove the potential het-

erogeneity of clinical documentation by trauma care providers by

only including routinely collected radiology reports during an ED

evaluation. The routine documentation that is common to non-

trauma centers include chest radiographs and chest computed to-

mography (CT) radiographs with standardized reporting by board-

certified radiologists. The collection of these reports during routine

ED care are time-sensitive, so we utilized the data from the first

8 hours after presentation to the ED, similar to our primary analysis.

LAY SUMMARY

Injuries due to trauma present a significant burden on the United States healthcare system. Data collection by trauma cen-

ters has allowed for the development of trauma registries, from which research and quality of trauma care can be studied

and improved. However, a large portion of injuries present to nontrauma centers and are thus uncaptured by this system.

Methods in machine learning (ML) and natural language processing can automate the process of data collection for

trauma registries and augment our understanding of the epidemiology of trauma. We assess the utility of various ML algo-

rithms in terms of predictive accuracy and clinical interpretability for prediction of severity of chest injury. Our results

demonstrate that a convolutional neural network had the best predictive accuracy and clinical relevance, with selections of

terms with clear association to severe chest injury. The use of ML to populate clinical registries for research and quality

analysis is feasible.
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In addition, we also examined all chest radiology reports during the

encounter in a second sensitivity analysis.

Documents were processed using the Apache clinical Text Analy-

sis and Knowledge Extraction System (cTAKES) to map free text

from the EHR to clinical concepts in the National Library of Medi-

cine Unified Medical Language System (UMLS) in the form of con-

cept unique identifiers (CUI).11 Mapping documents to CUIs

provides a method of working with text without protected health in-

formation (PHI) for reporting to state and national registries, and

condenses the feature space by mapping similar free-text phrases to

a single CUI (e.g., hematoma, hematomas, and blood clot all map to

CUI C0018944).

Development of ML models
The overall data corpus was randomly divided into an 80%

(n¼7033) training dataset and a 20% dataset (n¼1758) holdout

testing dataset. Due to the overall low rate of severe chest injury in

the cohort, the training dataset was downsampled to a 1:1 distribu-

tion of cases to controls. All models were trained on the down-

sampled training dataset with hyperparameters (Supplementary

Table S2) tuned by a random grid search to maximize the area under

the receiver operating characteristic curve (AUROC) using 5-fold

cross-validation; results were reported from the independent 20%

holdout test dataset. The prevalence of cases in the test dataset was

not adjusted and the results reported reflect the true prevalence of

severe chest injury in our cohort. The final analytic cohort was

downsampled to have a 50% case-rate (n¼429), and the case-rate

in the holdout test dataset still reflected the true prevalence of the

trauma cohort at 6.4% (n¼113).

Models utilized in the analysis were logistic regression with elastic

net (EN) regularization, extreme gradient boosted (XGB) machines, and

convolutional neural network (CNN). For EN and XGB, binary CUI

values (presence vs. absence) served as inputs for supervised ML; a 300-

dimension CUI embedding layer was used for the input into the CNN.

For the embeddings, CUIs were ordered by note entry time and toke-

nized across the encounter, preserving the architecture and context of

the clinical documents within each encounter.12

The nonparametric DeLong method was used to test for the sta-

tistical significance of differences in AUROC between models.13

Sensitivity and specificity with 95% confidence intervals (95% CI)

were compared at thresholds set to hold specificity and sensitivity at

80%, respectively. Discrimination was also assessed with classifica-

tion plots, which allow for a global assessment of model discrimina-

tion by depicting the variation in true positive and false positive

rates with varying thresholds. The classification plot also allows for

comparisons of models where the AUROC is numerically similar

but the shape of the curve may provide insights on optimal model

discrimination.14 To account for the differences in prevalence be-

tween the downsampled training dataset and the holdout testing

dataset, model predictions were calibrated using isotonic calibra-

tion. Next, calibration was assessed by visual plots, calibration

slope, and calibration intercept.15 The concordance of predictions

across models was also evaluated for the test dataset.

Global model interpretability
To examine the clinical face validity of the three models, we applied

global model interpretability metrics. For the interpretable models (EN

and XBG), interpretation was made by directly examining feature impor-

tance. The beta coefficients from the EN model were extracted and

ranked. For the XGB model, permutation feature importance was

extracted by averaging the improvement in squared error risk across all

boosted trees.16–18 For the CNN model, a surrogate local interpretable

model-agnostic explanations (LIME) model was applied to approximate

the predictions to explain individual predictions locally and then average

the feature weights from the local explanations to derive a global mea-

sure.19,20 The global LIME measure had a median R2 (variance

explained) of 0.69 (IQR 0.46–0.93), which was an acceptable approxi-

mation for the CNN model. The extracted features from all three ML

models were rescaled to a 100-point scale to facilitate comparisons of fea-

ture importance from the training dataset.

Error analysis
The false positive and false negative cases predicted by the model

were compared against the reference labels generated by the trauma

registrars. This comparison was performed to better understand the

model’s shortcomings when compared to the certified trauma regis-

trars. Local LIME explanations for a random sampling of false posi-

tive and false negative cases predicted by the CNN model were

generated, and we subsequently conducted a manual chart review

(SK) to determine the source of the error by the false prediction.

This study was considered exempt by the Institutional Review

Board of Loyola University Chicago. All data acquisition, process-

ing, and analysis were conducted in the R programming language

(version 3.6.0) using RStudio (version 1.2.1335).21,22

RESULTS

Patient and data characteristics
Between January 1, 2014 and October 22, 2018, there were 9084

encounters manually annotated by certified trauma registrars with link-

age to the EHR. Of these, 293 patients (3.2%) were excluded due to a

lack of CUI data; details of these patients are presented in Supplementary

Table S1. Of the remaining 8 791 encounters, 542 (6.2%) had a severe

chest injury. The characteristics of patients with and without severe chest

injury are presented in Table 1. Patients with severe chest injury had

higher rates of operative intervention, higher Elixhauser readmission and

mortality scores,23 and higher rates of in-hospital death (P< .01 for all

comparisons). The data corpus consisted of clinical documents filed into

the EHR within the first 8 hours after presentation to the ED with a total

of 102 493 reports and 15068 unique CUIs.

ML model parameters
The EN and CNN classifiers had the highest AUROC, at 0.93 (95% CI

[0.91, 0.94]) and 0.93 (95% CI [0.91, 0.95]), respectively, as compared

with the XGB classifier, which had an AUROC of 0.91 (95% CI [0.89,

0.94], DeLong test p<0.05). At a specificity of 80%, the EN classifier

demonstrated the highest sensitivity (0.95, 95% CI [0.89, 0.98]), fol-

lowed by the CNN (0.93, 95% CI [0.87, 0.97]) and XGB (0.91, 95%

CI [0.84, 0.96]) classifiers. Conversely, at a sensitivity of 80%, the

CNN classifier demonstrated the highest specificity (0.91, 95% CI

[0.89, 0.92]), followed by the EN (0.88, 95% CI [0.86, 0.90]) and XGB

classifiers (0.85, 95% CI [0.84, 0.87]).

Classification plots comparing the CNN with both the EN and

XGB models are shown in Figure 1. Although EN demonstrated the

highest sensitivity, examination of the classification plot reveals that

the CNN had a higher true-positive rate across most risk thresholds.

Similarly, the false-positive rate was lower across most thresholds in

the CNN model in comparison with EN and XGB. Concordance of

the three models’ predictions from the holdout test dataset can be

JAMIA Open, 2021, Vol. 00, No. 0 3



found in Table 2. The CNN model had a higher overall percentage

of accurate predictions and a lower number of false-positive results.

All three models had good calibration. The calibrated EN model

had a slope of 0.97 (95% CI [0.83, 1.14]) and an intercept of 0.13

(95% CI [�0.19, 0.46]), the calibrated XGB model had a slope of 1.02

(95% CI [0.86, 1.18]) and an intercept of 0.15 (95% CI [�0.18, 0.49]),

and the calibrated CNN model with slope of 0.88 (95% CI [0.75,

1.02]) and an intercept of 0.05 (95% CI [�0.25, 0.36]).

Sensitivity analysis
In the first sensitivity analysis, including only the radiology reports

(chest radiographs and CT) from the first 8 hours of ED presenta-

tion, we observed a small decrease in AUROC to 0.88 (95% CI

[0.84, 0.92]) and sensitivity and specificity of 0.84 (95% CI [0.76,

0.91]) and 0.83 (95% CI [0.81, 0.86]), respectively. Expanding the

corpus of radiology reports to the entire hospitalization demon-

strated minimal gains with an AUROC of 0.89 (95% CI [0.86,

0.92]), The sensitivity and specificity of this classifier were 0.87

(95% CI [0.78, 0.93]) and 0.79 (95% CI [0.76, 0.81]), respectively.

Global model interpretability
To assess the variation in clinical face validity of the three models, we ex-

amined the global model feature importance. Each model had selections

of CUIs with high clinical face validity, consistent with features identified

in the official trauma registrar AIS dictionary as indicative of severe chest

injury, such as “C0035522—Rib Fractures” or “C0035561—Bone struc-

ture of rib” (Figure 2).24,25 However, the examination of other highly

ranked features for each model identified clinically irrelevant features that

do not align with formal clinical classifications for a severe chest injury.

The EN model had the most extraneous features for severe chest injury,

including CUIs such as “C0578736—Inguinal Lymphadenopathy” or

“C0029396—Heterotopic ossification.” Overall, the XGB and CNN

had more clinically relevant features selected and better face validity.

Error analysis
To assess the shortcomings of our model we generated LIME

explanations for the false negative and false positive cases predicted

by our CNN model. Two representative examples of each type are

depicted in Figure 3A–D. In Figure 3A, the patient was a 27-year-

Table 1. Patient characteristics and outcomes between severe and nonsevere injury

Nonsevere chest injury Severe chest injuryc P-value

n 8249 542

Age, median (IQR) 47 (30–65) 42 (27–60) <.001

Sex, n (%) <.001

Male 5459 (66.2) 406 (74.9)

Female 2790 (33.8) 136 (25.1)

Race, n (%) .026

White 4683 (56.8) 282 (52.0)

Black 1922 (23.3) 153 (28.2)

Othera 1644 (19.9) 107 (19.7)

Admitting service, n (%) <.001

Trauma 3992 (48.3) 483 (89.1)

Burns 1499 (18.2) 29 (5.4)

Orthopedic surgery 834 (10.1) 0 (0.0)

Other 1924 (23.3) 30 (5.5)

Operative intervention, n (%) 2101 (25.5) 194 (35.8) <.001

OR time (mins), median (IQR) 185 (116–270) 167 (104–274) .31

Comorbidities, n (%)

CHF 213 (2.6) 12 (2.2) .70

Hypertension 1428 (17.3) 111 (20.5) .068

Pulmonary disease 468 (5.7) 74 (18.2) <.001

Diabetes 523 (6.3) 44 (8.1) .12

Renal disease 210 (2.5) 19 (3.5) .22

Liver disease 192 (2.3) 25 (4.6) .001

Coagulopathy 257 (3.1) 57 (10.5) <.001

Alcohol misuse 592 (7.2) 65 (12.0) <.001

Drug misuse 441 (5.3) 55 (10.1) <.001

Elixhauser scores, median (IQR)c

Readmission score 8 (0–21) 13 (4–22) .002

Mortality score 0 (�1–10) 4 (0–13) <.001

Length of stay, median (IQR) 2.3 (0.7–5.9) 5.4 (1.6–13.4) <.001

Disposition, n (%) <.001

Home 5831 (70.7) 246 (45.4)

Discharge to HC facility 1822 (22.1) 146 (26.9)

AMA 163 (2.0) 3 (0.6)

In-hospital death 342 (4.1) 145 (26.8)

Otherb 91 (1.1) 2 (0.4)

AMA: against medical advice; HC: healthcare; IQR: interquartile range; OR: operating room.
aOther Race ¼ American Indian, Asian, Hispanic, Multiracial, Hawaiian, Pacific Islander, Unknown.
bOther Disposition ¼ Hospice, law enforcement, unknown.
cElixhauser Scores calculated using diagnosis codes from the entire encounter.23
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old male with a grade II inhalation injury and 6% partial thickness

burns to the face and upper extremities. The model identified inhala-

tion injury and mechanical ventilation as important predictors, but a

lack of anatomical injury and lower prevalence of severe chest inju-

ries from our burn unit (5.4%) likely contributed to a false negative

label. Figure 3B depicts the case of a 70-year-old male patient who

A B

Figure 1. Classification plots comparing (A) CNN and EN and (B) CNN and XGB models. CNN model is indicated with the solid lines in each figure. TPR ¼ true pos-

itive rate (grey); FPR ¼ false positive rate (black); AUC ¼ area under curve. X-axis represents threshold at which TPR/FPR are measured.

Table 2. Concordance of model predictions across test dataset

EN (n, %) XGB (n, %) CNN (n, %)

Model correct 1435 81.6 1452 82.6 1528 86.9

All models correct 1357 77.2 1357 77.2 1357 77.2

Model correct, 1

or both other

models wrong

78 4.4 95 5.4 171 9.7

Positive case 10 0.6 5 0.3 4 0.2

Negative case 68 3.9 90 5.1 167 9.5

Note:Total number in holdout test dataset ¼ 1758.
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Figure 2. Top global model explanations from ML models to predict severe chest injury. X-axis represents rescaled variable importance from (1) EN beta coeffi-

cients, (2) XGB permuted feature importance, and (3) CNN training dataset averaged LIME explanations. Y-axis represents the preferred text definition of CUIs;

CUI codes omitted here for clarity. CNN LIME interpretation median r2 ¼ 0.69 (IQR 0.46–0.93).
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presented as outside hospital transfer after fall from standing and

was found to lack a complete workup at the outside facility, under-

going a CT chest on hospital day 4. He subsequently was found to

have a pneumothorax, but the imaging report fell outside of the 8-

hour time frame that the model was trained on and thus was labeled

as negative.

For the false positive cases, such as Figure 3C and D, we find

that negation prevents the correct labeling of the case. In the first

case, the patient is a 75-year-old female found unresponsive and

intubated in the trauma bay; this patient was then found to have no

chest injury, with the radiology report reading “no evidence for

acute aortic or solid organ injury or fracture.” The second case fea-

tures a patient presenting as an outside hospital transfer with only a

single fracture of the fifth rib, but a similar interpretation in the radi-

ology read prevented accurate representation of this patient’s injury

pattern. In both situations, the misinterpretation of negated terms in

the radiology report led to a false positive label by the classifier,

which did not accurately identify the negation.

DISCUSSION

In this study, we developed ML classifiers for prediction of severity

of chest injury using only clinical documents from the EHR. We

found that the best discrimination, as measured by AUROC, was

achieved by the EN and CNN models. The examination of classifi-

cation plots for these two models showed the CNN had an overall

higher true positive rate across thresholds. Discordant predictions

between the three models revealed that the CNN classifier did better

at minimizing false positives and false negatives. Global feature im-

portance demonstrated a more balanced selection of clinically rele-

vant CUIs in the CNN model than for either EN or XGB. The

CNN’s performance largely derives from routinely collected chest

radiology reports with small loss in performance when other clinical

documents were excluded in sensitivity analysis. Examination of lo-

cal explanations for false negative and false-positive results shed

light on the shortcomings of the model with respect to subpopula-

tions and negation extraction.

Predictive validity metrics demonstrated that the EN and CNN

models had the best balance of discrimination and calibration. Both

classifiers had similar AUROC as well as slope-intercept values for

calibration. Classification plots were more evident in displaying bet-

ter performance across regions of the discrimination curves for the

CNN classifier over the other models. The CNN model had more

accurate predictions in the borderline cases with fewer false negative

cases and more true-positive cases at higher thresholds than the

other models, suggesting that it better handled the distribution and

weight of CUI features in class assignment.

In examining model interpretability, the EN and CNN models

showed stark differences for clinical face validity, possibly due to

the differing CUI inputs and the use of an embedding approach for

the CNN model.12,26 While all three models identified anatomical

injuries as important to prediction, the EN and, to a lesser extent,

the XGB models had a considerable amount of noise in their top-

ranked features. We used binary one-hot encoded CUI data to train

both the EN and XGB classifiers which simplified the value of tex-

tual data. While it is possible that term frequency-inverse document

frequency or similar weighting might have enhanced model inter-

pretability, our previous work demonstrated no difference in classi-

fication as compared with binary CUIs.10 Examination of the top

CNN features indicated a more balanced ranking of global features

to develop an accurate prediction. The CUI embedding for the CNN

has the ability to account for repeated mentions and identify similar

CUIs that may have translated into a more cohesive ranking of top

features.27 The embeddings may have better represented the tempo-

ral manner of a trauma encounter, with relevant information being

repeated and carried forward in documentation.27
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C0222875 − Bone structure of fifth rib

C0225704 − Basal segment of lung

C0225594 − Structure of carina

C0237477 − Arrested progression

C0035561 − Bone structure of rib

C0035522 − Rib Fractures

C0225730 − Left lung
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Figure 3. Local model interpretations generated by LIME explainer for CNN model for false negative cases (A, B) and false positive cases (C, D). X-axis represents

feature weight for top ten concept unique identifiers for each case. Probability represents probability of positive case; explanation fit represents r2 of LIME classi-

fier for the selected case.
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The averaged LIME explanations used for global feature importance

further supported CNN as the optimal model. To our knowledge, this

study represents the first use of averaging local LIME explanations to

provide a global explanation for a neural network with CUI embed-

dings. By acquiring a good average explanation fit across local LIME

explanations, we inferred that the top global features utilized by the

CNN were uniformly predictive of severe chest injury.28

Examining the local explanations for the cases that were incorrectly

predicted by the CNN reveals patterns about the issues limiting predic-

tion accuracy. We found that subpopulations and unusual presentations

of severe chest injury, as found in patients presenting after burns, or lo-

gistical issues, such as discovery of injury after the 8-hour time point,

were significant enough to cause false-negative results. Conversely, our

false-positive LIME explanations suffered due to challenges with nega-

tion in text. cTAKES contains a rule-based negation module that is

known to have issues with complex patterns of negation, which.is well

described by other authors.29,30 In our examples, the model failed to

identify language about the nonpresence of injury despite employing the

negation features of cTAKES. The use of LIME explanations for global

level explanations and local error analysis may help target areas for clas-

sifier improvement to gain the trust of trauma registrars and administra-

tors seeking to implement these tools for quality improvement

programs and reporting in their health systems.

The CNN classifier is an initial step toward an automated trauma

registry for quality control, internal evaluation, and reporting to state

and federal entities, though the model requires further refinement prior

to implementation, given the need for highly accurate registry data for

quality reporting and research. A brief survey of our institution’s trauma

registrar revealed that manual chart reviews range between one and 2

hours; therefore, NLP algorithms can save substantial time and effort

for documentation. To our knowledge, this is the first work that focuses

on automating the coding of injury severity using methods in NLP. Prior

work in this domain has largely focused on NLP methods for patient

identification, modeling using structured patient data, or conversion of

patient information to billing diagnosis codes for summative reports.31–

33 Several authors in other clinical domains have noted the importance

of using NLP methods to capture information sequestered in clinical

text.34 NLP and supervised ML methods have previously been used to

build clinical registries in oncology and neurology, though the target

tasks were narrow in focus and domain specific.35–37 These studies fo-

cused largely on mining of data and less on interpretability. Further-

more, the use of CUIs as coded structured data from the free text allows

for portability of classifiers by sharing the CUI vocabulary of trained

models, enabling centers to aggregate data without leakage of PHI.38

The multiple facets described have broad implications for building accu-

rate and interpretable ML models to populate complex data fields

within clinical registries to identify practice gaps and inform improve-

ments in patient care.

Several limitations are present in our study. As a single-center

study, our results are biased toward the prevalence and pattern of

trauma seen at our level I trauma center. Our CNN classifier

requires external validation. This validation would need to be per-

formed in multiple stages, both at trauma centers with registrars per-

forming manual coding as well as at centers without trauma centers,

the latter being necessary to determine the generalizability of the

clinical documentation used as the source data. These data are

obtained from a level I trauma center and are likely more complete

and standardized to comply with rigorous reporting requirements.

However, many of the top features identified in variable importance

analysis were radiographic features, leading us to perform a sensitiv-

ity analysis using only chest radiology reports. Chest imaging is an

essential component of the trauma survey and common to even non-

trauma EDs. Sensitivity analysis showed a model with only the chest

radiograph reports in the first 8 hours had minimal loss in perfor-

mance compared to our full model.

For our global variable importance analysis for the CNN model,

we used a LIME explainer on a local level to obtain a sense of global

variable importance that is susceptible to the error of each local pre-

diction. We attempted to use other well-described methods such as

obtaining Shapley values, but the dense feature space included in

analysis made development of the interactions between the features

computationally infeasible.

For our analysis, we utilized clinical documents in the form of a

CUI output from the cTAKES NLP engine, which may not be avail-

able at all health systems due to lack of expertise or sufficient hard-

ware for processing large quantities of clinical documents. Lastly,

the clinical documents at our center used in analyses have specific

provider and regional differences in documentation that may bias

our results and lead to correlations of features not necessarily di-

rectly associated with our outcome, but may have indirect clinical

consequences of severe chest injury. In addition, CUIs can account

for lexical variations as multiple terms map to the same CUI.

CONCLUSION

The CNN classifier demonstrated good discrimination, calibration,

and interpretability for identifying cases of severe chest injury. Simi-

lar classifiers may be refined to eventually define AIS across all nine

anatomical regions in an automated manner leveraging methods in

ML and NLP. This study is a first step toward automating the cap-

ture and reporting of injury scores for trauma centers and emergency

departments across the US.
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