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Neural correlates of vocal initiation 
in the VTA/SNc of juvenile male 
zebra finches
Shin Yanagihara1,4*, Maki Ikebuchi2, Chihiro Mori3, Ryosuke O. Tachibana1 & 
Kazuo Okanoya1,2

Initiation and execution of complex learned vocalizations such as human speech and birdsong depend 
on multiple brain circuits. In songbirds, neurons in the motor cortices and basal ganglia circuitry 
exhibit preparatory activity before initiation of song, and that activity is thought to play an important 
role in successful song performance. However, it remains unknown where a start signal for song is 
represented in the brain and how such a signal would lead to appropriate vocal initiation. To test 
whether neurons in the midbrain ventral tegmental area (VTA) and substantia nigra pars compacta 
(SNc) show activity related to song initiation, we carried out extracellular recordings of VTA/SNc single 
units in singing juvenile male zebra finches. We found that a subset of VTA/SNc units exhibit phasic 
activity precisely time-locked to the onset of the song bout, and that the activity occurred specifically 
at the beginning of song. These findings suggest that phasic activity in the VTA/SNc represents a start 
signal that triggers song vocalization.

Dopamine neurons in the midbrain ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) 
are involved in a variety of functions, including reward prediction error coding, motivation, arousal regulation, 
and voluntary movement1–5. Through several studies, accumulated neurophysiological data has shown that mid-
brain dopaminergic neurons encode reward prediction error signals important for reinforcement learning3,6–8. 
Moreover, recent studies in rodents have shown that midbrain dopaminergic neurons exhibit movement-related 
activity9–12. More specifically, the phasic activity of dopaminergic neurons associated with movement initiation 
has recently received much attention4. Thus, the function of dopamine in behavior is still not fully elucidated. 
Midbrain dopaminergic neurons show a transient increase or decrease in activity at the initiation of volun-
tary movements such as sequential lever-pressing or locomotion, and that activation of dopaminergic neurons 
promotes movement initiation9–11,13,14. These studies highlight the critical role of the midbrain dopaminergic 
system in a range of movements, particularly initiation of self-paced movement. On the other hand, although 
dopaminergic regulation of vocalization has been extensively studied in songbirds15–17, it is still unclear whether 
the midbrain dopaminergic system is involved in the initiation of learned vocalizations.

Songbirds are a well-suited animal species to study the neural mechanisms underlying the initiation and 
execution of learned vocalizations. Previous studies of the song system nuclei have demonstrated preparatory 
activity for singing in the premotor nucleus HVC18–21 as well as in Area X and LMAN, which are part of the 
cortico-basal ganglia circuitry22–25. While neural activity of these brain areas is important for the preparation 
and execution of song, it is unclear where in the brain a start signal for song vocalization might come from. Two 
brain areas that could potentially provide a start signal for song are the midbrain VTA and SNc. Neurons in the 
VTA/SNc send axons to the song system nuclei26–29, and the song system nuclei have an abundance of catechola-
minergic terminals and dopamine receptors30,31. Moreover, basal ganglia-projecting VTA dopaminergic neurons 
encode performance errors32 and manipulations of this dopaminergic pathway have been shown to affect vocal 
learning33–35. These studies underscore the importance of the VTA dopaminergic system in vocal learning in 
songbirds; nevertheless, the role of the dopaminergic system in the initiation of song vocalization has not been 
verified. Juvenile male zebra finches practicing their songs vocalize freely without external stimuli, such as female 
birds36. Thus, by using juveniles in our study, we can test whether the VTA/SNc is involved in the initiation of self-
paced vocalizations independent of social context. Here we examined whether VTA/SNc neurons exhibit activity 
related to the initiation of song by recording extracellular single unit activity from singing juvenile zebra finches.
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Results
We recorded the neural activity in VTA/SNc from juvenile male zebra finches while birds were singing spontane-
ously (n = 85 single units, 6 birds). In this study, we focused on the analysis of neural activity before and during 
singing. Peri-event time histograms (PETH) and z-scored firing rates were calculated based on the alignment to 
the onset or offset of the song bout (Fig. 1). We observed that VTA/SNc single units exhibited changes in activity 
while a bird was singing (34/85 single units, 6 birds, Friedman test, p < 0.05), and these single units were classified 
into four types based on the activity profiles. Seventeen single units were classified as type-1, which showed a 
phasic increase in firing rate at the onset of the song bout, followed by a rapid decline in firing rate during singing 
(Fig. 1a,e,f, type-1, 4 birds). Ten single units were classified as type-2, which showed a phasic increase in firing 
rate at the onset of the song bout, and the firing rate was sustained throughout the singing period (Fig. 1b,e,f, 
type-2, 5 birds). On the other hand, other VTA/SNc single units showed a decrease in firing rate during singing. 
Three single units were classified as type-3, which exhibited a brief pause of activity at the onset of the song bout 
(Fig. 1c,e,f, type-3, 2 birds). Four single units were classified as type-4, which showed a decrease in firing rate 
throughout the singing period (Fig. 1d,e,f, type-4, 2 birds). These single units were recorded within the VTA/
SNc complex, which has a dense population of TH-positive cells (Fig. 2). Based on the analysis of spontaneous 
firing rate and spike width, we confirmed that VTA/SNc contains both broad spike and narrow spike units, 
which is consistent with previous studies in zebra finch VTA/SNc29,34,37,38. Broad spike units tended to show low 
spontaneous firing rates in vivo (< 10–15 Hz)34,38, thus indicating dopaminergic neurons (Fig. 2c). On the other 
hand, narrow spike units tended to show variable firing rates, indicating non-dopaminergic neurons.

Juvenile zebra finches produce highly variable songs, and inter-syllable intervals vary from rendition to 
rendition. To examine whether the activity changes seen during singing occurred specifically at the first syl-
lable, we compared the activity relative to each song syllable within the song bout. For each single unit, PETH 
were calculated on the basis of the alignment to the first, second, third, fourth, fifth, or final syllable of the song 
bout (Fig. 3). Remarkably, we found that type-1 units exhibited a phasic increase in the firing rate selectively at 
the first syllable, which was significantly higher than the firing rates at the rest of syllables within the song bout 
(Fig. 3a, Bonferroni correction for multiple comparison test, p < 0.05, n = 17). Likewise, type-3 units exhibited 
a phasic decrease in the firing rate selectively at the first syllable (Fig. 3c, p < 0.05, n = 3). On the other hand, 
type-2 (Fig. 3b) and type-4 units did not show selective changes in activity at any specific syllable. Although we 
found selective activity changes at the first syllable in type-1 and type-3 units, there were no single units showing 
selective changes in activity at any other syllable within the song bout (Fig. 4). These analyses showed that type-1 
and type-3 units exhibited activity changes specifically at the initiation of song. We further examined the exact 
time when the activity changed prior to song onset (Fig. 5). For each single unit, we calculated the timing of the 
activity change for each trial (detection threshold, mean firing rate ± 2 SD), the timing of the firing rate peak 
(type-1) or trough (type-3), and the duration of the activity change. The changes in activity began 10–150 ms 
before song onset in type-1 units. In type-3 units, the changes began anywhere from 100 ms before to 40 ms 
after song onset (Fig. 5a, type-1 units, mean ± SD, − 68.9 ± 45.2 ms, range: − 153.0 to − 11.2 ms relative to song 
onset, n = 12, type-3 units, − 11.3 ± 67.0 ms, range: − 86.4 to 42.2 ms, n = 3), and quickly reached the firing peak 
or trough (Fig. 5b, type-1, mean ± SD, − 56.9 ± 43.4 ms, range: − 146.0 to − 5.0 ms relative to song onset, type-3, 
− 11.3 ± 67.0 ms, range: − 86.4 to 42.2 ms). The duration of the change in activity was about 100 ms (type-1, 
mean ± SD, 100 ± 48 ms, range: 60 to 170 ms, type-3, 70 ± 17 ms, range: 50 to 80 ms). As a population, most 
type-1 and type-3 units exhibited a change in activity prior to song initiation (type-1, 12/12 units, type-3, 1/3 
units). We also examined whether these single units showed an increase in activity several hundred milliseconds 
before song initiation, similar to the preparatory activity seen in song nuclei21. We found no such gradual activity 
change (detection threshold, mean firing rate ± 2 SD). These results indicate that the VTA and SNc in juvenile 
zebra finches contain neurons related to the initiation of song vocalization.

Since singing is accompanied by movement in zebra finches, the singing-related activity described above 
may be also related to the movement of the birds. In fact, previous studies show that some VTA neurons in adult 
zebra finches code performance error signals while others exhibit movement-related activity as well as syllable-
locked activity32,39. To elucidate the relationship between singing and movement in juvenile zebra finches, an 
accelerometer was attached to the bird’s head and movement-related signal was measured during singing (Fig. 6). 
We observed that continuous head movement occurred during singing in juvenile birds (Fig. 6a,b), and that 
movement duration was consistently longer than song duration (Fig. 6c, Wilcoxon signed-rank test, p < 0.05, 
n = 3 birds). Furthermore, when we calculated the time difference between the onsets of song and movement, 
we found that head movement preceded singing by less than about 100 ms (Fig. 6d, movement onset time rela-
tive to song onset, mean ± SD, − 41.4 ± 14.6 ms, n = 3 birds). We also found that movement ceased about several 
hundred milliseconds after the song ended (Fig. 6e, movement offset time relative to song offset, mean ± SD, 
449.1 ± 129.9 ms, n = 3 birds). As mentioned earlier, type-1 units started to change their activity 10–150 ms before 
the onset of singing (Fig. 5a), and such change in activity sometimes occurred after the head movements were 
executed. Thus, the phasic activity of some type-1 units seems to be involved in the initiation of song, rather than 
the initiation of the head movements. However, since we did not quantify detailed body movements other than 
head movements, we cannot completely rule out the possibility that neural activity is correlated with other non-
head movements associated with song initiation. Overall, these results suggest that some of the phasic activity 
occurring in the VTA/SNc at the initiation of song represents the start signal for song vocalizations, while other 
examples of phasic activity may represent start signals for movements that accompany singing.
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Figure 1.   Singing-related activity in VTA/SNc from juvenile zebra finches. (a) Example of a type-1 unit during 
singing. Spike raster plot and PETH aligned to the song bout onset (left) and offset (right). Spectrograms and 
amplitude oscillograms of song are shown on the top. Inset denotes mean spike waveform. Note the increased 
burst firing only at the onset of singing. (b) Example of a type-2 unit. (c) Example of a type-3 unit. Note the brief 
pause in firing only at the onset of singing. (d) Example of a type-4 unit. (e) Summary of singing-related VTA/
SNc units. The firing rate of each neuron was normalized to a z-score, and aligned to the singing onset (left) and 
offset (right). Each row represents data from an individual VTA/SNc unit. (f) Proportion of singing-related units 
in VTA/SNc.
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Discussion
By recording neural activity in singing juvenile male zebra finches, we found that VTA/SNc single units exhibited 
singing-related activity, and that phasic activity was tightly time-locked to the initiation of song. Some VTA/SNc 
units exhibited a transient increase or decrease in activity specifically at the initiation of the song bout (Fig. 1, 
type-1 and type-3 units), while others showed sustained activity during singing (type-2 and type-4 units). These 
results support the notion that the phasic activity of VTA/SNc neurons represents a start signal that triggers song 
vocalization in juvenile zebra finches.

Previous studies have demonstrated that neurons in the song system nuclei exhibit preparatory activity prior 
to the onset of song vocalization. In the basal ganglia circuitry nuclei Area X and LMAN, neural activity gradually 
increases several hundred milliseconds before the onset of an undirected song bout22,24,25,40. Similarly, neurons in 
the premotor nucleus HVC change their activity several hundred milliseconds before song bout onset20. Much 
longer timescale changes have been demonstrated in RA-projecting HVC neurons and the downstream motor 
cortical neurons in RA21. These preparatory activities in the song system nuclei are thought to play important 
roles in impending song performance. In contrast, VTA/SNc activity at the onset of the song bout was relatively 
transient (Fig. 1, type-1 and type-3 units) compared to preparatory activity in the song system nuclei, which 
can last several hundred milliseconds to a few seconds. We did not find such preparatory activity in the VTA/
SNc. Thus, VTA/SNc in juvenile may provide a start signal rather than a preparatory function for song initiation.
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Figure 2.   Histological and electrophysiological confirmation of VTA/SNc single units. (a, b) Histological 
verification of the recording sites. (a) left, Low magnification of a zebra finch sagittal brain section stained 
with an antibody against tyrosine hydroxylase (TH). A: anterior, P: posterior. Arrows indicate an electrode 
track. Right, Magnified view of the area enclosed by the white square in the left panel. A white line indicates an 
electrode track that entered the TH-positive cell population. The TH-positive cell population is surrounded by a 
white dotted line which corresponds to the ‘lateral’ brain section in (b). (b) Recording sites from all birds (n = 6) 
are shown in the example sagittal sections. Each color corresponds to the neuron types (Red: Type-1, Blue: 
Type-2, Magenta: Type-3, Green: Type-4). Recording sites where singing-related units were obtained are shown. 
(c) Relationship between spontaneous firing rate and spike half-width. Each circle represents data from a single 
neuron. Red: Type-1, Blue: Type-2, Magenta: Type-3, Green: Type-4, Gray: No correlation.
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Figure 3.   Type-1 and type-3 neurons exhibited phasic syllable-related activity selectively at the first syllable. 
(a) Example of a type-1 unit showing significantly higher phasic activity selectively before the first syllable onset 
of the song bout. Top panels show spectrograms and amplitude oscillograms of each syllable. Bottom panels 
show raster plots and spike rate histograms aligned to each syllable. From left to right, each column shows the 
raster plot and spike rate histogram of the same neuron aligned to the first, second, third, fourth, fifth, and final 
syllable. Gray shadings indicate the range from − 50 to + 50 ms of each syllable. Data is from the same single unit 
as in Fig. 1a. (b) Example of a type-2 unit showing sustained firing activity. Data is from the same single unit as 
in Fig. 1b. (c) Example of a type-3 unit showing significantly lower phasic activity selectively at the first syllable 
onset. Data is from the same single unit as in Fig. 1c.
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The song system nuclei, such as HVC, RA, and Area X, receive dopaminergic inputs from VTA/SNc and 
PAG26–28,30, and are abundant in various types of dopamine receptors31. An important question is whether the 
neural signals propagating from the VTA/SNc can reach the song nuclei and function as song initiation sig-
nals. Previous studies have shown that the time delay between the onset of singing-related activity in HVC/RA 
and song production is about 40–50 ms41,42. On the other hand, the time delay between the projection from 
Area X to RA (via DLM/LMAN) and the generation of song can be roughly estimated as 80–100 ms at most. 
This is calculated from the latency of LMAN stimulation effects on a song syllable (50 ms at most)43–45 and the 
latency to thalamic DLM spike from the preceding spike decelerations of Area X pallidal output neurons (about 
20 ms)46,47. The phasic activity in the VTA/SNc that we found in this study arose 10–150 ms before singing 
onset in type-1 units. In type-3 units, activity occurred anywhere from 100 ms before to 40 ms after song onset 
(Fig. 5). In contrast to preparatory activity in the song system nuclei, which gradually increases several hundred 
milliseconds to a few seconds before singing, it is possible that the phasic activity in the VTA/SNc may serve 
as a final trigger for song vocalization. Such transient dopaminergic inputs from VTA/SNc to the song system 
nuclei may enhance the excitability of neurons related to song preparation. In addition, both neural activity in 
Area X and vocal learning are modulated by manipulations of dopaminergic inputs33–35,48–50. Thus far, however, 
the role of dopamine in song initiation has been overlooked, except for a previous report describing pre-singing 
VTA activity in adult zebra finches51. Along with its previously established role in vocal learning and social 
modulation of vocal performance16, our findings indicate a possible novel function of the songbird VTA/SNc 
dopaminergic system in the initiation of song. Further studies will be needed to determine whether temporally 
precise transient dopaminergic signals driven by electrical/optogenetic stimulation of VTA/SNc neurons may 
initiate song in concert with preparatory activity in the song system nuclei.

In adult birds, dopamine release in the basal ganglia nucleus Area X is known to be greater during courtship 
singing to a female bird (directed song) and less when singing alone (undirected song)52. Depending on the social 
context, both immediate-early gene expression and singing-related activity of the basal ganglia network, as well 
as the VTA/SNc, differ25,40,51,53–55. In this study, we analyzed activity in the VTA/SNc of juvenile birds while they 
were practicing song alone and found vocal initiation-related activity. This vocal initiation-related activity may 
change depending on the social context and with developmental stage. It would be worth investigating how 
vocal initiation-related activity in the VTA/SNc differs in various situations and behavioral states, such as vocal 
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Figure 4.   Comparison of syllable-related activity. (a–c) From left to right: mean firing rate at the first syllable is 
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syllable, and mean firing rate at the final syllable. (a) Data from singing-related units is shown. (b) The low firing 
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7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:22388  | https://doi.org/10.1038/s41598-021-01955-3

www.nature.com/scientificreports/

practice in different developmental stages, courtship singing to a female bird, and vocal communication with 
socially motivated calls.

In summary, the present study shows that a subset of VTA/SNc single units in juvenile male zebra finches 
exhibit phasic activity at the initiation of song. This result underscores the potential importance of the songbird 
VTA/SNc for vocal initiation, and suggests a functional similarity to the mammalian dopaminergic system 
involved in the initiation of various voluntary movements.

Materials and methods
Animals.  All experiments were approved by the animal experimentation committee at the University of 
Tokyo and performed in accordance with the established guidelines (permission #27–9 and #29–2). All pro-
cedures reported in this study were carried out in compliance with the ARRIVE guidelines. Male zebra finches 
were obtained from our breeding colony (n = 6). Birds were kept on a 14 L:10 D photoperiod, and food and water 
were available ad libitum. Single unit recordings were performed from freely behaving juvenile birds (49–83 days 
post hatch). A total of 85 single units were recorded from 6 birds (recording onset: 49–78  days post hatch, 
mean ± SD: 66.3 ± 9.6 days).

Surgery and electrophysiological recordings.  Single unit activity was recorded extracellularly from 
VTA/SNc in freely behaving zebra finches. For this study, we used a handmade, manually advanceable micro-
drive (1 g in weight) attached to four bundles of tetrode and reference wires (nichrome wire, diameter, 12.5 µm, 
RO800, Sandvic). Under isoflurane anesthesia (1–1.3%), the microdrive was chronically implanted with a stere-
otaxic apparatus (Narishige). Before implanting the tetrode, each electrode was plated with gold plating solution 
(Neuralynx). The impedance of the electrode was 300–500 kΩ. The following stereotaxic coordinates were used; 
anterior: 0.8–1.0 mm, lateral: 0.5–0.8 mm, depth: 5.6–6.8 mm from the bifurcation of the sagittal sinus, head 
angle: 28 degrees. After the surgery, birds were kept singly in a recording chamber (30 × 20 × 25  cm), which 
was placed in a sound attenuation box (50 × 40 × 40 cm). Multiple single-unit activity was recorded while the 
bird was singing spontaneously. Extracellular neuronal signals were amplified (10,000-fold), band-pass filtered 
(0.5–9 kHz), and digitized (40 kHz) with a Plexon MAP system. The acoustic signal in the sound attenuation 
box was simultaneously recorded with a microphone (model C417, AKG) placed inside the sound attenuation 
box. The acoustic signal was amplified (DMP3, M-AUDIO) and digitized at 20 kHz. The behavior of the bird was 
monitored with a video camera (CinePlex, Plexon). To measure the bird’s head movement, an accelerometer was 
mounted on the bird’s head, and the accelerometer signal was recorded at 20 kHz (3 birds). Neural, sound, and 
accelerometer signals digitized with a Plexon MAP system were stored on a PC.
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Figure 5.   Timing of activity changes for type-1 and type-3 units. (a) Onset time of activity change for 
individual type-1 (red) and type-3 (magenta) units is shown. Red squares and magenta circles represent mean 
(± SD) time of activity change relative to the song onset. (b) Timing of firing rate peaks (type-1, red) or troughs 
(type-3, magenta) relative to the song onset is shown.
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Analysis of electrophysiological data and movement.  Spike signals were sorted offline into single 
units (Offline sorter, Plexon), and well-isolated single units were further analyzed with MATLAB (MathWorks). 
To characterize spike shape for each single unit, first a mean waveform was calculated based on 20 randomly 
chosen spike waveforms. Then, the spike width was calculated as the half-width of the first negative deflection 
of the mean waveform. To visualize and compare the change in firing between single units with different firing 
rates at the onset and offset of song, we displayed the firing rate in z-scores (Fig. 1e). The z-score firing rate was 
computed so that the mean of the firing rate in the two-second period at the onset/offset of the song was cen-
tered to be 0 and the standard deviation was scaled to be 1 (MATLAB function zscore). To determine whether 
single unit activity was related to singing, the number of spikes before singing (pre-singing period) and during 
singing were compared. To calculate these values, the onset/offset times of the song bout and the onset times 
of each syllable (from 1st to 5th syllables in each song bout) were manually determined by visual inspection of 
the spectrogram and oscillogram of the acoustic signal. The pre-singing period was determined as the period 
400–500 ms prior to each song bout onset. For each song, spike numbers in each 100-ms pre-singing period 
were calculated. To compare the spike numbers for each syllable during singing, each syllable was divided into 
windows of 100 ms and spike numbers in each 100 ms window during the first, second, third, fourth, fifth, or 
final syllable of the song bout were calculated, respectively (Fig. 3). For each single unit, spike numbers in the 
pre-singing period and spike numbers in each syllable timing (100 ms window) during singing were compared 
using Friedman test, followed by Bonferroni corrected multiple comparison test. The significance level was set 
at 0.05. If a significant difference was found in the Friedman test, the single unit was considered singing-related. 
Furthermore, if the Bonferroni corrected multiple comparison test showed a significant increase in firing rate 
only around the first syllable, the unit was classified as type-1. If there was an increase in firing rate not only 
around the first syllable, but also in the second and subsequent syllables, the unit was classified as type-2. If there 
was a significant decrease in firing rate only around the first syllable, the unit was classified as type-3. If there 
was a decrease in firing rate not only around the first syllable but also in the second and subsequent syllables, the 
unit was classified as type-4.

To determine the exact time before song onset when activity change occurred, the time points at which 
the mean firing rate exceeded a threshold was detected in each trial (detection threshold = mean ± 2 SD, bin 
size = 10 ms, range of examination: − 0.25 to 0.25 s relative to the song onset). In order to detect changes in 
activity reliably in each trial, units with extremely low firing rates (less than 5 spikes in each trial) were excluded 
from this analysis. In addition, the timing of the peak (type-1) or trough (type-3) of firing was detected for each 
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trial and the duration for which the firing rate exceeded the threshold was measured. In addition to detect-
ing these transient changes in activity around the onset of singing, the occurrence of gradual activity changes 
over a longer period of time, such as preparatory activity before the start of singing, was examined (detection 
threshold = mean ± 2 SD, bin size = 10 ms, range of examination: − 2 to 2 s relative to the song onset). Since 
vocalization-related units were recorded within a dense population of tyrosine hydroxylase (TH)-positive cells, 
which indicates the VTA/SNc complex (Fig. 2a,b), these data sets were reported as VTA/SNc single units. To 
examine the relationship between movement and timing of song, the onset and offset of movements were manu-
ally determined by visual inspection of the movement signal from the accelerometer. For each bird, the durations 
of song and movement were compared with a Wilcoxon signed-rank test. The significance level was set at 0.05.

Anatomical verification of recording sites.  After completion of electrophysiological recordings, small 
electrical lesions were made through the electrodes (20 µA for 20 s, Stimulus Isolator A365, WPI). Birds were 
deeply anesthetized with an overdose of pentobarbital sodium (Somnopentyl, Kyoritsu Seiyaku) and perfused 
with 4% paraformaldehyde (PFA). Brains were dissected out, and post-fixed overnight in 4% PFA followed by 
30% sucrose in phosphate-buffered saline. Sagittal brains sections (40 µm in thickness) were made with a freez-
ing microtome (ROM-380, Yamato Kohki Industrial), and stained with an antibody against tyrosine hydroxylase 
(TH, MAB318, Merck Millipore) to visualize dopaminergic neurons in VTA and SNc. The electrode track was 
verified under a microscope.

Data availability
Datasets generated for this study are available from the corresponding author upon reasonable request.
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