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FT potential energy surface
minima values from force-field optimised organic
molecules with new machine learning
representations†

Sanha Lee, a Kristaps Ermanis *b and Jonathan M. Goodman *a

The use of machine learning techniques in computational chemistry has gained significant momentum

since large molecular databases are now readily available. Predictions of molecular properties using

machine learning have advantages over the traditional quantum mechanics calculations because they

can be cheaper computationally without losing the accuracy. We present a new extrapolatable and

explainable molecular representation based on bonds, angles and dihedrals that can be used to train

machine learning models. The trained models can accurately predict the electronic energy and the free

energy of small organic molecules with atom types C, H N and O, with a mean absolute error of

1.2 kcal mol�1. The models can be extrapolated to larger organic molecules with an average error of less

than 3.7 kcal mol�1 for 10 or fewer heavy atoms, which represent a chemical space two orders of

magnitude larger. The rapid energy predictions of multiple molecules, up to 7 times faster than previous

ML models of similar accuracy, has been achieved by sampling geometries around the potential energy

surface minima. Therefore, the input geometries do not have to be located precisely on the minima and

we show that accurate density functional theory energy predictions can be made from force-field

optimised geometries with a mean absolute error 2.5 kcal mol�1.
1 Introduction

Computationally modelling the chemical properties of mole-
cules is essential in many areas of chemistry, molecular biology
and drug design. One of the most popular quantummechanical
methods in theoretical chemistry is density functional theory
(DFT).1,2 Although the DFT method has more accessible
computational cost than the higher-precision coupled-cluster
theory,3 the approach is still too expensive for calculating
a large number of molecules. A major research focus in recent
years is developing efficient computational approaches to
explore chemical space.4 This requires a very large number of
energy calculations and the speed of DFT methods is a limiting
factor.

Machine learning (ML) approaches to model the properties
of molecular systems statistically have gained much popularity
in many areas of chemistry.5,6 ML methods have already been
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applied to improve the accuracy of the quantum mechanical
methods,7–10 to speed up the calculations,11–13 to design new
materials14,15 and to generate force-eld parameters16–18 for
molecular dynamics simulations. One of the most popular data-
driven approaches is designing approximations that can repli-
cate ab initio results without compromising accuracy.19

Currently available computationally-inexpensive practices such
as the semi-empirical20,21 methods or classical force-eld
methods are efficient but lack the accuracy to model chemical
reactions or molecular properties.18 Furthermore, unlike the
electronic and free energies from DFT methods, force-eld
energies are not comparable for different systems because
they are usually parameterised to study a particular phenom-
enon. Therefore, some chemical properties, such as estimating
the thermodynamic selectivity of different reactions, are not
possible.

The ML potential on the other hand can predict molecular
energies at a fraction of the computational cost of DFT
approaches with an accuracy superior to the classical force-eld
and semi-empirical methods.19 The progress of the ML poten-
tials relies on the availability of high quality data. Reymond
et al. explored the chemical compound space of organic mole-
cules and generated data sets covering billions of 2D structures
and SMILES strings.22–25 Since then, the GDB database has been
exploited to develop many ML models. Roitberg et al. calculated
© 2022 The Author(s). Published by the Royal Society of Chemistry
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over twenty million off-equilibrium conformations of organic
molecules from the GDB dataset.26 The ANI-1 ML potential
developed from this database can predict atomisation energies
of organic molecules consisting of atom types H, C, N and O, up
to 8 non-hydrogen atoms.27,28 The ANI potential has been
extended to cover sulfur and halogens29 and coupled-cluster
molecular properties.30,31 Lilienfeld et al. developed ML poten-
tials from the GDB database to predict atomisation energies
using a variety of different representations, including Coulomb
matrices, bag of bonds, atomic radial distribution function
based features and histogram of distances and angles.19,32–34

Parkhill et al. developed a bond-centered neural network to
predict energies of molecules.35,36 Barros et al. developed Hier-
archically Interacting Particle Neural Network (HIP-NN) to
model molecular properties.37 Paton et al. calculated over
200 000 organic radical species containing C, H N and O
atoms.38

The accuracy of ML potentials are highly dependent upon
the choice of molecular representation used to train the
model.39 Behler introduced several features the representations
must follow in order for them to be useful in ML models.40,41

The representation must be rotationally and translationally
invariant, the results should be invariant upon permutation of
atoms of the same element and the molecule's conformation
must be described in a unique way given a set of atomic posi-
tions and types. Many representations have since been devel-
oped.27,32–37,39,42–44 However, the representations in the literature
are either not extrapolatable to molecules outside the training
set or only have been tested on a small set of ‘out-of-the-box’
molecules. Furthermore, many representations require
a substantial number of data points (well beyond 1 million
molecules) to train and therefore are computationally expen-
sive. Moreover, the published representations are also not
‘explainable’ in regard to what molecular features contribute to
the molecular energy or ignores contributions from features
such as angles and dihedrals completely.

Herein, we present a new molecular representation which is
explainable for molecular property predictions. Using our
feature set, we achieve state-of-the-art data efficiency in our test
set molecules and in larger molecules, featuring complex ring
systems, non-covalent intramolecular interactions and other
challenging features. In combination, our representation is able
to effectively extrapolate from 57 thousand training molecules
to a ve million molecule chemical space with remarkable
accuracy at a very small computational cost.

2 Computational methods
2.1 Database generation

The database is based on the previously reported GDB13,
GDB17 (ref. 22–24) and QM9 datasets.19 All molecules with 8 or
fewer heavy atoms were imported from QM9. Any molecules
with eight or fewer atoms in GDB13 and GDB17 but missing
from QM9 were then added to our database. For the newly
added molecules, 3D geometries were rst generated using
RDKit, and then optimized using Gaussian 16 at B3LYP/6-
31G(2df,p) level of theory. Geometries imported from QM9
© 2022 The Author(s). Published by the Royal Society of Chemistry
were resubmitted for geometry optimisation to both verify them
and make data extraction consistent for all molecules in the
dataset. For all converged geometries frequency calculations
were also performed. This expanded the raw number of 8 heavy
atom molecules from less than 22k in QM9 to more than 59k in
our dataset.

Generated datasets oen contain errors. Therefore, database
cleaning is essential part of machine learning studies.45 59 097
molecules were successfully optimised with Gaussian 16 (ref.
46) without fragmentation. We then removed the molecules
with imaginary frequencies (688 molecules), uorines (44
molecules), any bonds longer than 1.6 �A (313 molecules) and
tetravalent N atoms (charged N atoms, 11 molecules). We
removed molecules with four connectivity N atoms because we
wanted to exclude zwitterions from the database. Themolecules
with long bonds are unusual and highly strained. They are too
uncommon for the algorithms to successfully learn and some
example structures are listed in ESI, Section 1.3.† These inter-
esting structures will be added back in the future when addi-
tional training data are available. We further removed 75
molecules that have a 3-connectivity carbon and all three
neighbouring atoms are either hydrogens with 1 connectivity,
oxygens with 2 connectivity or nitrogens with 3 connectivity.
These molecules have carbon atoms that do not complete the
octet and few examples structures that are removed are listed in
ESI, Section 1.1.† The nal category for exclusion is molecules
with tetravalent carbon with large bond angles, ESI, Section
1.2.† Overall, around 1900 molecules were removed from the
database, and 57 143 molecules remain.
2.2 Molecular representations

The molecular representations have been generated from the
distributions of molecular features produced from the gener-
ated GDB8 database. Specically, the representation has six
contributing features: the atom types, the bond types, the angle
types, the dihedral types, the hydrogen bonding (H-bonding)
types and the number of NHx groups. We list the bonds, the
angles, the dihedrals and the atom types found in the four
example molecules from the database in Fig. 1. The atom types
are simply the number of C, H, N and O atoms, weighted by 100.
The number of NHx groups is the number of secondary (NH) or
primary (NH2) amine etc. found in the molecule.

For the bond types, the feature generation algorithm loops
through every single molecule in the database and extracts all
the bond lengths. All the bonds in the molecule have been
identied with Open Babel.47 The lengths are then categorised,
depending on the atoms forming the bond. For example, the
carbon–carbon bond lengths would be classied to the CC bond
type whereas the carbon–hydrogen bond would be classied to
the CH bond type. Histogram plots are then generated for each
bond types found in the database and the kernel density esti-
mation (KDE) from the SciPy library48 is then performed. Each
maximum in the KDE plot becomes a feature. All KDE maxima
are anked by two minima, one on the longer and one on the
shorter bond length side. The minima are used to assign each
bond to a particular feature. The representation is then created
Chem. Sci., 2022, 13, 7204–7214 | 7205



Fig. 1 List of bonds, angles, dihedrals and atom types the feature
generation algorithm has detected in few example organic molecules.

Fig. 2 Ethanol molecule representation example. C3 and C4 are
carbon atoms with 3 and 4 connectivity, respectively.

Fig. 3 KDE plots for CC bond, HCH angle, CCCC dihedral and OH/O
H-bonding distributions. Every maximum in the KDE plot becomes
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for molecules by counting the number of times a value match-
ing each maximum is observed in the molecule, Fig. 2. For
example, the ethanol molecule has one HO bond, ve HC bonds
and one CC bond. Therefore, the KDE maxima features corre-
sponding to the HO bond of length 0.96 �A and the CC bond of
length 1.52�A found in ethanol are set to 1 each and the feature
corresponding to the HC bonds of length around 1.09�A is set to
5, Fig. 2. All the other bond features in the feature vector are set
to 0. The algorithm ensures that the bond types are looped
through in the same order such that the features are always
concatenated consistently.

The feature generation algorithm works similarly for the
angle and the dihedral types. The angles and the dihedrals are
also categorised, depending on the atoms forming the angle or
7206 | Chem. Sci., 2022, 13, 7204–7214
the dihedral. The KDE plot maxima for each angle and dihedral
types become the features and the representation is generated
by counting the number of times each maximum is observed for
eachmolecule. For example, the ethanol molecule has ve CCH,
four HCH, two OCH, one COH and one CCO angles, Fig. 2.
Therefore, the features corresponding to these angle values are
set to 5, 4, 2, 1 and 1, respectively. The same procedure is then
repeated for all the dihedrals found in the ethanol molecule.

The molecules with OH or NH bonds can potentially form
intramolecular hydrogen bonds. Since the database only
contains C, H, N and O atom molecules, there are four possible
H-bonding interactions: OH–O, OH–N, NH–O and NH–N. The
feature generation algorithm identies all the H-bond donor
hydrogens (hydrogens in the molecule bonded to N or O) and
nds all the potential H-bond acceptors (N or O atoms). If the
donor–acceptor distance is between 1.3 and 2.6, then this is
considered to be the H-bonding interaction.49 The algorithm
collects all the H-bonding interactions in the database and
categorise them to the four possible H-bonding groups. Histo-
gram plots are then generated and the KDE maxima again
becomes H-bonding features, similar to the bond feature
generation methods. The H-bonding representation is then
created for all the molecules by counting the number of times
each H-bond maximum is observed in the molecule. In the
ethanol example, no intramolecular H-bonding is present, and
so all the H-bonding features are set to zero.

Whilst we engineer the method to think in terms of bonds,
angles and dihedrals, we do not hand-engineer the specic
features. The choice of the features is data driven (Fig. 3).
a feature in the molecular representation.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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3 Results and discussion
3.1 Trial A: selecting the optimal representation

Once the dataset was generated and cleaned, we explored the
distributions of the organic molecules within the GDB8 data-
base. Understanding the distribution of the dataset is impor-
tant because the training and the test set must be representative
of the intended usage. We decided to group the molecules by
stoichiometry because the number of each atom type the
molecule has is the single largest contributor to the molecular
electronic energy. 407 unique stoichiometries were found in the
present dataset, ESI Section 2.1.† The number of molecules in
each stoichiometry varies from 1 (e.g. N5H) to 2491 (C6NOH11).
We investigated the distributions of molecular energies within
each stoichiometry. In the majority of the cases, the maximum
minus the minimum energy ranges do not overlap, ESI Table
S2.† The electronic energy ranges do overlap in 34 stoichiome-
tries. However, the box-plot diagrams show the energy distri-
butions are different and they should not be grouped, ESI,
Fig. S5.†

The training and the test set must be representative of our
dataset. For example, if none of the 4 heavy atom molecules
have ended up in the test set, this is not a good training and test
set split. Therefore, the molecules are assigned to the training
and the test set by the following rules: (1) the algorithm loops
over the unique stoichiometry and the number of molecules
within each stoichiometry are extracted. (2) If the number of
molecules is one, then the molecule is neither assigned to the
training nor the test set. (3) If the number of molecules is two
then one randomly selected molecule is assigned to the training
set and the other molecule is assigned to the test set. (4) If the
number of molecules is three or more, the molecules are
assigned to training and the test set by setting test_size ¼ 0.33
in train_test_split function in the scikit-learn module. Overall,
33.3% of the molecules (slightly more than 33.0% as expected)
in the database are assigned to the test set.

We have tested a variety of different feature generation
methods (please see ESI, Section 2.2† for more details). The
performances of the different feature vectors are evaluated with
neural network machine learning models. All neural network
trainings are done with Keras50 and all the validations and the
predictions are done with scikit-learn51 Python modules. Tech-
nical details about how we have set up the NN for training is
described in detail in ESI, Section 2.1.† The full table of
different representations and learning rates tested are shown in
ESI, Table S3 and Fig. S8.†

The number of features is the sum of all KDE maxima for all
bond, angle, dihedral and H-bonding KDE plots, which is
determined by our choice of KDE widths. We have tested
different number of features by varying the KDE widths (ESI,
Table S8†). The best performing representation had 761
features. The representation which shows the best performance
is when the angle connectivity information is included for the
angle classications, but the types of carbon information is not
included for the dihedral classications, Fig. S8.† Furthermore,
the bond KDE bandwidths and the angle KDE bandwidths are
© 2022 The Author(s). Published by the Royal Society of Chemistry
set to 0.07. The best performing representation has the mean
absolute error of 1.80 kcal mol�1.
3.2 ML models and hyperparameter search

The chosen representation has then been systematically tested
with various other machine learning methods. We explored the
multivariable linear regression (MLR), the kernel ridge regres-
sion (KRR)52 and the random forest regression (RFR).53 We also
performed a further hyperparameter search for our present
neural network model.

The KRR based machine learning models predicts the
property of a molecule with representationM, by the sum of the
weighted kernel functions K(M, Mtrain

i ) between all the mole-
cules in the training set (Mtrain

i ) and M. Specically, the

observable O(M) is predicted by OðMÞ ¼ PN

i
aiKðM;Mtrain

i Þ,
where ai are the weights and N is the number of molecules in
the training set. The weights are found by minimising the
Euclidean distance between the predicted and the reference
molecules in the training set. We implemented the radial basis
function (RBF) kernels from scikit-learn. The molecules in the
database are randomly split into the training and the test set.
33% of the molecules are allocated to the test set. The RBF
kernels have two hyperparameters that must be optimised: the
variance (s) and the regularisation (a). We have tested a wide
range of s and a for our hyperparameter search, ESI Fig. S9.†

The top performing KRR model has MAE of 1.23 kcal mol�1.
Pople et al.54 have previously compared the accuracy of B3LYP
energies of small organic molecules to experimental atom-
isation energies. The average absolute deviation from the
experimental values is found be around 3.11 kcal mol�1. Lil-
ienfeld et al. reports similar results with average absolute
deviation of 2.5 kcal mol�1.19 Therefore, using our explainable
feature set and database size around �57k molecules, KRR
model achieve accurate results in the training set sized mole-
cules. Strong regularisation is not necessary as the best per-
forming model has a ¼ 1 � 10�11. This is a consistent nding
with Lilienfeld et al.19 Furthermore, very small kernel widths s¼
100 did not improve the model; the full hyperparameter search
table is provided in ESI, Table S4.†

Further hyperparameter searching is necessary for the NN
method to ensure the model from Section 2.1 is optimal. The
choice of the NN architecture can potentially inuence the
performance of the model. We therefore varied the number of
hidden layers and tested the model with 7 different learning
rates, ESI, Table S5.† We have also tested different optimisers
and regularisations, see ESI Section 2.3 (Table S6)† for full
details. The best performing NN has MAE of 1.80 kcal mol�1.
The predictive accuracy of the KRR method is superior to the
NN method, when modelling molecules of same size as in the
training set. This is a consistent with the results of Lilienfeld
et al.19

The MLR is a simple but a useful approach to verify the
robustness of our representation. We tted the linear model by
minimising the regularised ordinary least squares loss with
stochastic gradient descent from scikit-learn. The
Chem. Sci., 2022, 13, 7204–7214 | 7207
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regularisation factor is the hyperparameter that needs to be
optimised. The training and the test sets are constructed by
randomly allocating 33% of themolecules in the database to the
test set and the remaining molecules to the training set. The
hyperparameter search data is available in ESI, Table S7.† As
expected, the MLR model does not perform well at predicting
absolute electronic energies of these molecules with MAE of
25.73 kcal mol�1. Nevertheless, the results show our represen-
tation can predict the electronic energy to some degree even
with a very simple machine learning approach. Importantly,
this also allows evaluating each molecular feature's energetic
importance. This in turn allows understanding molecular
properties and reactivity of a very large variety of diverse
molecules.

RFR is an ensemble learning method where the outputs of
multiple decision trees are averaged to predict the observable.
The decision trees are tted on randomly sampled sets of
training molecules. 33% of the molecules are randomly selected
again and allocated to the test set and the remaining molecules
are allocated to the training set. The RFR hyperparameters
include the number of features to resample, the maximum
number of samples to train the trees, the number of trees and
the tree depth. We have implemented the RFR with the Python
scikit-learn module and initially explored the maximum
number of features and the maximum number of samples (ESI,
Table S8†). The model performs best when maximum number
of features is set to the number of features in the input node
and the maximum number of samples is 100%. Altering the
maximum tree depth and number of decision trees from the
best performing model does not signicantly affect the
outcome, ESI Table S9.† The MAE of the best performing model
is 42.77 kcal mol�1. Therefore, the RFR approach performs
poorly compared to the MLR, the KRR and the NN models. All
the different machine learning models we have tested, and their
performances are summarised in Fig. 4.
Fig. 4 Summary of ML models training.

7208 | Chem. Sci., 2022, 13, 7204–7214
3.3 Comparison with other features in the literature

We have compared the accuracy of our representation with
other representations in the literature, namely Coulomb matrix
(CM), Bag of Bonds (BOB) and Spectrum of London and Axilrod-
Teller-Muto (SLATM).4 These representation have been gener-
ated for all the molecules in our database using the QML Python
library.55 All three representations were subsequently trained
with NN and the technical details are outlined in ESI, Section
2.3, Tables S10–S13.† An informative method to compare the
performance of representations is to plot learning curves.4

Therefore, we have measured the prediction performance of
CM, BOB, SLATM, MolE8 representations as a function of
number of training points. We have generated four new training
databases containing 190, 570, 1900 and 5700 molecules
randomly selected from the �38 000 molecule training set. The
ML models trained from these datasets using the mentioned
representations have subsequently been used to predict the
electronic energy of the molecules in the original � 19 000 test
set, Fig. 5.

For the CM representation, the best performing model has
MAE of 17.01 kcal mol�1, which is almost order of magnitude
worse than the NN approach with our new representation. This
MAE is higher than the value reported in the literature by Lil-
ienfeld et al.19 However, the number of training molecules in
our database is signicantly smaller than the Lilienfeld's data-
set and therefore the algorithm has to make predictions by
exploring a smaller chemical space.

Across all training set sizes, the MolE8 KRR model has the
best performance. The MolE8 NN model has superior perfor-
mance to other representations when there are more than 570
molecules in the database. Furthermore, the MAE do not appear
to have converged for both MolE8 methods, meaning the MAE
can be lowered even further if they are trained on larger data-
bases. In contrast, BOB and CM representation error plots
© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 5 Performance of different representations as a function of
training set sizes.
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might be showing signs of attening out. This emphasises that
our developed features are much more data-efficient than the
previous approaches, as they are able to achieve superior
performance even at signicantly smaller dataset size.
3.4 Free energy predictions

All the results so far focused on the prediction of electronic
energy. We also explored the performance of the KRR and the
NN approaches on the free energy predictions. For the NN
model training, if the two molecules have the same free energy
values, only one of the two molecules was included for training.
This resulted in removal of further 286 molecules in the data-
base. The remaining database cleaning steps are the same as
the electronic energy prediction section. The atomisation free
energies at 298.15 K are extracted from the Gaussian 16
frequency calculations as the target output. The molecules are
allocated to the training and the test set using the stoichiometry
grouping described earlier. The distributions of bond lengths,
angles, dihedrals and H-bond lengths are plotted as before. The
bandwidths for the bond and angle plots are kept the same. The
KDE maxima are then used to generate the features. Since few
more molecules have been removed in the new database, the
number of automatically generated features from KDE is
different from the electronic energy prediction section. 781
features have been created from the KDE plots.

The NN architecture is identical to the electronic energy
prediction model with two hidden layers with weights and bias
initialised from the random uniform distributions, the mean
squared error loss function and the training batch size of 64.
The ReLU activation is used for the hidden layers and the linear
activation is used for the output layer. We tested the Adam, SGD
and RMSprop optimisers and four L2 regularisation factors
ranging from 0.05 to 0.20 as the hyperparameter search, ESI
Table S14.† The best performing model used the Adam opti-
miser and has L2 the regularisation factor of 0.15. The MAE of
the best performing model is 1.92 kcal mol�1, which is a similar
value to the electronic energy prediction NN. Importantly, the
MAE is still below the expected average deviation error of B3LYP
method from the experimental values.
© 2022 The Author(s). Published by the Royal Society of Chemistry
For the KRR training, the method is identical to the elec-
tronic energy prediction model. 33% of the molecules in the
database are randomly allocated to the test set and the
remaining molecules are allocated to the training set. Many
different variances and the regularisation values have been
tested as the hyperparameter search, ESI Table S15.† The MAE
of the best performing model is 1.18 kcal mol�1, a similar value
to the electronic energy prediction KRR model and superior
accuracy compared to the NN approach. Therefore, our repre-
sentation is able to predict the free energy of the organic
molecules in the database.

3.5 Comparison with semi-empirical methods

Semi-empirical quantum chemistry methods are classical
baselines that are still used today for quick and efficient
calculations. Therefore, we have compared the performance of
MolE8 to PM7 semi-empirical approach.56 Our algorithm loops
over all the structures in the database and if the molecular
formula is C6H9NO and is present in the test set, we generate
the input le for Gaussian 16 PM7 calculation. C6H9NO is a very
frequently occurring molecular formula in our database with
over 2300 molecules in total and around 780 molecules in the
test set. We have optimised the PM7 structures with Intel Xeon
Skylake 6142 processors, 2.6 GHz 32-cores in total. The total
calculation time was 5 hours.

We then compared the relative PM7 and MolE8 energies of
all the isomers of C6H9NO in the test set to the relative DFT
electronic energy. The PM7 method predicts the relative ener-
gies of the isomers with the MAE of 5.99 kcal mol�1. Using our
KRR and NN models, the relative energies of the isomers have
been predicted with the MAE of 1.69 kcal mol�1 and
3.36 kcal mol�1, respectively. The MolE8 calculations were
performed using 3.1 GHz Intel Core i7 4-cores in total. The total
calculation time was around 4 seconds. Therefore, MolE8
predicts the relative electronic energy of C6H9NO isomers with
3.5 times lower MAE with an efficient computation time.

3.6 Training with distorted molecules

The quick molecular energy prediction would have a wider
application if the molecule did not have to be optimised with
DFT methods in advance. We therefore explored the possibility
of our ML methods to make energy predictions on molecules
that are not precisely on the DFT minima, but close to it on the
potential energy surface. For every molecule in the database, we
replicate the structure and translate every atom by a constant
amount in randomly selected x-axis, y-axis or z-axis direction.
These structures are then added back to the original database.
The database will now contain the minima on the potential
energy surface but also the points nearby the minimum, Fig. 6.
The target outputs are the energies of the true DFT minimum
for both minimum and off-minimum structures. The identical
feature generation method is then used for ML training.

For NN models, we rst explored the effect of including
multiple distorted molecule replicates. Three new databases
have been created with one, two and three distorted molecule
replicates respectively. The degree of distortion is set to 0.01 �A.
Chem. Sci., 2022, 13, 7204–7214 | 7209



Fig. 6 Adding distorted molecule replicates to the database. The axis
are arbitrary.

Fig. 7 Distribution of errors in (a) KRR and (b) NN models when the
model trained with and without the distorted molecule replicates is
used to predict the test set energies containing distorted molecule
replicates (for both KRR and NNmodels, we have predicted the energy
of the one 0.01�A distorted molecule replicate database for this figure).
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The molecules in the database are then split into the training
and the test set. When the molecules in the new database are
allocated, we ensured that the molecules in the test set in Section
2.2 are also assigned to the present test set. Therefore, the new
test set contains the DFT optimised geometries and the distorted
geometries. Aer training the NN models, we concluded that
including the distorted molecule replicates improve the model
since the MAE decreased to 1.67 kcal mol�1 (ESI Section 2.6†).
However, including more distorted molecule replicates with the
same degree of distortion does not improve the model. We also
explored the databases with different combination of distorted
molecule replicates. Three new databases are created with two
distortedmolecule replicates where the degree of distortion is set
to [0.01 �A, 0.05 �A], [0.01 �A, 0.10 �A] and [0.05 �A, 0.10 �A]. Aer
training the NN models, we found that MAE increases as the
degree of distortion increases, ESI Section 2.6.† Therefore, [0.01
�A, 0.05 �A] is a compromise between low test set MAE of
1.70 kcal mol�1 (similar to the MAE when the database only
contained 0.01 �A distorted molecule replicates) and the size of
the basin from the potential energy surface minima. When the
best performing NN model trained without the distorted mole-
cule replicates is applied to the present test set with the distorted
molecule replicates, the MAE radically increases to
72.54 kcal mol�1, indicating that the original model is very
sensitive to moving away from the minima geometry. Therefore,
the NN trained with distorted molecule replicates is much more
robust and can now predict the electronic energy of the DFT PES
minima when the molecular structure is near the minima.

We also trained the databases with different combinations of
distorted molecule replicates with KRR methods. The MAE of
1.23 kcal mol�1, for one distorted molecule replicate with 0.01�A
distortion, is almost identical performance to the best perform-
ing KRR model from Section 2.2, Table S16.† When the best
performing KRR model trained without the distorted molecule
replicates is applied to the test set with the distorted molecule
replicates, the MAE increases slightly to 1.44 kcal mol�1. There-
fore, training with the distorted molecule replicates has
improved the ability of the KRR model to predict PES minima
energy when the structure is close to the minima, but not as
signicantly as the NN model. We have plotted the distribution
of the errors when the test set containing the distorted molecule
7210 | Chem. Sci., 2022, 13, 7204–7214
replicates are modelled with the NN and KRR methods trained
with and without the distorted molecule replicates. The distri-
bution of the errors for the NNmodel is very spread out when NN
is trained without the distorted molecule replicates, Fig. 7.
However, the inclusion of the distortedmolecule replicates in NN
training reduces the spread and hence the signicantly reduced
test MAE. The distribution of the errors for the KRR model
trained without the distorted molecule replicates is already very
centred around 0.0. Therefore, the reduction in MAE is signi-
cantly less than the NN model when the distorted molecule
replicates are included in the training.

To further test the applicability of the ML models trained on
distorted molecule replicates, we take the DFT optimised
molecules in the test set and re-optimise them using the MMFF
method from RDKit. Around 2000 molecules have been
removed because RDKit failed to generate the molecule object
from the DFT optimised structure. Further 646 molecules have
been removed because the InChI before theMMFF optimisation
does not match the InChI aer. The DFT energies of MMFF
optimised molecules are predicted well with one 0.01 �A dis-
torted molecule replicate trained KRR model with MAE of
2.50 kcal mol�1. The KRR models trained with two distorted
molecule replicates have superior performance when modelling
the MMFF optimised test set molecules but they require a large
amount of memory. We therefore recommend the one 0.01 �A
distorted molecule replicate trained KRR model for the routine
usage. This model does not use as much memory as two dis-
torted molecule replicates trained models but still has lower
MMFF MAE than the KRR model trained without it.

Moreover, the distortion needs to be sufficiently large such
that adequate region around the PES minima has been
sampled. In order to quantify how much the representations
change due to the distortions, we dene the distortion constant
as below:

C ¼

PN

j

Pn

i

�
�Xi

j �Di
j
�
�

N
(1)

where Xj is the features vector, Dj is the distorted features vector,
n is the number of features and N is the number of samples. For
the datasets with one distorted molecule replicates of 0.0005�A,
0.01�A, 0.05�A and 0.1�A, we have found the distortion constant
to be 3.49, 6.89, 23.72 and 36.23, respectively. We have then
© 2022 The Author(s). Published by the Royal Society of Chemistry
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applied the KRR model trained with one distorted molecule
replicate to predict DFT energy from the MMFF optimised test
set, ESI Table S18.† From the result, we conclude that C ¼ 6.89
is the best balance between the test set MAE and the MMFF test
set MAE.

When the NNs trained with distorted molecule replicates are
used to predict the MMFF optimised test set molecules, the best
performing models have similar MAEs to the KRR models with
2.46 kcal mol�1. Adding additional distorted molecule repli-
cates of 0.01 �A do not decrease the MAE signicantly. [0.01 �A,
0.05�A] distorted molecule replicate trained NN is again the best
compromise between the DFT test set MAE and the MMFF test
set MAE.

For free energy predictions, we have trained two KRRmodels
with one 0.01 �A and one 0.10 �A distorted molecule replicates,
respectively. The 0.01 �A distorted molecule replicate trained
model again has better compromise the test set
(1.23 kcal mol�1) andMMFF test set (2.38 kcal mol�1) MAEs. We
have also trained the NN model with two distorted molecule
replicates (0.01�A and 0.05�A) for the free energy prediction with
the test set MAE of 1.86 kcal mol�1 and MMFF test set MAE of
2.57 kcal mol�1. When the best performing NN trained without
the distorted molecule replicates is used to predict the free
energy for the test set containing the distorted molecule repli-
cates, the MAE increases to 73.78 kcal mol�1. When the KRR
trained without the distorted molecule replicates is used to
predict the free energy of the test set containing 0.01�A distorted
molecule replicates, the MAE increases to 1.34 kcal mol�1 from
1.23 kcal mol�1. The errors in predicted energies and free
energies of DFT and MMFF optimised structures using the
distorted molecule replicates trained models is summarised in
Fig. 8. KRR method shows narrower DFT errors but NN has
superior transferability when predicting MMFF structure ener-
gies. Overall, this 3D geometry data augmentation technique
has improved the performance and robustness of many ML
Fig. 8 Error distribution of different ML models trained with distorted
molecule replicates. ‘MMFF’ and ‘DFT’meansMMFF and DFT optimised
test set error distribution, respectively. (a) KRR trained model for
electronic energy, (b) KRR trainedmodel for free energy, (c) NN trained
model for electronic energy, (d) NN trained model for free energy.

© 2022 The Author(s). Published by the Royal Society of Chemistry
approaches we have investigated and could potentially be useful
in other contexts.
3.7 Extrapolation to molecules with 9 or more heavy atoms

To assess the transferability of MolE8.py, we constructed four
new test sets containing the molecules with number of heavy
atom counts between 9 and 12. For the 9-atom test set, around
�1k molecules are randomly selected from the list of SMILES
strings of GDB13 (ref. 23) database. The database clean-up
procedure described for 8 or fewer heavy atom molecules is
then applied to the 9-atom test database. 1115 test molecules
remained in the database aer the cleaning step. The random
selection and the clean-up steps are then repeated for 10, 11 and
12-atom test databases from 10, 11 and 12 heavy atom list of
strings in the GDB13, respectively. The nal 10-atom test set
contains 1107 molecules, the 11-atom test set has 1095 mole-
cules and the 12-atom test set has 1060 molecules.

The representation is then generated for all the molecules in
the 9, 10, 11 and 12 atom test databases. The trained KRR and
NNmodels (with and without the distorted molecule replicates)
for the 8 or fewer heavy atom database are then imported and
the energy and the free energy predictions are made on the new
test databases, Fig. 9. For 9 or fewer atom molecules the KRR
models have the lowest MAEs. The energies and the free ener-
gies are predicted with 2.06 kcal mol�1 and 1.89 kcal mol�1

MAEs, respectively for 9 atommolecules. The difference in MAE
between KRR trained with and without the distorted molecule
replicates is less than 0.15 kcal mol�1. For 10 or more heavy
atom molecules, the NN models have superior performance to
KRR. Furthermore, the MAE of the NN trained with the dis-
torted molecule replicates is always lower than the NN trained
without. Therefore, for 10 or more heavy atom molecules, we
recommend NN trained with the distorted molecule replicates
which has superior extrapolatability.

The poor performances of the KRR approaches for out-of-
sample molecules have been mentioned in the literature.39 The
observable is predicted from the weighted sum of the kernel
functions constructed from the molecules in the training set.
Therefore, the 10 or more heavy atom test set data points are very
far away from the training set data points and the weighted sum
becomes increasingly inaccurate. The NN approaches seemmore
compatible with ‘higher number of atoms’ extrapolation.27

Therefore, we recommend that the users of MolE8.py to select
Fig. 9 KRR and NN models trained with and without the distorted
molecule replicates have been used to predict energies of the mole-
cules in the 9–12 heavy atoms databases. The KRR model has superior
performance for 9 or fewer heavy atom molecules and the NN model
has superior performance for 10 or more heavy atom molecules.
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the KRR model for 9 or fewer heavy atom molecule and NN
model for 10 or more heavy atom molecule energy predictions.

Furthermore, we have listed the 9 and 10 heavy atom mole-
cules that have largest MAEs for KRR and NN predictions, ESI
Fig. S11 and S12.† Many molecules have ring systems that are
impossible for an 8 heavy atom molecule. For example, the 6–5
fused ring or 6-membered ring with 3 substituents are not
possible within 8 heavy atoms. Furthermore, molecules with
long conjugated systems also oen have large errors. Long
conjugated systems are expected to be a problem since
accounting for it requires global understanding of the molecule
whereas our present representation only considers the local
bonds, angles and dihedrals.
3.8 Comparison to other ML approaches in the literature

We have compared the performance of MolE8 to other open-
source ML approaches in the literature, namely PhysNet57 and
SchNet.58 SchNet is neural network potential constructed from
symmetrised gradient-domain machine learning to achieve ab
initio level molecular dynamics simulations. PhysNet is more
recent neural network potential designed on physical principles
inspired from SchNet. Both approaches have state-of-the art
accuracy for electronic energy prediction on the QM9 dataset
with the combined training and test sample size around 50 000.
PhysNet and SchNet achievesMAE of 0.30 and 0.49 kcal mol�1.57

However, the ML models have been trained on NVIDIA GeForce
GTX TITAN GPUs for 1–2 days to achieve these results and
therefore are not computationally cheap.

To compare the computational efficiency, we have trained
PhysNet and SchNet to the same training set we have used to
train MolE8. All three models have been trained at the same
computational level using Intel Xeon Skylake 6142 processors,
2.6 GHz 32-cores in total. The MolE8 KRR model only took 5
minutes train. However, the PhysNet and SchNet errors have
not converged aer 20 hours when trained without the GPUs.
Our NN method approach also has faster convergence to
PhysNet and SchNet. We have plotted the convergence of MAE
against the training time in ESI, Section 2.9.† Therefore, MolE8
approaches have state-of-the-art data efficiency for its accuracy.

Finally, we have compared the speed of our algorithm to
TorchANI program by Roitberg et al.28 The time taken by our
algorithm to calculate energies of the molecules in the 9–12
atoms database is up to 7 times faster than TorchANI program
and recorded 1000 energy calculations per second on a standard
8-core Intel i7 CPU, ESI Section 2.7.† This is expected since ANI-
1 is a more complete model of the potential energy surface,
while our model is designed for rapid estimation of energies at
optimum. We believe our algorithm will have potential appli-
cations where many DFT energy calculations are required, for
example, when rapid and accurate energy calculations are
needed from an ensemble of force-eld optimised molecules.
4 Conclusions

We present a new representation for organic molecules which
can be used to build machine learning models to predict the
7212 | Chem. Sci., 2022, 13, 7204–7214
ground state electronic energies and the free energies. All the
bond lengths, angles, dihedrals and H-bonding lengths of the
molecules in the database have been collected and the distribu-
tions these molecular properties are plotted. The maxima in the
distributions become the features. Our representation counts the
number of occurrences of these maxima along with the atom
types of the molecule in question. This representation has been
coupled with the kernel ridge regression, the neural network, the
multivariable linear regression and the random forest regression
machine learning models. The optimised kernel ridge regression
electronic energy prediction model has the best performance for
8 or fewer heavy atom organic molecules with the mean absolute
error of 1.23 kcal mol�1, followed by the neural network model
with the mean absolute error of 1.80 kcal mol�1. For the free
energy prediction machine learning methods, the kernel ridge
regression model and the neural network model have mean
absolute error of 1.18 and 1.92 kcal mol�1, respectively. We have
also trained neural network and kernel ridge regression models
with distorted molecule replicates to sample geometries near the
DFT potential energy surface minima. The distorted molecule
replicate trained kernel ridge regression and neural network
models can predict the DFT energies using the MMFF optimised
geometries for 8 or fewer heavy atom molecules with mean
absolute error of 2.50 and 2.46 kcal mol�1, respectively. We have
also shown that our methods are extrapolatable to molecules
with number of heavy atoms greater than 8. The performance of
the kernel ridge regression model is the best up to 9 heavy atom
molecules, but the neural network performs better for 10 ormore
heavy atommolecules. Furthermore, the neural networks trained
with the distorted molecule replicates always have superior
performance, thus demonstrating the benets of this data
augmentation. The algorithm is computationally very cheap and
can predict the energies for multiple molecules instantaneously.
Overall, our model combines state-of-the-art data efficiency and
extrapolatability with data-efficiency, explainability and ground-
breaking computational efficiency. For these reasons, we expect
this method to nd diverse applications in many areas.
Data availability

The latest version of MolE8.py script is available for download
from University of Cambridge Repository (https://doi.org/
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