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Mapping extraction is useful in medical image analysis. Similarity coefficient mapping (SCM) replaced signal response to time
course in tissue similarity mapping with signal response to TE changes in multiecho T2-star weighted magnetic resonance imaging
without contrast agent. Since different tissues are with different sensitivities to reference signals, a new algorithm is proposed by
adding a sensitivity index to SCM. It generates two mappings. One measures relative signal strength (SSM) and the other depicts
fluctuation magnitude (FMM). Meanwhile, the new method is adaptive to generate a proper reference signal by maximizing the
sum of contrast index (CI) from SSM and FMM without manual delineation. Based on four groups of images from multiecho
T2-star weighted magnetic resonance imaging, the capacity of SSM and FMM in enhancing image contrast and morphological
evaluation is validated. Average contrast improvement index (CII) of SSM is 1.57, 1.38, 1.34, and 1.41. Average CII of FMM is 2.42,
2.30, 2.24, and 2.35. Visual analysis of regions of interest demonstrates that SSM and FMM show better morphological structures
than original images, T2-star mapping and SCM. These extracted mappings can be further applied in information fusion, signal
investigation, and tissue segmentation.

1. Introduction

As a routine examination technique, magnetic resonance
imaging (MRI) has been extensively used in clinical diagno-
sis. Pixel intensities on conventional MR images are depen-
dent on a complex mix of proton density (PD), longitudinal
relaxation time (T1), and transverse relaxation time (T2) or
T2-star relaxation time based on the initial scan setting [1–
3]. Many types of MRI have been invented to reflect physical
and physiological properties, such as T2-star weighted MRI
and susceptibility weighted imaging (SWI) [4, 5]. Among
these techniques, T2-star weightedMRI has beenwidely used
to reveal functional and morphological characteristics by
taking advantage of differences in tissue properties [6–10].
As an essential modality, T2-star weighted MRI is capable
of producing a large number of medical images by selecting
optimal cross section and imaging parameters for specific

emphasis. How to dig out valuable messages from a series of
MR images is an important project for various applications.

Quantitative MRI (Q-MRI) is one way to extract tissue-
intrinsic information from a series of MR images [6–18].
Conventional MRI focuses on qualitative visual assessment
of anatomy and disease. It interprets anatomic changes when
there is visibly detectable difference in signal intensities, while
improper imaging and timings may dramatically distort
image quality and mislead the diagnosis. In contrast, Q-
MRI seeks to quantify fundamental biologic messages and
MR-inducible tissue properties. Quantitative measurements
are theoretically independent of experimental settings and
absolute and comparable regardless of scanners, institutions
and time points. Q-MRI provides information that is intrinsi-
cally more tissue specific and is consequently less dependent
on subjective visual assessment. It becomes mainstream in
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current clinical practice but has not yet been in routine use
in diagnosis.

Similarity mapping (SM) is another way to extract tis-
sues with similar behavior from a series of medical images
with injected contrast agent [19–22]. Similarity values based
on dynamic images are determined by measuring signal
correlations of the temporal behaviors between different
pixels and a selected region of interest (ROI). Reference
[19] adopted normalized cross-correlation to calculate signal
similarity, and [20] used an autoregressive moving average
model. Reference [21] extended these SM techniques to study
oncological dynamic positron emission tomography (PET)
images and disproved the effectiveness of cross-correlation
and normalized cross-correlation in PET studies. Reference
[22] proposed tissue similarity mapping (TSM) based on
mean square error (MSE) between a reference ROI and all
other pixels over measurements. TSM is able to estimate the
relative cerebral blood volume map dependent only on the
signal intensity time course and uncover potential existence
of multiple sclerosis. Although contrast agents are commonly
used drugs, there are still many open and serious questions
regarding toxicity and hypersensitivity [23, 24].

SCM is proposed [25] by replacing signal response to
time course in TSM with signal response to TE changes
in multiecho T2-star weighted MR without contrast agent.
SCM is able to improve image quality and morphological
evaluation. Since different tissues are with different sensitiv-
ities to reference signals, an improved algorithm is proposed
by adding signal sensitivity into the theory of SCM and
obtains twomappings. To exclude uncertainties frommanual
delineation, noise, artifacts, and partial volume effects, the
new method is adaptive to generate an optimal reference
signal by maximizing the sum of CI from SSM and FMM.

2. Method

2.1. Modified Similarity Coefficient Mapping. Signal intensi-
ties on MR images are dependent on a complex mix of PD,
T1, and T2-star based on initial parameter settings. As to
multiecho T2-star weighted MR imaging sequence, signal
intensities versus TE values are expressed as 𝐼

𝑖
= 𝑊 ×

exp(−TE/𝑇∗
2
), where𝑊 reflects a mix of PD, T1, and the gain

of system. Here we assume that a series of MR images are
acquired from n-echo T2-star weighted MRI sequence, and
let 𝐼 = {𝐼

1
, 𝐼
2
, . . . , 𝐼

𝑛
} be spatially registered with ascending

TE values. For any pixel (𝑖, 𝑗), there is a row vector of pixel
intensities 𝑉

𝑖𝑗
= {𝑉
𝑖𝑗1
, 𝑉
𝑖𝑗2
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}. Then manually delineate

a ROI and average these pixel intensities in it as a reference
signal 𝑅 = {𝑅

1
, 𝑅
2
, . . . , 𝑅

𝑛
}. Pixel intensity of (𝑖, 𝑗) on TSM

[22] is generated by a MSE between 𝑉
𝑖𝑗
and 𝑅. When calcu-

lating relative cerebral blood volume map, TSM introduces
a local blood volume 𝜆. SCM interpreted 𝜆 as a similarity
index. It is known that rough measurement of relative signal
strength may omit to investigate signal differences to TE
changes, so we added a fluctuation index 𝜉 into MSE, and we
have MSE

𝑖𝑗
= (1/𝑛)∑
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𝑖𝑗
, let the partial derivative of the first order

with respect to 𝜆 and 𝜉 be equal to 0. Optimal 𝜆 and 𝜉 are

calculated in (1). All 𝜆
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𝑖𝑗
make up the two mappings,

SSM and FMM
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Operator “ ” denotes the calculation of average value.
It is clear that the meaning behind our algorithm is a linear
fitting problem from (1). Pixel intensities on SSM may range
from 0 to +∞. Maximum value in SSM depends on the
intensity level of signal from image series and the reference.
If one signal is similar to the reference, its value on SSM will
be around +1, and its value on FMM is close to 0.That means
that our method is more stable than SCMwith consideration
of fluctuations in signal comparison.

2.2. Contrast Measurement Index. How to measure image
contrast is often difficult, especially when these pixel inten-
sities between images and mappings show different mean-
ings. Contrast is usually defined as the difference in mean
luminance between an object and its surroundings [26, 27].
Commonly used CI is a nonreference index which is the
average value of the local contrast in image region. The local
contrast in each region is measured in a local window

CI =
𝑚
𝑓
− 𝑚
𝑏

𝑚
𝑓
+ 𝑚
𝑏

. (2)

In (2),𝑚
𝑓
is the mean luminance value of the foreground

and𝑚
𝑏
is equal to the mean luminance value of background.

In our experiments, the size of local window is 7×7. Based on
CI values, we adopt a quantitative measurement of contrast
improvement index (CII) [27] and CII = CImap/CIori. Here,
CImap denotes CI value of themapping andCIori is CI value of
an original image. CII demonstrates improvement of image
contrast in derived mappings compared to these original
images.

2.3. Optimal Reference Signal Determination. The reference
signal 𝑅 is critical in real applications, while manual delin-
eation may introduce errors and uncertainties. In addition,
partial volume effects, artifacts, and noise are inevitable
in MR images. Here we choose to automatically generate
reference signal 𝑅 with optimal weight 𝑊 and T2-star by
maximizing the sum of CI values from SSM and FMM.

Taking one series of MR images, for instance, Figure 1(a)
showsCI valuewith𝑊 varying from 1% to 100%ofmaximum
intensity in original images and T2-star is set as equal to
32ms. The CI values of SCM, SSM and FMM have no
variations with respect to the𝑊 value of reference signal. It
is easy to understand that changes of𝑊 have only influence
on the scale of similarity strength.With T2-star varying from
1ms to 120ms, value changes of CI are shown in Figure 1(b).
It is found that the sum of CI from SSM and FMM gets
the highest value when T2-star is about 48ms. In in vivo
cases, 𝑊 of reference signal is also set as 80% of maximum
intensity, and optimal T2-star is automatically determined by
maximizing sum of CI from SSM and FMM.
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Figure 1: Optimal parameters determination of reference signal.

2.4. Materials. The optimal number of echoes is determined
as 12 and its effect in image quality has beendiscussed [25]. All
MR imaging was done on a 3 Tesla Scanner system (Siemens)
with GRE sequence (FA: 15 degree; FOV: 220mm × 220mm;
acquisition matrix: 384 × 384; slice thickness: 3.0mm; TR:
200ms). TE values in our experiment range from 2.61ms
to 38.91ms with an equal interval of 3.3ms. Each of these
four normal healthy volunteers (aged 22, 23, 25, and 29) is
scanned four cross sections with slice gap of 0.9mm parallel
to each other for validating image quality. Totally 16 series
of MR images are acquired. With optimization procedure,
the optimal T2-star values of the 1st volunteer are 54ms,
56ms, 55ms, and 52ms; of the 2nd volunteer are 46ms,
47ms, 47ms, and 45ms; of the 3rd volunteer are 46ms,
47ms, 47ms, and 46ms; and of the 4th volunteer are 49ms,
48ms, 48ms, and 46ms. SCM, SSM and FMM are generated
corresponding to those optimal parameters for generating
reference signals.

3. Results

3.1. Objective Metrics. With optimal reference signal, CI
values of original images, TSM, SSM, and FMM are demon-
strated in Figure 2. Each subfigure showsmean value for these
four group images. Mean values of CI for original images are
stable and increase with ascending TE values. CI values of
TSM indexed by 13th drop and CI values of SSM indexed
by 14th and FMM indexed by 15th are obviously enhanced
to more than 0.50 and 0.85, respectively. Four datasets show
similar trend in CI value changes. When TE is 38.91ms, CI
value of original images from (b), (c), and (d) is up to 0.45,
and CI value of (a) is slightly higher than 0.4. CI values from
SCM drop lower than 0.3, those from SSM increase to be
upper than 0.5, and those from FMM highly are improved

to around 0.85. All mean values of CI are consistent with
very low standard deviation which indicates robustness of
acquired data and algorithm.

Quantitative improvement of CI is shown with CII in
Figure 3 by comparison with each original image. CII values
for SCM, SSM, and FMM are marked with different colors
(blue, green, and red, resp.). SCM scores lower than original
images. SSM values are higher than original images with
average improvement ratio around 57.10% (a), 38.10% (b),
33.92% (c), and 41.22% (d). CII values of FMM are dramat-
ically improved to 241.77% (a), 229.92% (b), 224.34% (c), and
234.86% (d).

3.2. Visual Analysis. SSM measures relative signal strength
and FMMpresents signal fluctuationmagnitude with respect
to the reference signal. Figures 4 and 5 demonstrate fine
structures in original images, T2-star mapping, SCM, SSM
and FMM. Three ROIs are in red, green and blue squares.
Subfigure (a) shows FMM, and subfigure (b) to (d) show these
three ROIs of 12 original images and these 4 mappings.

In Figures 4 and 5, the arrow-directed area becomesmore
and more obvious in original images when TE increases. T2-
star mapping magnifies noise effect and introduces outliers
and image contrast is suppressed. SCM is smoothed with
restricted noise level and image contrast is consequently
decreased. In SSM and FMM, veins are distinguished from
soft tissues with clear border. In Figure 4(d), pixel values in
veins in SSM are higher than those in surrounding soft tissues
which are useful for morphological evaluation, while pixel
values in FMM are darker which show lower sensitivity to
the reference signal. Whether higher or lower than tissues
around, veins in SSMand FMMget better tissue contrast than
viens in original images, T2-star mapping, and SCM.
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Figure 2: Mean values of CI for these four volunteers. There are original images (1–12), SCM (13), SSM (14), and FMM (15).
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Figure 3: Mean values of CII for these four volunteers. There are CII values by comparing CIs from SCM, SSM and FMM to CIs from these
12 original images.
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(a) (b)
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Figure 4: Visual analyses of original images and mappings from the 1st volunteer. (a) It shows three ROIs with different colors. ((b)–(d))
They demonstrate the same ROI from these 12 original images, SCM, SMM, and FMM one by one, respectively.

4. Discussion and Conclusion

Mapping extraction plays an important role inmedical analy-
sis and clinical diagnosis. Q-MRI exploits imaging sequences
to extract distribution mappings for absolute biophysical
parameters on a pixel-by-pixel basis. TSM in dynamic MRI
with contrast agent calculates MSE between any signal
temporal responses and a reference ROI temporal response.
SCM replaces the signal response to time course in TSM
with imaging parameter TE changes in multiecho T2-star
weighted MRI without contrast agent involved. Since differ-
ent tissues are with different sensitivities to reference signals
and imaging parameter changes, an improved algorithm is
proposed by adding a signal fluctuation index into the theory

of SCM and obtains twomappings. Meanwhile, the proposed
algorithm is adaptive to generate optimal reference signal by
maximizing the sum of contrast indexes from SSM and FMM
without manual interaction, since manual delineation of ROI
may result in errors and uncertainties.

Image contrast is evaluated from CI and CII. Higher
contrast of ROI is useful in distinguishing our focus from
its surroundings; even the ROIs are with minor structures,
such as veins. From objective analysis, under the same
imaging parameters, original images get better contrast at
38.91ms. SSM and FMM get higher contrast improvement.
The enhancement ratio of SSM is 57.10%, 51.39%, 33.92%,
and 41.22%, and the enhancement ratio of FMM is 141.77%,
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Figure 5: Visual analyses of original images and mappings from the 2nd volunteer. (a) It shows three ROIs with different colors. ((b)–(d))
They demonstrate the same ROI from these 12 original images, SCM, SMM and FMM one by one, respectively.

129.92%, 124.34%, and 134.86%. Visual analysis validates the
contrast improvement. In both Figures 4 and 5, contrast of
ROIs becomes more and more obvious in original images
when TE increases. T2-star mapping reduces image quality
for magnification of noisy outliers. SCM softens the minor
textures with suppressed noise level. SSM and FMM better
distinguish soft tissues from surrounding tissues than these
original images, T2-star mapping, and SCM.

CI is adopted in this paper to evaluate image quality
and search for proper reference signal. That is because CI is
a commonly used nonreference metrics, particularly when
derived mappings illustrate different meanings and different
pixel intensity ranges from conventional medical images.
In these clinical cases, SSM and FMM have demonstrated
better performance than T2-star mapping and SCM in
enhancing image contrast from quantitative evaluation and

visual analysis. Using similarity mapping techniques, image
quality is improved with suppressed noise. Partial volume
effect, intensity inhomogeneity and artifacts are prevalent
problems in MR images, but our method is not proper to
deal with these problems. Meanwhile, by experiments, we
found there was no need to denoise original images, and
also there was no need to correct bias field. In addition, our
method can be straightly applied to other MRI sequences
with one imaging parameter change, such as T1 weighted
and T2 weighted MRI, or extended to other temporal image
sequences acquired from functional MRI, CT, and PET.

In vivo experiments validate the capacity of SSM and
FMM from the proposed algorithm in enhancing image
contrast andmorphological evaluation.These extractedmap-
pings can be further applied in information fusion, signal
investigation, tissue segmentation, and medical analysis.
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