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a b s t r a c t

The post-synaptic translation of localised mRNAs has been postulated to underlie several forms of
plasticity at vertebrate synapses, but the mechanisms that target mRNAs to these postsynaptic sites are
not well understood. Here we show that the evolutionary conserved dsRNA binding protein, Staufen,
localises to the postsynaptic side of the Drosophila neuromuscular junction (NMJ), where it is required
for the localisation of coracle mRNA and protein. Staufen plays a well-characterised role in the
localisation of oskarmRNA to the oocyte posterior, where Staufen dsRNA-binding domain 5 is specifically
required for its translation. Removal of Staufen dsRNA-binding domain 5, disrupts the postsynaptic
accumulation of Coracle protein without affecting the localisation of cora mRNA, suggesting that Staufen
similarly regulates Coracle translation. Tropomyosin II, which functions with Staufen in oskar mRNA
localisation, is also required for coracle mRNA localisation, suggesting that similar mechanisms target
mRNAs to the NMJ and the oocyte posterior. Coracle, the orthologue of vertebrate band 4.1, functions in
the anchoring of the glutamate receptor IIA subunit (GluRIIA) at the synapse. Consistent with this,
staufen mutant larvae show reduced accumulation of GluRIIA at synapses. The NMJs of staufen mutant
larvae have also a reduced number of synaptic boutons. Altogether, this suggests that this novel Staufen-
dependent mRNA localisation and local translation pathway may play a role in the developmentally
regulated growth of the NMJ.
& 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

Introduction

mRNA localisation is a widespread mechanism for targeting
proteins to a specific region within a cell, and can be coupled to
translational regulation to allow the local control of gene expression
(St Johnston, 2005; Holt and Bullock, 2009). This mechanism has
been proposed to play an important role in the nervous system,
where the translation of dendritically localised mRNAs near
synapses is thought to contribute to activity-dependent synaptic
remodelling during long-term potentiation or depression. It has
been known for many years that polyribosomes are present in
dendrites in the vicinity of synapses. In addition, more than 20
mRNAs have been found to be dendritically localised, most of which
encode proteins that regulate synaptic structure or function, con-
sistent with the idea that their local translation modifies synaptic
strength (Sutton and Schuman, 2006; Zukin et al., 2009; Doyle and
Kiebler, 2011; Kindler and Kreienkamp, 2012). This has been most
clearly demonstrated in the case of CaMKIIα, where a mutant RNA
lacking dendritic targeting signals leads to a reduction of protein

levels in distal dendrites and impaired long term potentiation and
memory (Miller et al., 2002).

Little is known about the mechanisms that direct the post-
synaptic localisation of mRNAs in neurons, but live imaging of
CaMKIIα and Arc mRNAs has revealed that they undergo rapid
bidirectional movements suggestive of motor-dependent transport
along microtubules (Rook et al., 2000; Dynes and Steward, 2007).
In support of this view, a number of dendritic mRNAs are found in
RNP particles that co-purify with the plus end-directed micro-
tubule motor protein, Kif5 (Kanai et al., 2004). mRNAs are usually
targeted to dendrites by localisation elements in their 30UTRs,
which must be recognised by RNA binding proteins (RBPs) that
link them to the transport machinery and regulate translation
(Kindler and Kreienkamp, 2012).

Amongst the proteins that are suspected to play a direct role in
dendritic mRNA transport are the vertebrate Staufen proteins, which
contain multiple copies of a conserved dsRNA-binding domain
(dsRBD) (St Johnston et al., 1992; Kiebler et al., 1999; Marion et al.,
1999; Wickham et al., 1999). In cultured neurons, Staufen forms
ribonucleoprotein particles that are transported along microtubules
into dendrites, whereas dominant negative versions of the protein
remain in the soma and reduce levels of RNA and ribosomes in
dendrites (Kiebler et al., 1999; Köhrmann et al., 1999; Tang et al., 2001;
Kim and Kim, 2006). Moreover, many dendritically-localised mRNAs
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co-immunoprecipitate with embryonic rat brain Staufen (Heraud-
Farlow et al., 2013). Suppressing the expression of either of the two
rodent Staufen orthologues affects the morphology of dendritic spines,
which are abnormally shaped and immature (Goetze et al., 2006;
Vessey et al., 2008). Although stau 1 mutant mice show no obvious
behavioural deficits, RNAi-mediated knock down of Stau1 function in
hippocampal slices impairs long term potentiation, whereas knock-
down of the second Stau gene disrupts long term depression (Lebeau
et al., 2008, 2011; Vessey et al., 2008)

Most of our understanding of the role of Staufen in mRNA
localisation comes from Drosophila, where it participates three
distinct mRNA localisation pathways. First, Staufen forms a com-
plex with oskar mRNA and is essential for the kinesin-dependent
transport of the mRNA to the posterior of the oocyte and for its
local translation at the posterior cortex (Ephrussi et al., 1991; Kim-
Ha et al., 1991, 1995). Mutants that disrupt Staufen RNA-binding
strongly reduce the localisation of oskar mRNA, whereas deletion
of the fifth dsRBD, which has the conserved structure of the dsRBD
but does not bind dsRNA, prevents the translation of oskar mRNA
once it has localised (Rongo et al., 1995; Micklem et al., 2000).
Second, Staufen is recruited to the bicoid 30UTR by the ESCRT-II
complex, and is required for the anchoring of the mRNA at the
anterior of the oocyte during late oogenesis (St Johnston et al.,
1989; Ferrandon et al., 1994; Weil et al., 2006; Irion and St
Johnston, 2007). In addition to its role localising bicoid and oskar
at opposite poles, Staufen is also required for the actin-dependent
localisation of prospero mRNA to the basal side of asymmetrically
dividing neuroblasts (Li et al., 1997; Broadus et al., 1998). This
depends on the binding of the fifth dsRBD of Staufen to Miranda,
which targets prospero RNA/Staufen complexes to the basal cortex
(Fuerstenberg et al., 1998; Matsuzaki et al., 1998; Schuldt et al.,
1998; Shen et al., 1998).

Given its well-characterised role in mRNA localisation, we set
out to investigate whether Drosophila Staufen plays a role in the
targeting of mRNAs to synapses using the neuromuscular junction
(NMJ) as a model. Although the post-synaptic cell is a muscle, the
NMJ has the advantage of being a well-characterised glutamatergic
synapse that displays developmental and activity-dependent
synaptic plasticity, and shares some aspects of its cell biology
and physiology with vertebrate central nervous system excitatory
synapses (Schuster, 2006).

Results

Staufen is localised to the postsynaptic compartment of the NMJ

In the third instar larva, each muscle is a single multinucleated
cell that is simultaneously innervated by up to four motorneurons
that form synapses en passant after defasciculating from the motor
nerve. The NMJ is considered to be the assembly of regularly
spaced swellings called boutons that are formed by the axons.
Each presynaptic bouton contains in average 20–40 active zones
where synaptic vesicles are docked, which are faced by a post-
synaptic differentiation (PSD) where neurotransmitter receptors
cluster forming junctional excitatory synapses (Budnik, 1996;
Schuster, 2006; Thomas and Sigrist, 2012). In double immuno-
fluorescent stainings in third instar larva fillets, an antibody
against Staufen labelled the periphery of type I boutons, outside
the staining for Discs Large (Dlg), a MAGUK protein belonging to
the PSD-95, Sap90/97 family that decorates the subsynaptic
reticulum (Lahey et al., 1994; Guan et al., 1996) (SSR, Fig. 1A).
The Staufen staining was specific, as it was absent from the NMJs
of staufen null mutant larvae (Fig. 1B). We also performed pre-
embedding immune-EM using HRP-conjugated anti-Staufen anti-
bodies and diaminobenzidine (DAB) staining, which precipitates

on membranes when oxidised. The electron-dense DAB signal was
found around the invaginations of the muscle membrane that
form the SSR beneath glutamatergic type I boutons, whereas no
signal could be detected in the presynaptic element (Fig. 1C and
D). Staufen therefore localises on the postsynaptic side of all type I
boutons in third instar larval NMJs.

Staufen mutants have a reduced number of boutons

During larval development, the muscle size increases. In order
to maintain efficient innervation, the NMJ expands accordingly
and more boutons are added (Budnik, 1996). The NMJs of Staufen
mutant larvae appear less developed than their wild type counter-
parts, and we therefore quantified the number of boutons per NMJ
in different staufen allelic combinations. The staufenr9 allele and a
deficiency (Df) have molecular lesions that entirely abolish staufen
expression, whereas staufenHL produces a truncated form of
Staufen missing the fifth double-stranded RNA binding domain
(see Section 4). In wild type larvae, the NMJ established between
muscles 6/7 had as an average of 15 type Ib boutons (Fig. 1E; wt:
15.2570.90, n¼28). In staufen mutant larvae, there was almost a
50% reduction in the number of boutons (Fig. 1E; HL/Df:
8.1670.79, n¼29; r9/Df:, 8.9370.61, n¼29). Mutants that fail to
incorporate new boutons during the development have deformed
NMJs with poorly defined boutons, as if they have been mechani-
cally stretched (Zito et al., 1999). The NMJs in staufen mutants have
poorly defined boutons of this type with long linear stretches,
indicating that Staufen is involved in the process that increases
bouton number during the development of the NMJ.

Staufen regulates GluRIIA and GluRIIB levels at the NMJ

The NMJ contains two types of GluRs similar in sequence to
vertebrate AMPA and Kainate receptors, GluRIIA and GluRIIB, each
of which is a hetero-tetramer of three common subunits, GluRIIC,
IID, IIE, and either a GluRIIA or a GluRIIB subunit (Schuster et al.,
1991; Chang et al., 1994; Petersen et al., 1997; Marrus and
Diantonio, 2004; Featherstone et al., 2005; Qin et al., 2005).
It has been reported that in some cases, altered levels of GluRIIA
can be related to a reduction in the number of synaptic boutons
(Sigrist et al., 2000, 2002, 2003). We therefore investigated by
immunocytochemistry whether GluR abundance at the NMJ was
affected. A polyclonal antibody directed against the N-terminal
region of GluRIIA detected discreet clusters on the postsynaptic
side of the NMJ (Saitoe et al., 1997) (Fig. 2A). The antibody, as
described previously, was specific for the GluRIIA subunit since no
synaptic clusters could be detected in glurIIa null mutants (Fig. 2B).
The intensity of the synaptic GluRIIA signal was greatly reduced in
staufenr9/Df and staufenHL/Df larvae (Fig. 2C–E).

In wild type NMJs, the GluRIIA and GluRIIB subunits compete
for their association with the GluRIIC subunit and for their
subsequent incorporation into the NMJ, and mutants lacking either
GluRIIA or GluRIIB are therefore viable, whereas simultaneous
deletion of both genes results in lethality (Petersen et al., 1997;
DiAntonio et al., 1999). In contrast, elimination of either GluRIIC, D
or E subunits leads to embryonic lethality (Marrus et al., 2004;
Featherstone et al., 2005; Qin et al., 2005). Since staufen mutant
larvae are viable and motile, GluRIIB presumably compensates for
the reduction in GluRIIA by associating with the structural sub-
units (GluRIIC,D or IIE). Indeed, staufen mutants showed normal
levels of GluRIIC (Fig. 2F and G). GluRIIB synaptic clusters were not
affected in staufen mutants (Fig. 2H and I). This suggests that, as
described before, GluRIIB clusters could have compensated for the
reduction in GluRIIA. Our immunostainings indeed suggest that
GluRIIB levels are increased. Thus, Staufen modulates the relative
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abundance of the two GluRs at the NMJ, raising the question of the
mechanisms that underlie this regulation.

Staufen does not regulate the translation of GluRIIA mRNA

Since the only conserved domains of Staufen are dsRNA-
binding domains and all of its known functions in Drosophila
involve mRNA localisation and/or local translation, it presumably
controls glutamate receptor levels at the NMJ by regulating an
mRNA (Micklem et al., 2000). A strong candidate for a target of

Staufen in the muscle is gluRIIA mRNA, since this transcript has
been reported to localise to the subsynaptic compartment of the
NMJ, where it has been proposed to be translated in response to
activity (Sigrist et al., 2000, 2002, 2003). We therefore performed
in situ hybridisations (ISH) for gluRIIA mRNA using the previously
published probes and methods, but did not observe any specific
enrichment at the NMJ. Indeed, we used an alkaline phosphatase
based ISH method using a fluorescent substrate and detected
GluRIIA mRNA as speckles distributed within the cytoplasm of
larval muscles (Fig. 3A). This signal was absent in gluRIIA mRNA

Fig. 1. Loss of postsynaptic Staufen reduces bouton numbers. (A and B) Confocal images of boutons labelled for DLG (red) and Staufen (green). Staufen localises around the
DLG-positive boutons on the postsynaptic side of the NMJ of a wild type (wt) muscle (muscle 4), but is absent in a null mutant (staur9/Df), here an example of the NMJ
between muscles 6/7. (C and D) Electron micrograph of a longitudinal section through part of the NMJ of a wild type muscle 6. (C) The DAB precipitate associated with
Staufen immunoreactivity is restricted to the sub-synaptic reticulum (SSR) surrounding a synaptic bouton (b). (D) Enlargement of a region of (C) showing the strong Staufen
signal around the SSR, but not in the presynaptic bouton (b). Note the presence of a mitochondria (m) and the abundance of round, clear synaptic vesicles within boutons.
(E) Quantification of Ib bouton number in the NMJs between muscles 6/7 in wild type, stauHL/Df and staur9/Df (n indicates po0.0001). Scale bar (A: 7 mm; B: 25 mm;
C: 0.7 mm; D: 0.4 mm).
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null mutants, confirming its specificity (Fig. 3B). In order to test
our ISH method, we also performed an ISH against CG3570 mRNA,
which shows a perinuclear localisation in the ovary, and observed
a similar perinuclear localisation in the muscle syncytium, con-
firming the reliability of this technique (Fig. 3C). Thus, gluRIIA
mRNA does not localise to the NMJ and is found instead in
cytoplasmic puncta in agreement with other reports (Currie
et al., 1995; Karr et al., 2009; Ganesan et al., 2011). GluRIIA is a
transmembrane protein and must be synthesised in the endoplas-
mic reticulum (ER) before oligomerising with the other subunits
during its journey along the secretory pathway through the Golgi
apparatus to the plasma membrane (Barry and Ziff, 2002). The ER
is mainly localised around the nuclei of the muscle and is not
detectable in the vicinity of the NMJ, whereas the dispersed Golgi
ministacks are uniformly distributed in the cytoplasm (Figure
S1A–D). The absence of the secretory apparatus around the NMJ
makes it unlikely that secreted proteins such as GluRIIA could be
locally translated and secreted at the synapse (Gardiol et al., 1999;
Hanus and Ehlers, 2008).

Since GluRIIA protein staining is strongly reduced in staufen
mutant NMJs, we next examined whether Staufen plays a role in
GluRIIA translation. Western blots onwild type and staufenmutant
fillets using the polyclonal GluRIIA antibody revealed that GluRIIA
protein levels in staufen mutants are similar to those in wild type
(Fig. 3D). Thus, Staufen does not appear to regulate the localisation

or translation of gluRIIA mRNA or the stability of GluRIIA protein.
The reduction in junctional GluRIIA clusters in staufen mutants
must therefore be due to a defect in the trafficking or anchoring of
the receptor.

Staufen regulates the synaptic localisation of Coracle

Since Staufen does not appear to play a direct role in GluRIIA
localisation, we examined whether staufen mutants affect any
molecules known to play a role in the clustering of GluRIIA at the
NMJ (Parnas et al., 2001; Albin and Davis, 2004; Menon et al.,
2004; Chen et al., 2005; Pielage et al., 2006). However, Pak,
Pumilio and Spectrin levels at the NMJ are unchanged in staufen
mutant NMJs (7data not shown).

Coracle (the Drosophila orthologue of vertebrate 4.1 protein) is
required for GluRIIA clustering in the embryo and interacts
directly with the C-terminus of GluRIIA (Chen et al., 2005). Coracle
is strongly expressed in the glia and trachea (Fig. 4A) (Fehon et al.,
1994; Bogdanik et al., 2008). In addition, a polyclonal antibody
against Coracle reveals a rim of staining around the boutons on the
postsynaptic side of the NMJ (Fig. 4A). To test the specificity of the
postsynaptic staining, we knocked down Coracle expression in the
muscles using the Gal4/UAS system (Brand and Perrimon, 1993).
Gal4 lines that drive expression in all muscles (24B-Gal4, Mhc82-
Gal4, BG57-Gal4) are lethal in combination with UAS-cora RNAi,

Fig. 2. stau mutants cause a decrease in GluRIIA levels. (A–D) Synaptic boutons labelled for DLG (red) and GluRIIA (green) at NMJs between muscles 6/7. (A) Wild type; (B)
gluIIA/Df; (C) staur9/Df; (D) stauHL/Df. (E) Quantification of the ratio of the mean intensities of the synaptic vs. extra-synaptic GluRIIA signals. stau mutant NMJs have reduced
levels of GluRIIA compared to wild type (wt), and GluRIIA mutant boutons had no detectable signal (Glu-). (F–I) Localisation of GluRIIC (F and G, green) and GluRIIB (H and I,
green) subunits at the NMJs between muscles 6/7, labelled with Cy3 anti-HRP (red). (F) GluRIIC forms postsynaptic clusters in wild type larvae. (G) The GluRIIC clusters have
a similar abundance and distribution in stauHL/Df. (H) GluRIIB is weakly localised in clusters at the NMJ (red) in wild type. (I) GluRIIB clusters at the NMJs seem brighter and
more abundant in stauHL/Df mutants. Scale bar (A–D: 37 mm; F–I: 24 mm).
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but animals expressing cora RNAi under the control of the muscle
12 specific driver, 5053A-Gal4 (Ritzenthaler et al., 2000) are viable
until adulthood. Coracle staining was lost from muscle 12 of all
5053A-Gal4, UAS-cora RNAi third instar larvae, including the staining
around the boutons, whereas the glia and tracheal stainings were

unaffected, confirming that the postsynaptic labelling is specific
(Fig. 4B).

The localisation of Coracle at the NMJ of the third instar larva is
independent of GluRIIA, since it localises normally in gluRIIA null
mutants (Fig. 4C). By contrast, the amount of Coracle around the

Fig. 3. Staufen does not regulate the localisation or translation of gluRIIA mRNA. (A–C) in situ hybridizations (red) in muscles 6/7 with NMJs labelled by FITC anti-HRP
(green). (A) gluRIIA mRNA localises to cytoplasmic puncta in muscles 6 and 7 and is not associated with the NMJ (arrow, green). (B) The gluRIIA mRNA signal is specific, since
it is absent in the mRNA null mutant, gluIIAg9/Df. (C) CG3570 mRNA localises around nuclei (asterisks) but not to the NMJ (arrow, green). Single dots in the nuclei may
correspond to sites of transcription (arrowheads). (D) Western blot of larval fillets probed for GluRIIA and alpha-Tubulin as a loading control. The GluRIIA antibody detects a
150 Kd band of equivalent intensity in wild type (wt), stauHL/ stauHL and staur9/ stauHL that is absent in the gluRIIA null mutant (gluIIAg9/Df). Scale bar (A–C: 25 m).
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Fig. 4. Coracle localisation around the NMJ is reduced in stau mutants. (A–E) Confocal images of synaptic boutons labelled for DLG (blue), GluRIIA (red) and Coracle (green).
(A) Coracle localises around the periphery of the NMJ just outside the ring of DLG that surrounds the GluRIIA clusters (B) Expression of cora-RNAi in muscle 12 (m12)
abolishes the Coracle signal around the NMJ and in the cytoplasm of this muscle. (C) Coracle localises normally around the boutons in a gluRIIA null mutant. Note the strong
Coracle signal in muscle 12 (m12). Coracle antibody strongly stains trachea (arrowhead) and glia (arrow). (D–E) Coracle localisation around the NMJ is strongly reduced in
staur9/Df (D) and stauHL/Df (E). Scale bar (A: 8 m; B, C: 12 mm; D, E: 15 mm).
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NMJ is greatly reduced in staufenr9/Df and staufenHL/Df mutant
larvae (Fig. 4D and E). Thus, Staufen plays a role in the localisation
of Coracle around the boutons, which may account for the
reduction in GluRIIA levels at the NMJ in staufen mutants.

Coracle mRNA localises to the NMJ

The rim of Coracle around the boutons is reminiscent of the
localisation of Staufen protein, raising the possibility that Staufen
regulates the localisation of Coracle protein by regulating the
localisation and/or the translation of cora mRNA. Using a highly
sensitive ISH method based on the enzymatic detection of digox-
igenin labelled probes with a fluorescent substrate, we asked
whether we could detect coracle mRNA in the third instar larval
muscles. An antisense coracle probe gave a diffuse staining
throughout the muscle with a significant enrichment around the
boutons of the NMJ (Fig. 5A and B). This signal was specific for cora
mRNA, since it was not detected with coracle sense probes and it
was abolished in muscle 12 of UAS-cora RNAi/5053A-Gal4 larvae
(Fig. 5C and D).

We used two additional approaches to confirm the localisation
of cora mRNA at the NMJ. First, we developed an injection assay
based on methods used in Drosophila embryos, in which
fluorescently-labelled mRNAs were injected into muscles of living
larvae expressing Dlg::GFP to label the NMJs (Ferrandon et al.,
1994; Bullock et al., 2003). After two hours, the fillets were fixed
and the injected muscles imaged on a confocal microscope. When
we injected the highly conserved coracle 30UTR mRNA, it specifi-
cally localised in a rim around the boutons of the NMJ, whereas
labelled gluRIIA 30UTR mRNA did not localise to the NMJ after
injection (Fig. 5E and data not shown). Secondly, we generated a
transgenic line expressing the cora 3'UTR fused to five tandem
copies of the MS2-binding site under the control the Gal4/UAS
system. This allows the in vivo labelling of the RNA when crossed
to flies expressing MS2-GFP, which binds with high affinity to the
MS2 binding sites, but is retained in the nucleus by a nuclear
localisation signal if not bound to an RNA (Belaya and St Johnston,
2011). The MS2-GFP labelled cora’ 3'UTR showed a very similar
localisation to injected cora 3'UTR, forming a rim around the
boutons (Fig. 5F and G). By contrast a gluRIIA 3'UTR-MS2 fusion
mRNA showed no specific localisation in this assay (data not
shown). These results confirm that coracle mRNA is specifically
targeted to the NMJ, and demonstrate that its localisation is
directed by elements in its 3'UTR, ruling out the possibility that
it is localised by a co-translational mechanism.

In a staufen null mutant combination, staufenr9/Df, coramRNA is
no longer localised around the boutons, demonstrating that
Staufen is necessary for the targeting of the RNA to the NMJ
(Fig. 6A). By contrast, the mRNA localises normally in the hypo-
morphic mutant, staufenHL/Df, which lacks the dsRBD5 domain,
despite the strong effect of this mutant on Coracle protein
(Fig. 6B). This is reminiscent of the effect of staufenHL on oskar
mRNA, where the mRNA is localised normally to the posterior of
the oocyte but no Oskar protein is produced (Micklem et al., 2000).
Thus, Staufen is required for cora mRNA localisation at the NMJ,
while the conserved dsRBD5 may be necessary for its translation
once the mRNA has been localised.

Fig. 5. cora mRNA localises to the NMJ. (A) Muscle 12 after in situ hybridisation
(ISH) with a cora anti-sense probe (red). cora mRNA localises around the NMJ
(between arrows) labelled with FITC anti-HRP (green). (B) Higher magnification of
boxed region in (A) showing the particulate postsynaptic ISH signal. (C) ISH with a
control cora sense probe (red). (D) Expression of cora-RNAi in muscle 12 (m12)
abolishes the specific cora mRNA signal around the NMJ (between arrows).
(E) Fixed fillets 2 hs after micro-injection of cora 3'UTR-Cy3 into a live DLG-GFP
expressing muscle. cora 3'UTR-Cy3 (red) can be detected postsynaptically at NMJs
labelled in green by DLG-GFP. (F) Anti-GFP staining of a muscle expressing cora
3'UTR-10xMS2bs and MS2-GFP (green). The MS2-GFP labelled cora RNA localises
around the periphery of the boutons, which are labelled with Cy3 anti-HRP (red).
(G) Higher magnification view of boxed region in (F) to show the punctate
distribution of cora mRNA around the NMJ (arrow). Scale bar (A: 24 mm; B:
12 mm; C–E: 24 mm; F: 27 mm; G: 12 mm).

A. Gardiol, D. St Johnston / Developmental Biology 392 (2014) 153–167 159



To test more directly whether coramRNA is locally translated at
the NMJ, we generated a translational reporter that is expressed in
the muscle under the control of the cora 50 and 30 untranslated
regions. Membrane-tethered reporters, such as myristoylated-GFP
accumulate on the extensive membrane invaginations of the
subsynaptic reticulum, regardless of where they are expressed in
the cell (data not shown). We therefore used the age-dependent
fluorescent protein, dsRed-E5, which should diffuse only slowly, as
it is tetrameric, and has the additional advantage that it has been
reported to change its emission from green to red over time,
providing a convenient way to measure translation rates (Terskikh
et al., 2000). In the environment of the Drosophila muscle,
however, dsRed-E5 did not change colour with time. Antibody
staining for dsRed revealed protein expression at a subset of the

boutons of wild type larvae expressing cora 5'UTR-dsRed-E5-cora
3'UTR (Fig. 6C and D). Thus, the untranslated regions of cora are
sufficient to direct the localisation and local translation of a
heterologous protein at the NMJ.

Altogether, it seems likely that Staufen associates directly with the
cora 3'UTR. There is no straightforward in vitro assay for Staufen RNA
binding, however, as it contains four functional copies of the double-
stranded RNA binding domain (dsRBD), each of which binds in a
sequence-independent manner to 12 bp of dsRNA, leading to the
proposal that its specificity in vivo is conferred by the simultaneous
binding of multiple domains to specific RNA structures (Micklem et
al., 2000; Ramos et al., 2000). A recent genome-wide study of
Staufen-associated RNAs in the early Drosophila embryo revealed
that the bound RNAs are highly enriched for structures, termed

Fig. 6. Staufen is required for the localisation and local translation of coramRNA. (A) Muscle from a staur9/Df larva hybridised with a cora antisense probe. cora mRNA (red) is
not localised around the NMJ, labelled with FITC anti-HRP (green, between arrows) in the absence of Staufen protein. (B) stauHL/Df hybridised with a cora antisense probe.
cora mRNA localises normally around the NMJ (between arrows) in this mutant, which removes Staufen dsRBD5. (C) Anti-dsReD staining of a wild type larva expressing the
translational reporter Timer dsRed-cora 3'UTR. dsRed antibody staining (green) is diffusely localised around the boutons of the NMJ labelled with Cy3 anti-HRP. (D) Higher
magnification of boxed region in (C) showing the diffuse postsynaptic dsRED signal (green). Scale bar (A, B: 24 mm; C: 37 mm, D: 15 mm;).
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“Staufen recognition structures” (SRS), that are characterised by 19nt
long dsRNA regions with no more than 4 mismatches and 4 unpaired
bases (19,5,4) that also contain a sub-region with 10/12 paired bases
(12,10,2, Laver et al., 2013). We therefore used the RNAfold and
RNAplfold algorithms of the ViennaRNA 2.0 package to predict the
secondary structure of the cora 3'UTR (Hofacker et al., 2004; Bernhart
et al., 2006; Lorenz et al., 2011). This revealed that the RNA is likely to
fold into a extensively base-paired structure that contains one strong
SRS, in which 19/20 bases are paired, with one bulged nucleotide,
and two weaker SRSs with 19/22 base pairs and 17/21 base pairs, the
second of which overlaps the end of the coding region (Fig. 7A, B).
Furthermore, phylogenetic footprinting reveals that SRS1 has been
highly conserved during Drosophila evolution, along with large
regions of the cora 3'UTR, whereas other non-coding regions, such
as the adjacent intron show no conservation (Clark et al., 2007)
(Fig. 7C). Thus, the predicted structure of the cora 3'UTR suggests that
Staufen is likely to bind to it directly in vivo to mediate its localisation
and local translation.

The cora and oskar mRNA localisation pathways are similar

The discovery that Staufen is required for the localisation of
cora mRNA to the NMJ raises the question of whether this process
is related to any of the three Staufen-dependent mRNA localisation

pathways that have already been characterised. There is little to
suggest a link with bicoid mRNA localisation, as the ESCRTII
complex subunit, Vps36-GFP, which binds to the bicoid 3' UTR
and is necessary for the recruitment of Staufen protein (Irion and
St Johnston, 2007), does not localise to the NMJ (data not shown).
Furthermore, exuperantia mutant combinations that disrupt all
steps in bicoid mRNA localisation have little effect on the levels of
GluRIIA at the NMJ, although the morphology of the NMJ is altered
(Figure S2A). The basal localisation of Staufen/prospero mRNA
complexes during the asymmetric divisions of the neuroblasts
depends on the binding of Miranda protein to Staufen dsRBD5
(Fuerstenberg et al., 1998; Matsuzaki et al., 1998; Schuldt et al.,
1998; Shen et al., 1998). This mechanism of localisation is also
unlikely to occur at the NMJ because Staufen dsRBD5 is not
required for the normal targeting of cora mRNA, although it is
necessary for its translation. Furthermore, Miranda protein is not
detectably expressed in the muscles (data not shown). However,
ectopically expressed Miranda-GFP localises in a rim around the
boutons, suggesting that it binds to Staufen that is localised in this
region (Figure S2B).

Finally, we tested whether other components of the oskar
mRNA localisation pathway play a role at the NMJ. The localisation
of oskar mRNA requires the deposition of the Exon Junction
Complex (EJC) on the RNA during the splicing of its first intron

Fig. 7. The cora 3'UTR contains two double-stranded regions that match the consensus for Staufen recognised structures. (A) The predicted minimum free energy structure
of the cora 3'UTR generated by RNAfold. The RNA used for the folding algorithm also includes the last 50 bases of the coding region to avoid creating an artificial free end at
the 5'end of the 3'UTR. The colour scale represents the probability that each base is in the state shown in the model (paired or unpaired) calculated by RNAplfold. (B) Two
double-stranded regions, SSR1 and SSR2 in the predicted structure match the consensus for Staufen recognised structures, as well as a third region that includes part of the coding
region (SRS3, grey). (C) A diagram showing the degree of conservation of the 3'end of the coracle locus across the Drosophila genus using phylogenetic shadowing. The image was
downloaded from the UCSC genome browser (http://genome.ucsc.edu) and shows the conservation track created by the phastCons package using a grey scale to show the degree of
conservation. Large regions of the 3'UTR are nearly as strongly conserved as the coding region, including the two regions that base pair to form SRS1. Scale bar (C:50nt).
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and also depends on tropomyosin II (Newmark and Boswell, 1994;
Erdélyi et al., 1995; Hachet and Ephrussi, 2001; van Eeden et al.,
2001; Hachet and Ephrussi, 2004; Palacios et al., 2004). A null
mutant of the EJC component, Barentsz, btz2, had no effect on the
localisation of Coracle to the NMJ, consistent with our observation
that the unspliced 3'UTR of cora is sufficient to target it to the NMJ
(Figure S2C). By contrast, the viable tropomyosin II mutant, TmIIgs,

strongly reduced the postsynaptic rim of Coracle around the
boutons and reduced the levels of GluRIIA at the NMJ (Fig. 8A
and B). Furthermore, cora mRNA was not detectably localised at
the NMJs of TmIIgs homozygotes (Fig. 8C). Consistent with this,
TmIIgs mutants had a reduced number of type Ib boutons at
the NMJ (Fig. 8D, wt¼13.3970.78, n¼31; TmIIgs¼10.5970.72,
n¼29). Thus, the loss of Tropomyosin II and Staufen give very

Fig. 8. TmIIgs and Kinesin are required for Coracle localisation at the NMJ. (A) A wild type muscle 6/7 NMJ stained for Coracle (green) and DLG (blue). (B) TmIIgs homozygote
stained as in (A). Coracle is not localised around the NMJ. (C) ISH to cora mRNA in a TmIIgs homozygote. cora mRNA (red) is not localised around the NMJ labelled with FITC
anti-HRP (green). (D) Quantification of Ib bouton number in muscle 6/7 NMJs in wild-type and TmIIgs. TmIIgs mutant NMJs have reduced numbers of boutons (n indicates
po0.05). (E) Muscle 6/7 NMJ stained for Coracle (green) and DLG (blue) in a Khc23/Khc27 larva. This combination of kinesin heavy chain alleles disrupts the localisation of
Coracle around the NMJs. Scale bar (A: 49 mm; B, E: 25 m; C: 37 m). See also Figure S2.
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similar phenotypes, suggesting that they function in the same
pathway to localise coracle mRNA to the NMJ.

oskar mRNA is transported along microtubules to the posterior
of the oocyte by the plus end directed microtubule motor protein,
kinesin, raising the question of whether it transports coramRNA to
the NMJ (Brendza et al., 2000). It is not possible to examine cora
mRNA in kinesin heavy chain (Khc) null mutants, as these block
anterograde axonal transport, leading to progressive paralysis and
lethality in the second larval instar (Hurd and Saxton, 1996). We
therefore used a hypomorphic combination of Kinesin heavy chain
alleles, Khc23/Khc27, which develops until the third larval instar
(Brendza et al., 1999). This mutant combination caused a reduction
or loss of Coracle around the boutons of most NMJs, consistent
with a role for kinesin in cora mRNA transport (Fig. 8E).

Discussion

The strength of synapses can be modulated by changing the
abundance of neurotransmitter receptors in the postsynaptic
membrane, and there is increasing evidence in mammals that
the local translation of localised mRNAs can contribute to the
modifications taking place in this context. For example, the
increase in glutamate receptor levels during synaptic scaling is
independent of transcription and requires the local translation of
GluR1 mRNA, thereby increasing the ratio of GluR1 to GluR2 (Aoto
et al., 2008; Maghsoodi et al., 2008). Similarly, the increase in
NMDA receptor levels in hippocampal neurons during long term
potentiation involves the local translation of GluN2A, but not
GluN2B (Swanger et al., 2013). Our results suggest that the
Staufen-dependent regulation of postsynaptically localised mRNAs
can regulate the abundance of synaptic glutamate receptors. In
this case, however, regulation does not occur through the transla-
tional control of the receptors themselves, as GluRIIA protein
levels are unchanged in stau mutants and glurIIA mRNA does not
localise to NMJ, but is found throughout the muscle cytoplasm.
Furthermore, even if we cannot rule out the existence of an
unconventional satellite secretory apparatus beneath the NMJ,
the lack of detectable endoplasmic reticulum and Golgi structures
at the NMJ makes it unlikely that proteins targeted for secretion
are locally translated there.

Instead, we present several lines of evidence to show that
Staufen regulates the localisation and local translation at the NMJ
of the cytoplasmic scaffolding protein, Coracle. First, we used
in situ hybridisation, RNA injection and in vivo RNA tagging to
demonstrate that cora mRNA localises around boutons. Second, we
observed that a staufen null mutant disrupts the localisation of
both Coracle protein and mRNA. Third, the expression of a Coracle
at the NMJ is strongly reduced in the stauHL mutant, even though
cora mRNA localisation is unaffected, suggesting that Coracle is
locally translated at the NMJ in a Staufen-dependent manner.

Although Staufen may target several mRNAs to the postsynap-
tic side of the NMJ, it seems likely that the reduced number of
synaptic boutons and the decrease in the postsynaptic localisation
of GluRIIA in stau mutants is due at least in part to this disruption
of cora mRNA localisation and translation. coracle mutant embryos
show a dramatic reduction in the levels of GluRIIA at the NMJ but
have little or no effect on GluRIIB (Chen et al., 2005). Furthermore,
Coracle binds directly to the C-terminal domain of GluRIIA that
targets it to the NMJ, leading to the proposal that Coracle anchors
the receptor to the actin cytoskeleton (Chen et al., 2005). staufen
mutant larval muscles show both a strong reduction in Coracle
staining around boutons and much lower levels of synaptic
GluRIIA, whereas Coracle localisation is normal in gluRIIA null
mutants. It therefore seems likely that the reduction in the levels

of GluRIIA localisation at the larval NMJ are caused at least in part
by the effects of staufen mutants on Coracle localisation.

While our observations are consistent with a role for Coracle in
GluRIIA localisation at later stages, the much larger size of the NMJ
in the third larval instar compared to the embryo reveals that the
two proteins do not co-localise: GluRIIA is found in clusters in the
centre of the bouton opposite the active zones, whereas Coracle
lines the periphery of the bouton, just outside the ring of Dlg. This
is not compatible with a direct role for Coracle in GluRIIA
clustering. Indeed, this role is most probably mediated by Neto,
which is also required for GluRIIA localisation, and unlike Coracle,
co-immunoprecipitates with the receptor and co-localises with it
in clusters in the centre of the bouton (Kim et al., 2012). Instead,
we propose that Coracle functions in the delivery of GluRIIA to the
synapse. In support of this view, the mammalian Coracle ortholo-
gue, 4.1N, regulates the activity-dependent insertion of GluR1
receptors through direct binding to the membrane proximal
region of the receptor (Lin et al., 2009). This suggested role of
Coracle raises an interesting parallel with the function of Dlg at the
NMJ. Dlg is specifically required for the recruitment of GluRIIB to
the boutons in the embryo and has no effect on GluRIIA localisa-
tion (Chen and Featherstone, 2005). Furthermore, like Coracle, Dlg
forms a ring around the periphery of the bouton, with little
overlap with the glutamate receptor clusters. Thus, Coracle and
Dlg may function in a similar way to regulate the abundance of the
two receptor subtypes at the synapse.

The mechanism of mRNA localisation to the NMJ

Mammalian Staufens have been implicated in mRNA localisa-
tion to post-synaptic regions in dendrites and have been found to
regulate the stability of a number of mRNAs in neuronal processes
(Doyle and Kiebler, 2011; Heraud-Farlow et al., 2013). However, it
remains to be proven that Staufen plays a direct role in mRNA
localisation to mammalian synapses. Our results demonstrate that
the localisation of coracle mRNA depends on Staufen protein,
providing a functional link between the RNA-binding protein
and the postsynaptic localisation of a specific mRNA. Furthermore,
our results show that cora mRNA is not targeted to the NMJ by a
co-translational mechanism, in which the RNA is localised by the
binding of the nascent polypeptide to a localised anchor, since the
cora 3'UTR is sufficient to mediate localisation in the absence of a
coding region. Staufen participates in several different mRNA
localisation pathways in Drosophila that depend on either micro-
tubules or actin, and coraclemRNA could be targeted to the NMJ by
a number of possible mechanisms. However, several features of
cora mRNA localisation resemble the pathway that delivers oskar
mRNA to the posterior of the oocyte.

First, the C-terminal dsRBD5 of Staufen, which is absent in the
staufenHL mutant as a result of a frameshift, is not required for the
targeting of cora mRNA to the NMJ. This domain is essential for the
microtubule-dependent localisation of bicoid mRNA to the anterior
of the oocyte and for the actin-dependent localisation of prospero
mRNA in embryonic neuroblasts (Fuerstenberg et al., 1998; Schuldt
et al., 1998; Micklem et al., 2000). oskar mRNA localises normally
in stauHL oocytes, as well as in staufen null oocytes expressing a
form of Staufen lacking dsRBD5 (Micklem et al., 2000). Despite the
normal localisation of oskar mRNA at the posterior pole of the
oocytes, no Oskar protein is produced, indicating that the transla-
tion of oskar mRNA requires Staufen dsRBD5. It is striking that
stauHL has an identical effect in the muscle, since cora mRNA is still
localised to the NMJ but no Coracle protein accumulates there. This
suggests that Staufen has a second function in the activation of
cora mRNA translation at the NMJ.

Second, the localisation of cora mRNA is strongly reduced
in Tropomyosin IIgs homozygotes. Although Tropomyosin II is well
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known for its essential role as an actin-binding protein, the TmIIgs

allele is viable and has no obvious effects on F-actin organisation
in the oocyte. Instead, the only known phenotype of this allele is to
strongly reduce the posterior localisation of oskar mRNA (Erdélyi
et al., 1995; Zimyanin et al., 2008). The discovery that TmIIgs also
disrupts coramRNA localisation provides another link between the
localisations of osk and cora mRNAs, and highlights the specific
effect of this mutation on mRNA transport.

Third, the localisation of Coracle around the boutons is impaired
in muscles where kinesin levels have been reduced. The micro-
tubules in the larval muscles radiate from the nuclei and form a
basket around the outside of the boutons, close to the area where
coraclemRNA and protein localise (Ruiz-Canada et al., 2004; Liebl et
al., 2005). This organisation is similar to that observed in mamma-
lian muscles, where microtubule plus ends and plus end binding
proteins are enriched on the postsynaptic side of the NMJ (Schmidt
et al., 2012). Thus, the arrangement of microtubules is consistent
with a model in which kinesin transports Staufen/cora mRNA
complexes to the NMJ. This is an attractive idea, given that
mammalian Staufen associates with conventional kinesin in neu-
rons and is a component of RNP particles that undergo kinesin-
dependent movements in dendrites (Köhrmann et al., 1999; Kanai
et al., 2004). Conclusive proof for a direct role for kinesin in cora
mRNA transport will require more sophisticated approaches, how-
ever, such as imaging of cora mRNA motility in Khc mutants.

It has recently been reported that some synaptic RNAs, such as
par-6 mRNA, move to the Drosophila neuromuscular junction in
large RNP particles that bud through the nuclear membrane
(Speese et al., 2012). Staufen is not enriched in the nucleus and
is therefore unlikely to be a component of these large RNP
particles when they assemble in the nucleus, but it would be
interesting to determine whether it plays any role in the move-
ment of these particles through the cytoplasm to the NMJ and
whether the mechanisms of cora and par-6 mRNAs transport are
related given their similar localisations around the synaptic
boutons. Our observations also raise the question of whether the
cell-biological mechanisms that underlie Staufen-dependent
mRNA transport have been conserved between Drosophila and
mammals and whether dendritic mRNA targeting by mammalian
Staufen orthologues requires similar co-factors to cora RNA.

Experimental procedures

Genetics

Alleles
Sequencing of genomic DNA revealed that stauHL (Schupbach

and Wieschaus, 1986; Berg and Spradling, 1991) carries a T to A
mutation in the last nucleotide in the intron within the RBD5. The
failure to splice this small intron is predicted to produce a protein
that lacks dsRBD5, which is replaced by coding sequence from the
intron followed by a premature stop codon. Other strains used are
as follows: staur9, (Berg and Spradling, 1991), Df(2R)Pcl7B (Duncan,
1982), dgluR-IIAg9 and Df(2L)clh4 (Petersen et al., 1997), TmIIgs

(Erdélyi et al., 1995), Khc23 and Khc27 (Brendza et al., 1999), UAS-
DlgA-eGFP (Koh et al., 1999), UAS-Cora-RNAi 9788 (VDRC; Vienna,
Austria), 24B-Gal4 (P(GawB)how24B (Brand and Perrimon, 1993),
BG57-Gal4 (Budnik, 1996), M12-Gal4 (P(GAL4)5053A (Ritzenthaler et
al., 2000), Ubi-nls-MS2-GFP (Nick Lowe). Wild type strains were
either w1118 or Oregon R.

Reporters

UAS-Cora-MS2bs: 10 MS2 binding sites (MS2bs) were cloned
into a pBluescript SK vector with an extended polylinker (pUI-

MS2bs, Uwe Irion). The 3'UTR of Coracle was amplified by PCR
from Cora EST RE40241 (BDGP) and cloned into pUI-MS2bs. The
3'UTR-MS2bs fragment was subsequently excised and cloned
between SpeI and XbaI in pUASpL.

UAS-Cora-Timer: the DsRed1-E5 fragment was excised from the
pTimer-1 vector (Clontech) using BamHI and NotI restriction
enzymes, and subcloned into pUASp-PL (pUAS-Timer). Cora-RA
5'UTR flanked by EcoRI and BamHI restriction sites and Cora-RA
3'UTR flanked by NotI and SacII restriction sites were subcloned
upstream and downstream of the Timer sequence in pUAS-Timer.
Both constructs were injected in w f embryos.

Western blots

Body wall muscle extracts were prepared as described pre-
viously (Saitoe et al., 1997), run on a 3–8% gradient NuPAGE gels
(Invitrogen), transferred to nitrocellulose membranes (Bio-Rad)
and sequentially probed with anti-GluRIIA (1:500, Saitoe et al.,
1997) and anti-alpha-Tubulin (1:2000, DM1A, Sigma) followed by
the corresponding Horseradish Peroxidase (HRP) conjugated sec-
ondary antibodies (1:5000, GE Healthcare) and visualised using
the ECL Plus Western Blotting detection system (GE Healthcare).

Immunocytochemistry and immuno electron microscopy

Antibodies
Rabbit anti-Staufen (1:100, St Johnston et al., 1991), GluRIIA

DM2 GluRIIA (1:500, Saitoe et al., 1997); GluRIIB and GluRIII
(1:500, Marrus et al., 2004), guinea pig anti-Cora (1:500, Fehon
et al., 1994); anti-DsRed (1:500, Clontech), Mouse anti-Dlg 4F3,
GluRIIA 8B4D2 (1:100, Developmental Studies Hybridoma Bank),
chicken anti-GFP (1:500, Abcam); anti-rabbit FITC and TxR, anti-
mouse Cy5 and TxR (1:250 Jackson Immunoresearch), anti-rabbit
Alexa 488, anti-chicken Alexa 488, anti-guinea pig (1:500, Mole-
cular Probes), Cy3 and FITC anti-HRP (1:250 Jackson Immunor-
esearch Laboratories). In insects, anti-HRP antibodies label axonal
membranes (Jan and Jan, 1982).

Immunostaining
Third instar wandering larvae were filleted in PBS or Ringer's

Solution and fixed in PFA 4% in PBS 20 min (for Staufen, GluRIIA
DM2, Coracle, DsRed, GFP) or Bouin's 5 min (Sigma, for GluRIIA
and IIB) or PFA 4% Glutaraldehyde 0.5% in Hepes 0.2 M MgCl2
2 mM pH 7.25 45 min (Immuno EM Staufen). Immunostainings
were performed as described previously (Bellen, 2000)

EM
Staufen antibody was detected using an HRP coupled anti-

rabbit antibody (1:200, GE Healthcare). DAB oxidation (Vectastain,
Vector) was carried out in 7.5% sucrose in Tris HCl 0.05 M pH 7.5 to
limit diffusion. Fillets were osmicated in 1% OsO4 and flat
embedded in Araldite (Fluka). Ultrathin sections (70 nm) of the
region between muscle 6/7 were counterstained with Reynold's
Lead Citrate and aqueous 2% Uranyl Acetate.

in situ hybridisation

Riboprobes were transcribed from linearised plasmids using
the Megascript kit (Ambion) in the presence of Digoxygenin-UTP
(Roche) as follows: Cora EST RE40241 (BDGP): antisense NotI/T3,
sense XhoI/T7; CG3570 EST GH09390: antisense EcoRI/Sp6; GluR-
IIA full-length cDNA (gift from Stephan Sigrist) antisense XhoI/T3.
Probes were purified on Megaclear columns (Ambion). Fillets
dissected in Ringer's solution were permeabilised in PBS Tween
0.1%, pre-hybridised for 2 h at 55 1C and hybridised overnight in
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the presence of 4 mg of probe in standard hybridisation buffer
(Hyb). Stringent washes were carried out for 5 h at 55 1C in Hyb.
The samples were then stained with Alkaline Phosphatase (AP)
coupled anti-Dig (1:200, Roche) and FITC coupled anti-HRP (1:250,
Jackson Immunoresearch Laboratories) antibodies overnight. Fast
Red solution (Roche) was used as an AP substrate for 1 h at room
temperature.

Injections

The 3'UTR of Coracle-RA was amplified by PCR and cloned
between SacII and EcoRI sites in pUI. After EcoRI linearisation,
capped sense RNA (4:1 Cap to GTP ratio, Amersham) labelled with
Cy3-UTP (1:10 Cy3-UTP to UTP ratio, Perkin Elmer) was synthe-
sised and purified using the T3 Megascript and Megaclear kits
(Ambion). Injections were performed on a customised set up
comprising an air table (Thor Labs) a PatchStar injector (Scienti-
fica) on a Nikon Eclipse E800 upright microscope. Dlg-GFP larvae
were filleted in HL3.1 buffer (Feng et al., 2004) and individual
muscles were injected with a mixture of RNA and food dye to
visually monitor the injection (Fast Green FCF, Sigma). After 2 h at
room temperature, the fillets were fixed for 20 min in PFA 4%,
mounted in vectashield (Vector) and imaged.

Confocal imaging and quantifications

Acquisition
Confocal images are maximum intensity projections of z series

acquired with an Olympus FV1000, Zeiss LSM 510 Meta or a Bio-
rad 1024. EM was performed using a CM100 Phillips at 120 kV.

Bouton numbers
Quantifications were performed on muscle 6 NMJs from seg-

ments A2–A4 of 6 larval fillets per genotype. Boutons were
quantified from 40x confocal maximum intensity projection of z
series from immunostained fluorescent preparations of NMJs
stained with anti-HRP and anti-Dlg antibodies. For quantification
purposes we defined a bouton as a swelling between neighbouring
axonal stretches immunopositive for both anti-HRP and Dlg
antibodies. Type Ib boutons were identified by size, and data
was compiled using Volocity software (Perkin Elmers). Statistical
significance was determined pair-wise using a two-tailed Stu-
dent's t test (Prism, Graphpad). All averages are shown with
standard errors (SEM).

GluRIIA staining intensity
Maximum intensity z projections of muscle 6/7 NMJs simulta-

neously labelled by anti-Dlg and anti-GluRIIA were used to
quantify the intensity of GluRIIA staining using Volocity software
(PerkinElmer). We outlined the surface area of the NMJ using the
wand tool in the red channel (Dlg) and measured the intensity of
the green signal (GluRIIA) in this area (synaptic signal). We also
measured the intensity of the green signal outside the NMJ for
each muscle (extrasynaptic signal). The average synaptic signal
obtained for gluRIIA null mutants was used to measure the back-
ground noise. This figure was subtracted from each average. We
then calculated the synaptic ratio by dividing the synaptic signal
by the extrasynaptic. The resulting values were normalised.

RNA secondary structure prediction

The secondary structure of the cora 3'UTR was predicted using the
RNAfold and RNAplfold algorithms of the ViennaRNA 2.0 package
(Hofacker et al., 2004; Bernhart et al., 2006; Lorenz et al., 2011).
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