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Abstract Comprehensive genomic profiling based on next-
generation sequencing has recently been used to provide pre-
cision medicine for various advanced cancers. Endoscopic 
ultrasound (EUS)-guided fine-needle aspiration (EUS-FNA) 
and EUS-guided fine-needle biopsy (EUS-FNB) play essen-
tial roles in the diagnosis of abdominal masses, mainly pan-
creatic cancers. In recent years, CGP analysis using EUS-
FNA/FNB specimens for hepatobiliary–pancreatic cancers 
has increased; however, the success rate of CGP analysis 
is not clinically satisfactory, and many issues need to be 
resolved to improve the success rate of CGP analysis. In this 
article, we review the transition from EUS-FNA to FNB, 
compare each test, and discuss the current status and issues 
in genomic analysis of hepatobiliary–pancreatic cancers 
using EUS-FNA/FNB specimens.
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Introduction

Endoscopic ultrasound (EUS)-guided fine-needle aspira-
tion (EUS-FNA), a tissue sampling method using EUS, is 
a well-established method for the pathological diagnosis of 
pancreatic and gastrointestinal submucosal tumors, as well 
as lymph node lesions [1]. Particularly for pancreatic tumors, 
EUS-FNA is a highly accurate diagnostic method with a 
sensitivity and specificity of over 90% [2]. However, with 
the recent development of immune therapy for malignant 
tumors, individualized treatments based on genetic muta-
tions have been provided in daily practice. Now, quantity 
and quality are required for specimens that can withstand 
genetic testing and diagnosis.

The usefulness of rapid on-site evaluation (ROSE) has 
long been reported because of the difficulty in pathological 
diagnosis due to the small volume of specimens obtained by 
EUS-FNA. Specimens are processed through cytology in 
facilities that can perform ROSE, whereas histology is used 
in facilities where ROSE is cannot to perform [3]. Subse-
quently, histological examinations are usually performed to 
improve diagnostic adequacy, and EUS-guided fine-needle 
biopsy (EUS-FNB) has become popular in recent years. It 
has been reported that EUS-FNB has a high diagnostic accu-
racy without ROSE because a larger volume of specimens 
can be collected than with EUS-FNA [4].

In addition, the quality and the quantity of EUS-FNB 
specimens have shown better potential than those of EUS-
FNA specimens, and the usefulness of EUS-FNB in genetic 
testing has been increasingly reported [5].

Comprehensive genomic profiling (CGP) is a testing 
method that uses next-generation sequencing (NGS) to 
analyze a large amount of genomic information compre-
hensively, attracting considerable attention because of its 
ability to detect genetic abnormalities that may lead to 
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genome-matched therapy. Since 2019, CGP testing, Onco-
Guide™ NCC Oncopanel System (NOP; Sysmex Corpora-
tion, Hyogo, Japan), and  FoundationOne® CDx (F1CDx; 
Foundation Medicine, Cambridge, MA) have been covered 
by national health insurance in Japan for solid cancers that 
are un-resectable and refractory to standard therapies. How-
ever, the feasibility, optimal needle selection, and the num-
ber of punctures required for EUS-FNA/FNB have not yet 
been clarified. In this review, we discuss the transition from 
EUS-FNA to FNB, compare these methods, and discuss 
the current status and issues in genetic analysis using EUS-
FNA/FNB specimens for hepatobiliary–pancreatic cancers.

Comparison of tissue sampling methods 
by EUS‑FNA and EUS‑FNB

Diagnostic accuracy

Since 2010, pathological diagnosis using EUS-FNA for 
abdominal mass lesions, mainly pancreatic cancers, has been 
performed in Japan and is now a widely performed proce-
dure. In particular, the diagnostic accuracy of EUS-FNA for 
pancreatic tumors has been reported in a meta-analysis to 
achieve a sensitivity of 84–92%, specificity of 96–98%, and 
diagnostic accuracy rate of 86–91%, proving its effective-
ness [2, 6, 7]. The needle sizes for EUS-FNA range from 19 
to 25-gage; a 25-gage fine needle is particularly maneuver-
able for duodenal manipulation in diagnosing benign and 
malignant diseases. Madhoun et al. reported that a 25-gage 
needle was more sensitive than a 22-gage needle for pan-
creatic tumors [8].

Precision medicine, in which mutant genes are com-
prehensively analyzed and applied to the individualized 
treatment of various advanced solid cancers, has gained 
popularity in recent years; accordingly, the quantity and 
the quality of specimens have become more critical than 
before. Subsequently, the core biopsy needle was developed 
to obtain more tissue samples, and EUS-FNB was clinically 

performed for histological diagnosis. The core-trap, Fran-
seen, and fork-tip needles are well-known representative nee-
dles that can be used in Japan. Negative-pressure methods 
for tissue sampling during EUS-FNA/FNB include syringe 
aspiration, non-aspiration, and slow-pull methods, in which 
the stylet is slowly pulled out. A meta-analysis comparing 
the aspiration and slow-pull methods during EUS-FNA/FNB 
for pancreatic tumors showed less blood contamination with 
the slow-pull method; however, the results were controver-
sial and inconclusive regarding the diagnostic accuracy rate 
[9–11]. Prior to the introduction of EUS-FNA in the 1990s, 
pancreatic cancers were diagnosed using endoscopic retro-
grade cholangiopancreatography (ERCP), which has a low 
sensitivity (49–66%) and a high complication rate, including 
post-ERCP pancreatitis [12]. EUS-FNA/FNB has a higher 
diagnostic accuracy rate and lower complication rate than 
ERCP-guided tissue sampling; therefore, EUS-FNA/FNB 
considered more useful than ERCP-guided tissue sampling 
for the diagnosis of pancreatic cancer [12]. The puncture 
routes and the target sites for EUS-FNA/FNB in hepatobil-
iary–pancreatic cancers are presented in Table 1.

A previous report has shown that EUS-FNB has a high 
diagnostic accuracy rate (85.3%) for < 20 mm pancreatic 
cancers (median, 16.5 mm) [13], but no study has examined 
the diagnostic accuracy rate of EUS-FNA/FNB for < 10 mm 
pancreatic cancers. Since the 5  years of survival rate 
of < 10 mm early pancreatic cancer is 80.4%, a high diagnos-
tic accuracy rate of EUS-FNA/FNB for < 10 mm pancreatic 
cancer would be clinically useful, but only 0.8% pancreatic 
cancers are detected at this stage [14].

Several meta-analyses have been reported comparing 
EUS-FNA to EUS-FNB in solid tumors, predominantly 
pancreatic tumors [4, 15–21]. There are studies reporting 
that the diagnostic accuracies of EUS-FNA and EUS-FNB 
are comparable [4, 15, 17, 18, 20] and others reporting that 
FNB is superior [16, 19, 21]; however, most reports [4, 16, 
19, 20] indicate that EUS-FNB is better in terms of diagnos-
tic adequacy. Based on these results, the European Society 
of Gastrointestinal Endoscopy (ESGE) guidelines for 2021 

Table 1  Puncture routes and target sites for EUS-FNA/FNB in hepatobiliary–pancreatic cancers

EUS endoscopic ultrasound, FNA fine-needle aspiration, FNB fine-needle biopsy, HCC hepatocellular carcinoma, IHCC intrahepatic cholan-
giocarcinoma, PC pancreatic cancer, IPMC intraductal papillary mucinous carcinoma, PanNEC pancreatic neuroendocrine carcinoma, GBC 
gallbladder carcinoma, EHCC extrahepatic cholangiocarcinoma, LN lymph nodes, Mets metastases, Ph/Pb pancreatic head/body, Pb pancreatic 
body, Pb/Pt pancreatic body/tail, Pt pancreatic tail, Ph pancreatic head, EBD extrahepatic bile duct, GB gallbladder, BD bile duct

Puncture-route HCC IHCC PC/IPMC/PanNEC GBC EHCC

Transgastric Left lobe Left lobe Ph/Pb, Pb, Pb/Pt, Pt Perihilar LN (Mets) Perihilar LN (Mets)
Caudate lobe Caudate lobe Perihilar LN (Mets)

Perihilar LN (Mets) Left lobe (Mets)
Transduodenal Right lobe Right lobe Ph GB BD

Around EBD Around EBD Right lobe (Mets) Right lobe Right lobe
Perihilar LN (Mets) Perihilar LN (Mets) Perihilar LN (Mets) Perihilar LN (Mets)
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described EUS-FNA and EUS-FNB at the same level of 
usefulness but recommended EUS-FNB when core tissue 
is needed for diagnosis, genetic profiling is required, and 
ROSE is not available [22]. Chen et al. performed a compar-
ative study of EUS-FNB and EUS-FNA + ROSE and showed 
the non-inferiority of EUS-FNB alone regarding diagnostic 
accuracy [23].

Adverse events

In Japan, the incidence of adverse events associated with 
EUS-FNA is 1.7% and is mainly due to hemorrhage and 
pancreatitis [24]. According to an overseas report [25], the 
incidence of adverse events associated with EUS-FNA is 
0.98%, including abdominal pain, pancreatitis, hematoma, 
bleeding, and fever; however, the reports of serious compli-
cations are scarce, and the procedure is considered safe. In 
contrast, the needle tip used in EUS-FNB has a distinctive 
shape, which may increase adverse events, predominantly 
bleeding; nonetheless, several meta-analyses have reported 
that the incidence of adverse events is comparable between 
EUS-FNA and EUS-FNB [4, 15–21].

The incidence of needle tract seeding (NTS) in Japan is as 
low as 0.05% during EUS-FNA [24]. Similarly, a meta-anal-
ysis reported a low incidence of NTS with EUS-FNA rate 
of 0.3% [26]. Recently, Kawabata et al. reported a case of 
NTS after EUS-FNB for pancreatic cancer [27]. Nakatsubo 
et al. reported NTS in 2 of the 73 patients who underwent 
preoperative EUS-FNB for solid pancreatic tumors, with an 
incidence of 2.7% [28]. There is a concern that the frequency 
of NTS in EUS-FNB may be higher than that of EUS-FNA 
because a greater amount of tissue can be obtained using 
EUS-FNB; however, there are no comprehensive reports on 
the incidence of NTS. Thus, further assembly of cases is 
needed.

Number of punctures

Ishigaki et al. retrospectively evaluated patients who under-
went EUS-FNA or EUS-FNB for solid pancreatic tumors, 
reporting that the histological tissue acquisition rate in the 
first pass was significantly higher in the EUS-FNB than in 
the EUS-FNA group (87 vs. 69%, P = 0.007) [29]. The his-
tological tissue acquisition rate reached a plateau after the 
fourth puncture in EUS-FNA, whereas it reached a plateau 
after the second puncture in EUS-FNB. Furthermore, the 
proportion of patients with a definitive diagnosis of pancre-
atic cancer after the first puncture was significantly higher 
in the EUS-FNB than in the EUS-FNA group (84 vs. 63%, 
P = 0.02).

The 2017 ESGE guidelines recommend 3–4 punctures 
for EUS-FNA and 2–3 punctures for EUS-FNB when ROSE 
cannot be performed for solid pancreatic tumors [30]. 

However, two randomized controlled trials (RCTs) reported 
that three punctures with EUS-FNA/FNB for pancreatic 
tumors were insufficient because the diagnostic accuracy 
rate did not exceed 90% [31, 32]. Zhou et al. performed an 
RCT to determine the optimal number of punctures for solid 
pancreatic tumors [33]. The cumulative diagnostic accuracy 
rates per number of punctures in the standard-suction group 
were 71.2, 85.0, 90.0, 93.3, and 95.0%, whereas those in 
the stylet slow-pull group were 44.8, 76.8, 87.5, 92.9, and 
94.6%. The authors reported that at least three and four punc-
tures should be performed in the standard-suction and slow-
pull groups, respectively. Likewise, several meta-analyses 
reported that the number of punctures required to confirm 
the diagnosis was significantly lower with EUS-FNB than 
with EUS-FNA [4, 15, 16, 19–21]. However, a prospective 
study with a large number of cases is needed to determine 
the optimal number of punctures with EUS-FNA/FNB.

Genomic analysis of pancreatic cancers using 
EUS‑FNA/FNB specimens

The mutational landscape of pancreatic ductal adenocarci-
noma (PDAC) is dominated by driver mutations in KRAS, 
TP53, CDKN2A, and SMAD4, which occur alone or in com-
bination in > 95% cases, whereas mutations in various other 
genes, including ATM, BRCA1, ARID1A, KDM6A, MLL3, 
TGFBR2, RBM10, and BCORL1, are found in < 10% can-
cers (Fig. 1) [34–38]. Many studies on KRAS have reported 
genetic analyses using EUS-FNA. In a meta-analysis, the 
diagnostic performance of KRAS mutations in EUS-FNA 
specimens was reported to have a sensitivity and specificity 
of 79 and 94%, respectively [39]. An 83–100% concordance 
rate was found when abnormalities, such as KRAS, TP53, 
and SMAD4, were compared between EUS-FNA and surgi-
cally resected specimens [40, 41].

Intra-ductal papillary mucinous carcinoma (IPMC) 
accounts for 10% pancreatic cancers of ductal origin. Com-
pared to conventional PDAC, IPMC has specific clinical 
characteristics and favorable pathological features. The 
main genomic alterations in IPMC include GNAS and KARS 
(Fig. 1) [42–44]. Additionally, intra-ductal papillary muci-
nous neoplasm (IPMN) progress to invasive carcinomas 
with an accumulation of abnormalities in TP53 and SMAD4 
(Fig. 1) [45]. Pancreatic neuroendocrine carcinomas (Pan-
NECs) have high-grade, carcinoma-like nuclear features 
and characteristically exhibit aggressive clinical behavior, 
frequent metastases, and poor survival, unlike pancreatic 
neuroendocrine tumors (panNETs) [46]. The molecular pro-
file of PanNECs is characterized by TP53, RB1, and KRAS 
mutations, which are the key drivers of Pan-NEC (Fig. 1) 
[46, 47].
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Several sequencing analyses of pancreatic cancers using 
EUS-FNA/FNB specimens have recently been reported 
(Table  2) [35–37, 40, 41, 48–62]. The success rate of 
sequencing analysis using EUS-FNA/FNB specimens is 
reported to be 42–100%, although there is considerable 
variation among reports. We performed CGP analysis of 
solid-pseudopapillary neoplasm (SPN) of the pancreas using 
EUS-FNA specimens, reporting that CTNNB1 mutations 
were detected in all cases. Thus, CGP analysis of EUS-FNA 
specimens may be useful for low-grade malignant tumors, 
such as SPN [63]. The success rate of sequencing analysis 
of pancreatic cancers using surgically resected specimens 
has been reported to be 90–100%, and the success rate of 
sequencing analyses using EUS-FNA/FNB specimens is low 
[51, 64]. Insufficient sample volumes of tissue and number 
of cells, as well as degradation of DNA quality, are con-
sidered reasons for the failure of sequencing analysis [48, 
65]. In a study comparing tissue sampling methods between 
EUS-FNA and EUS-FNB, EUS-FNB achieved a higher 
proportion of diagnostic adequacy than EUS-FNA (90.9 vs. 
66.9%, P = 0.02). In multivariate analysis, only EUS-FNB 
(OR: 4.95, 95% CI 1.11–22.05, P = 0.04) was identified as 
an independent factor contributing to the success of the 
genomic analysis [37]. A meta-analysis comparing Franseen 
and fork-tip needles for EUS-FNB showed a high core tissue 
collection rate (> 90%) for both needles [66].

Park et al. retrospectively examined factors related to 
the success of CGP analysis in 190 patients who underwent 
EUS-FNA/FNB for pancreatic tumors, reporting that only 

the external diameter of the puncture needle was a signifi-
cant factor related to the success of CGP analysis in a mul-
tivariate analysis [53]. The success rate of CGP analysis 
was significantly lower for the 25-gage needles than for the 
19/22-gage needles (38.8 vs. 60.9%, P = 0.003) [53]. Kandel 
et al. examined the proportion of fulfillment of the require-
ment for CGP analysis with a single puncture, comparing 
25- and 19/22-gage needles in patients who underwent EUS-
FNA/FNB for pancreatic tumors [49]. Additionally, 78% of 
patients with 19/22-gage needles fulfilled the requirement 
for CGP analysis, whereas the rate was as low as 14% with 
25-gage needles. Based on these reports, the success rate of 
CGP analysis may be less with 25-gage puncture needles.

There are two reports of NOP analysis of specimens col-
lected by EUS-FNA/FNB for pancreatic cancers in Japan. 
Hisada et al. performed an NOP analysis on 63.6% (21/33) 
of specimens collected by EUS-FNB from pancreatic can-
cers that met NOP analysis suitability criteria (tumor cell 
content ≥ 20% and tissue size ≥ 4 mm) and reported that the 
success rate of NOP analysis was 57.1% (12/21) [61]. In a 
similar study, Ikeda et al. reported that NOP analysis suit-
ability criteria were met in 39.2% (60/153) of specimens col-
lected by EUS-FNA/FNB from pancreatic cancers, of which 
30 cases underwent NOP analysis, with a success rate of 
100% (30/30) [62]. It is considered important to meet suit-
ability criteria to increase the success rate of NOP analysis, 
and multivariate analysis has identified the use of 19-gage 
needles and EUS-FNB as contributing factors to NOP analy-
sis suitability criteria [62].

Fig. 1  Representative gene mutations in hepatobiliary–pancreatic 
cancers. Driver and actionable mutations are listed in red and blue, 
respectively. HCC hepatocellular carcinoma, IHCC intrahepatic chol-
angiocarcinoma, GBC gallbladder carcinoma, EHCC extrahepatic 

cholangiocarcinoma, PanNEC pancreatic neuroendocrine carcinoma, 
IPMC intra-ductal papillary mucinous carcinoma, PC pancreatic can-
cer
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As mentioned above, 3–4 and 2–3 punctures are recom-
mended for pathological diagnosis of pancreatic tumors 
using EUS-FNA and EUS-FNB, respectively. However, the 
optimal number of punctures for sequencing analysis has not 
been clarified. According to previous reports, it is possible 
to collect sufficient samples for sequencing analysis with 
1–3 punctures of EUS-FNA and FNB [49, 67]. Nonetheless, 
there are cases in which the sample volume is low even if the 
number of punctures is increased, and the variation among 
cases is considerable.

In contrast, pancreatic cancer is a typical low-cellularity 
tumor with a high stromal component, while its tumor com-
ponent content is approximately 5–20% [68]. Therefore, pan-
creatic cancer is considered a challenging tumor for sequenc-
ing analysis. The success rate of sequencing analysis using 
EUS-FNA/FNB specimens tends to be lower than that of 
other gastrointestinal cancers [69, 70].

When biopsy specimens are used for the analysis of 
genetic abnormalities, the quality of DNA and RNA, and 
the collection of a sufficient tumor volume are required. 

Table 2  Sequencing analysis of pancreatic cancers using EUS-FNA/FNB

ND not described, EUS endoscopic ultrasound, FNA fine-needle aspiration, FNB fine-needle biopsy, PDAC pancreatic ductal adenocarcinoma, 
seq sequence, WGS whole-genome sequence, MB molecular barcodes, WES whole exome sequence

Year References Patientnumber Cancertype Samplingmeth-
ods

Analysismeth-
ods

Analysistarget Success rate 
ofsequencing 
analysis

Detection rate 
ofactionable 
mutations

2013 Young et al. [41] 23 PDCA (18)
Others (5)

FNA Targeted seq 287 genes 100% ND

2016 Valero et al. [55] 17 ND FNA Targeted seq 
with MB

409 genes 89.5% 23.5%

2016 Rodriguez et al. 
[56]

23 PDAC (15)
Others (8)

FNA RNA seq 85 genes 71.9% ND

2016 Kameta et al. 
[35]

38 PDAC (27)
Others (11)

FNA Targeted seq 50 genes 100% ND

2016 Gleeson et al. 
[41]

47 ND FNA Targeted seq 160 genes 61.7% 0%

2017 Lowery et al. 
[54]

52 PDAC (52) FNA/FNB Targeted seq 410 genes ND ND

2018 Larson et al. 
[48]

61 ND FNA/FNB Targeted seq ND 67.2% ND

2019 Elhanafi et al. 
[37]

167 ND FNA/FNB Targeted seq 47 genes 70.1% ND

2019 Dreyer et al. [36] 41 PDAC (36)
Others (5)

FNB WGS ND 72% 16%

2020 Ishizawa et al. 
[52]

26 PDAC (26) FNA Targeted seq 409 genes 100% ND

2020 Park et al. [53] 190 PDAC (190) FNA/FNB Targeted seq 83 genes 57.4% ND
2021 Kandel et al. 

[49]
50 PDAC (37)

Others (13)
FNA/FNB Targeted seq ND 92% ND

2021 Takano et al. 
[57]

58 PDAC (58) FNA/FNB Targeted seq 
with MB

50 genes 94.8% 22.4%

2021 Habib et al. [58] 59 PDAC (56)
Others (3)

FNA Targeted seq 9 genes ND ND

2021 Semaan et al. 
[59]

23 PDAC (23) FNA EpCAM-
pulldown com-
binedwith MB 
WES

ND 100% 21.7%

2021 Carrara et al. 
[60]

33 PDAC (33) FNB Targeted seq 21 genes 97% ND

2021 Kondo et al. [51] 22 ND FNA Targeted seq 324 genes 68.2% ND
2022 Gan [50] 26 PDAC (26) FNA/FNB Targeted seq ND 42–81% ND
2022 Hisada et al. 

[61]
33 PDAC (31)

Others (2)
FNB Targeted seq 124 genes 57.1% 33.3%

2023 Ikeda et al. [62] 30 PDAC (30) FNA/FNB Targeted seq 124 genes 100% ND
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Representative specimens from the same patients with pan-
creatic cancer who underwent EUS-FNA and EUS-FNB 
are shown (Fig. 2). EUS-FNB specimens revealed multiple 
histological tissues and tissue microfragments, whereas the 
EUS-FNA specimen did not include tissue microfragments 
or sufficient tumor cells. In a study comparing the sample 
quality obtained by EUS-FNA and EUS-FNB for pancreatic 
cancers, a significantly higher sample volume [71], cellular-
ity [72–74], and DNA/RNA yield [49, 67] were obtained 
with EUS-FNB than those with EUS-FNA. Kandel et al. 
reported that the median tumor cellularity of the specimens 
was 40% and 10%, and the DNA concentration was 5.93 μg/
ml and 3.37 μg/ml for EUS-FNB and EUS-FNA, respec-
tively [49]. In CGP analysis in Japan (NOP and F1CDx), 
a minimum of 20% tumor cellularity is recommended; 
therefore, EUS-FNB is preferred over EUS-FNA for CGP 
analysis. In addition, it has been reported that the success 

rate of sequencing analysis is lower for formalin-fixed par-
affin-embedded (FFPE) samples than for fresh tumor tissues 
due to the susceptibility to DNA quality degradation. The 
success rate of sequencing analysis using FFPE specimens 
was 84.8%, whereas that using fresh tumor tissue was sig-
nificantly higher, at 97.4% (P < 0.05) [75]. Therefore, the 
specimen type should be carefully considered [76].

As mentioned above, pancreatic cancer has few gene 
alterations other than those on major driver genes, such as 
KRAS, TP53, CDKN2A, and SMAD4; however, genome-
matched therapy based on CGP analysis has been reported 
to prolong the prognosis of patinets with pancreatic cancer 
[77]. Several reports have identified actionable mutations 
in pancreatic cancer using sequencing analysis, increasing 
treatment options (1–26%) (Fig. 1) [54, 77–81]. Moreover, 
a study of CGP analysis in several patients with pancreatic 
cancer revealed that gene abnormalities, such as BRCA2, 

Fig. 2  Comparison of the representative EUS-FNB and EUS-FNA 
specimens in the same patient with pancreatic cancer. A 22-mm pan-
creatic cancer lesion was punctured with a 22-gage FNB and FNA 
needle. (a: Left upper) The EUS-FNB specimen obtained using a 
22-gage FNB tri-tip core needle revealed multiple histological tis-
sues. (b: Right upper) The tissue microfragment with intact tissue 
architecture was diagnosed as moderately differentiated pancreatic 
adenocarcinoma. These FNB specimens contributed to the suitability 
of CGP analysis. (c: Left bottom) The EUS-FNA specimen obtained 
using a 22-gage FNA lancet needle did not include tissue microf-
ragments. (d: Left bottom) Most characteristic specimens showed 

blood clots. A sufficient number of tumor cells was not observed. 
Tumor cellularity of the specimens was 10% (88/892 cells) and 50% 
(618/1247 cells) for EUS-FNA and EUS-FNB, respectively. Very lit-
tle tissue was collected by EUS-FNA, and most of the nucleated cells 
were neutrophils in the peripheral blood. Although pancreatic cancer 
was diagnosed, we speculated that CGP analysis of these specimens 
was impossible and/or unsuitable. EUS-FNA specimens sometimes 
include tissues, making it possible to perform CGP analyses. EUS 
endscopic ultrasound, FNA fine-needle aspiration, FNB fine-needle 
biopsy, CGP comprehensive genomic profiling
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BRAF, ERBB2, CDK12, PIK3CA, FGFR2, and EGFR, are 
more frequent in patients with pancreatic cancer lacking 
KRAS mutations; therefore, patients with pancreatic cancer 
lacking KRAS mutations should undergo CGP analysis [82]. 
In addition, CGP analysis can be performed for not only pan-
creatic cancer, but also low-grade malignant tumors such as 
SPN or pancreatic neuroendocrine tumors, which may lead 
to genome-matched therapy. Therefore, the importance of 
CGP analysis is expected to increase in future. To improve 
the success rate of CGP analysis using EUS-FNA/FNB spec-
imens, it is necessary to prospectively study a large num-
ber of cases, including the selection of the puncture needle, 
number of punctures, aspiration method, and specimen type.

Genomic analysis of biliary tract cancers using 
EUS‑FNA/FNB specimens

The types of driver gene mutations in biliary tract cancers 
vary greatly depending on the cancer anatomical classifi-
cation, including FGFR2, IDH1/2, EPHA2, BAP1, KRAS, 
SMAD4, ARID1A, GNAS, TP53, BRCA1/2, ERBB2, and 
PIK3CA in intrahepatic cholangiocarcinoma (IHCC); 
PRKACA/B, ELF3, ARID1A/B, KRAS, SMAD4, GNAS, 
TP53, BRCA1/2, ERBB2, and PIK3CA in extrahepatic chol-
angiocarcinoma (EHCC); and EGFR, ERBB2/3, PTEN, 
ARID2, MLL2/3, TERT, TP53, BRCA1/2, and PIK3CA in 
gallbladder carcinoma (GBC) [83–85] (Fig. 1). Biliary tract 
cancers do not have a particularly high frequency mutations, 
such as KRAS in pancreatic cancer, but rather a high pres-
ence of relatively low-frequency mutations. Furthermore, 
approximately 40% of biliary tract cancers have action-
able mutations that can serve as therapeutic targets (Fig. 1) 
[84–95]. The National Cancer Center Network guidelines 

list eight druggable markers in biliary tract cancer (NTRK 
fusion, MSI-H, TMB-H, BRAF, V600E, FGFR2 fusions/rear-
rangement, IDH1 mutations, RET fusion, and HER2 overex-
pression) and their corresponding therapeutic agents [96].

In the reports regarding tissue sampling, when EUS-FNA 
was compared with forceps biopsy and brush cytology dur-
ing ERCP for malignant biliary stricture, including biliary 
tract cancers, EUS-FNA had higher sensitivity, specificity, 
and diagnostic accuracy than forceps biopsy and brush cytol-
ogy during ERCP, being more useful [97, 98]. Moreover, 
in a study comparing peroral cholangioscopy-guided for-
ceps biopsy (POC-FB) and EUS-FNA/FNB for malignant 
biliary strictures, POC-FB was recommended for proximal 
and intrinsic strictures, whereas EUS-FNA/FNB was rec-
ommended for distal and extrinsic strictures, with a high 
diagnostic accuracy rate [99].

Several sequencing analyses of biliary tract cancers using 
EUS-FNA/FNB specimens have recently been reported 
(Table 3) [40, 100–103]. In 2019, Hirata et al. performed 
EUS-FNA in 21 cases of biliary tract cancer and reported 
that CGP analysis was possible in 20 cases (95.2%). In addi-
tion, actionable mutations were identified in 7 of them for 
the first time [100]. Kai et al. performed EUS-FNA in 12 
patients with advanced or postoperative recurrent biliary 
tract cancer, reporting that CGP analysis could be performed 
in all patients [101]. Maruki et al. performed FISH + targeted 
RNA sequencing analysis of FFPE specimens collected by 
EUS-FNA in 26 patients with advanced or postoperative 
recurrent biliary tract cancer to determine whether FGFR2 
rearrangement was present, finding mutations in two patients 
(7.7%) [102]. As actionable mutations have been identified 
in biliary tract cancers by CGP analysis using EUS-FNA/
FNB specimens, the importance of CGP analysis is likely 
to increase, similar to pancreatic cancer.

Table 3  Sequencing analysis of biliary tract cancers using EUS-FNA/FNB

ND not described, EUS endoscopic ultrasound, FNA fine-needle aspiration, FNB fine-needle biopsy, seq sequence, PNA peptide nucleic acid, 
PCR polymerase chain reaction, FISH fluorescent in situ hybridization, AC ampullary cancer, IHCC intrahepatic cholangiocarcinoma, GBC gall-
bladder carcinoma, EHCC extrahepatic cholangiocarcinoma, MSI microsatellite instability

Year References Patient 
number

Cancer type Sam-
pling 
methods

Analysis methods Analysis target Success rate 
of sequencing 
analysis

Detection rate of 
actionable muta-
tions

2016 Gleeson et al. [40] 4 AC (4) FNA Targeted seq 160 genes ND ND
2017 Choi et al. [103] 13 IHCC (7)

GBC (5)
AC (1)

FNB PNA-PCR
Targeted seq

KRAS ND ND

2019 Hirata et al. [100] 21 IHCC (6)
EHCC (3)
GBC (12)

FNA Targeted seq 50 genes 95.2% 33%

2021 Kai et al. [101] 12 IHCC (3)
EHCC (2)
GBC (7)

FNA Targeted seq MSI 100% 0%

2021 Maruki et al. [102] 26 ND FNA FISH + targeted RNA seq FGFR2 ND 7.7%
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EUS-FNA/FNB- or ERCP-guided tissue sampling is 
performed for IHCC and EHCC (particularly localized 
bile duct carcinoma), whereas ERCP-guided tissue sam-
pling is performed for EHCC (particularly diffuse scleros-
ing bile duct carcinoma) [104]. In particular, CGP analy-
sis of malignant bile duct strictures using ERCP-guided 
tissue sampling specimens have reported high sensitivity 
and specificity (72% and 100%, respectively) [105], sug-
gesting that CGP analysis using ERCP-based tissue sam-
pling specimens may be feasible if there is a sufficient 
sample volume. However, if the lesion is located outside 
the bile duct, such as in lymph nodes or liver metastases, 
EUS-FNA/FNB can be used for tissue sampling, and the 
tissue sampling strategy should be considered accord-
ing to the lesion location [106]. Regarding GBC, ERCP-
guided tissue sampling is often difficult to selectively 
cannulate the gallbladder duct and associated with the 
incidental perforation of cystic duct in addition to post-
ERCP pancreatitis. Therefore, EUS-FNA/FNB is the first 
choice for puncturing the biliary tract via a non-luminal 
route [106].

Alternative methods for tissue fixation instead of FFPE 
include the use of frozen specimens or storing specimens 
in RNA later (Life Technologies, Carlsbad, CA). When 
frozen specimens are used for CGP analysis, additional 
collections are required in addition to those for diagnostic 
purposes at the time of EUS-FNA/FNB, but it has been 
reported that frozen specimens have good nucleic acid 
quality and can be stored for long periods [107]. Hirata 
et al. reported that rapid tissue preservation in RNA later 
and immediate refrigeration after EUS-FNA for biliary 
tract cancers can preserve DNA quality by preventing 
fragmentation and chemical modification, which are com-
mon in FFPE, resulting in a high success rate for CGP 
analysis [100].

In addition, there are methods using cellular samples 
and digital PCR to obtain a high success rate for CGP 
analysis even from small EUS-FNA/FNB specimens. In 
many cases, EUS-FNA/FNB cannot collect sufficient tis-
sue, and only cellular specimens can be obtained. Cellular 
specimen processing methods include cell block, smear, 
and liquefied specimen cytology, all of which are capable 
of extracting high-quality nucleic acids for genomic anal-
ysis [108–110]. Digital PCR, the third-generation PCR, 
is limited in the number of genes that can be analyzed, 
but it is reported to be capable of analyzing genes even 
in very small amounts [111]. Although there are some 
reports of CGP analyses using frozen specimens [35, 53, 
55, 60], cellular specimens [37, 40, 52], and digital PCR 
[112] collected by EUS-FNA/FNB for pancreatic cancers, 
therefore, case accumulation of CGP analysis using these 
methods for biliary tract cancers is needed.

Genomic analysis of liver cancers using EUS‑FNA/
FNB specimens

A meta-analysis summarizing reports of whole-genome 
analyses of 1,340 cases of hepatocellular carcinoma (HCC) 
identified a large number of driver genes, among which 
TERT (> 50%), TP53 (29.1%), CTNNB1 (28.6%), ALB 
(10.2%), APOB (9.8%), ARID1A (8.8%), ARID2 (8.2%), 
and AXIN1 (7.5%) gene mutations were highly prevalent 
[113] (Fig. 1). Approximately 25% HCC harbors potentially 
actionable mutations, but these mutations have not been 
translated into the clinical practice yet (Fig. 1) [114, 115]. 
Moreover, the mutational drivers of HCC, such as TERT, 
TP53, and CTNNB1, are un-druggable [114].

Because of the established percutaneous liver biopsy to 
tissue sampling in liver tumors, the 2021 ESGE guidelines 
weakly recommend EUS-guided biopsy for liver tumors, 
recommending it only under exceptional circumstances, such 
as for anatomical issues and upon failure of percutaneous 
biopsy [22]. Recently, Ichim et al. reported the usefulness 
of EUS-FNA for liver tumors, which was performed in 30 
cases of liver tumors where percutaneous liver biopsy was 
difficult due to a small tumor diameter or distance from the 
puncture site; diagnostic adequacy was obtained in 29 of 
these cases (97%) [116].

Moreover, a study comparing the diagnostic performance 
of percutaneous liver biopsy and EUS-FNA for liver tumors 
reported that the sensitivity, specificity, and diagnostic accu-
racy rate were comparable. However, complications were 
significantly low with EUS-FNA (17 vs. 2%, P < 0.01) [106]. 
The reasons for less complications with EUS-FNA/FNB are: 
the puncture needle used in EUS-FNA/FNB is smaller in 
diameter than that used in percutaneous liver biopsy (19–25 
gage vs. 16–18 gage), EUS has a high spatial resolution and 
can avoid small vessels, and EUS-FNA/FNB is unaffected by 
subcutaneous fat or the intestinal tract, unlike percutaneous 
liver biopsy [117].

Several studies have reported that percutaneous liver 
biopsy can be performed for CGP analysis in primary or 
metastatic liver cancers [75, 118]. Eso et al. [75] and Ozeki 
et al. [118] reported that the success rate of CGP analysis 
was 100% (22/22) and 84.9% (62/73), respectively. More-
over, several studies have been reported on sequencing 
analysis of liver cancers using EUS-FNA/FNB specimens 
(Table 4) [101, 103]. Choi et al. performed EUS-FNB for 
solid liver cancers in the left lobe [103]. In this study, 12 
patients had primary liver cancer (including four HCCs and 
seven IHCCs), and 16 had metastatic liver cancer (including 
seven pancreatic cancers five GBCs). CGP analysis was per-
formed on 16 of these cases (57%), detecting KRAS muta-
tions. Kai et al. also reported CGP analysis using EUS-FNA 
specimens for metastatic liver cancer [101]. These reports 
[101, 103] suggest that in cases where it is difficult to obtain 
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tissue samples from the primary lesion for reasons, such 
as anatomical issues and small tumor size, EUS-FNA/FNB 
may be useful for obtaining tissue samples from liver tumors 
if there are metastatic lesions in the liver.

As mentioned above, few actionable mutations lead to 
the treatment of HCC; therefore, few therapeutic agents can 
lead to genome-matched therapy currently, even if the tis-
sue is obtained by EUS-FNA/FNB. Further progress in the 
genomic analysis of HCC and its relationship with clini-
cal information, such as the efficacy of molecular-targeted 
drugs and immune checkpoint inhibitors, based on big data 
will lead to the expansion of the indications of existing 
molecular-targeted drugs for HCC. However, CGP analy-
sis using EUS-FNA/FNB specimens is useful for metastatic 
liver cancer, particularly metastatic pancreatic or biliary 
tract cancer, because actionable mutations that can lead to 
genome-matched therapy are recognized.

Conclusion

CGP based on NGS analysis is often performed on surgi-
cally resected specimens in daily practice. However, surgi-
cal tissue sampling for CGP analysis is difficult for patients 
with un-resectable pancreatic and biliary tract cancers. Tis-
sue sampling using EUS-FNA/FNB allows CGP analysis 
in inoperable patients with pancreatic and biliary tract can-
cers, leading to genome-matched therapy. Therefore, tissue 
sampling using EUS-FNA/FNB is clinically significant 
for pancreatic and biliary tract cancers. Notably, genome-
matched therapy based on CGP analysis has been shown to 
improve the prognosis of pancreatic cancer patients. How-
ever, the success rate of CGP analysis in EUS-FNA/FNB 
specimens compared to that in surgically resected specimens 
is currently not clinically sufficient. For many patients with 
pancreatic and biliary tract cancers to benefit from CGP 
analysis, it is essential to accumulate evidence through 
prospective studies of a large number of cases, including 
the selection of puncture needle, number of punctures, 

aspiration method in EUS-FNA/FNB, and specimen type, 
to improve the success rate of CGP analysis.
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