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Spinal AMPA receptors: Amenable players in central sensitization for chronic 
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ABSTRACT
The activity-dependent trafficking of AMPA receptors (AMPAR) mediates synaptic strength and 
plasticity, while the perturbed trafficking of the receptors of different subunit compositions has 
been linked to memory impairment and to causing neuropathology. In the spinal cord, nocicep-
tive-induced changes in AMPAR trafficking determine the central sensitization of the dorsal horn 
(DH): changes in AMPAR subunit composition compromise the balance between synaptic excita-
tion and inhibition, rendering interneurons hyperexcitable to afferent inputs, and promoting Ca2+ 

influx into the DH neurons, thereby amplifying neuronal hyperexcitability. The DH circuits become 
over-excitable and carry out aberrant sensory processing; this causes an increase in pain sensation 
in central sensory pathways, giving rise to chronic pain syndrome. Current knowledge of the 
contribution of spinal AMPAR to the cellular mechanisms relating to chronic pain provides 
opportunities for developing target-based therapies for chronic pain intervention.
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Introduction: Implication of spinal AMPAR for 
chronic pain

Chronic pain is a major healthcare issue worldwide; 
it has a serious impact on an individual’s life and 
work activities, as well as on society [1]. It has been 
estimated that about 20% of the population in 
Europe suffers from persistent or chronic pain 
[2,3], with even more in the United States, with 
a figure ranging from 20% to 40% [4]. This problem 
is growing each year, in both absolute numbers and 
in terms of its distribution across the global popula-
tion [5]. The International Association for the 
Study of Pain (IASP) has announced the 2020 
Global Year for the Prevention of Pain to help 
focus on disseminating pain prevention strategies 
among researchers, clinicians, and every involved 
party for a global view on pain. Through the coop-
eration between the IASP and the World Health 
Organization, the definition of chronic pain has 
been revised and will appear in the upcoming edi-
tion of the International Classification of Diseases 
in the form of a new classification: chronic pain as 
a disease in its own right [6,7]. In such a context, 
chronic pain requires specialized, targeted treat-
ment, i.e. with no regard to the trigger(s) that give 

rise to the development of chronic pain syndrome. 
To date, however, there is no available therapy for 
curing chronic pain that is both effective and free of 
adverse effects.

After decades of studying chronic pain, it has 
emerged that mechanisms contributing to the 
development of chronic pain and its maintenance 
are multifaceted and complex; such mechanisms 
can involve versatile and intricate signaling path-
ways engaged in sensory processing, both in the 
periphery and in the central nervous system 
(CNS), as has been outlined in a number of excep-
tional reviews [8–10]. A plethora of alterations 
have been described in signaling cascades, synaptic 
and neuronal activity, nerve cell function and net-
work integration – from individual proteins to ion 
channels and receptors – suggesting that the mul-
tiple discovered mechanisms can significantly con-
tribute to perturbed sensory processing, resulting 
in pathological pain.

Among those, a class of glutamatergic recep-
tors – the α-amino-3-hydroxy-5-methyl-4-isoxazo-
lepropionic acid receptors (AMPAR) – is of great 
interest. This class of ionotropic receptors plays 
a critical role in synaptic strength and plasticity 
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[11–13] and is considered to underpin learning 
and memory formation in the brain. In the spinal 
cord, these receptors mainly determine the central 
sensitization of the dorsal horn (DH) – 
a phenomenon which has been thought to repre-
sent a specific form of spinal plasticity and which 
underlies pain states of various origins [14–19] 
(for a review see [20,21]).

The implications of the role of spinal AMPAR 
in cellular mechanisms mediating the development 
and maintenance of chronic pain have emerged 
from several lines of experimental evidence. 
Studies from in vivo models of pain have clearly 
demonstrated that the pharmacological inhibition 
of spinal AMPAR significantly alleviates nocicep-
tive hypersensitivity in animals experiencing pain 
of different origin: neuropathic [18], inflammatory 
[22–24], injury-induced [25,26] or postoperative 
pain [27–29]. Spinal AMPAR mediates sensory 
signaling, both at nociceptive and non- 
nociceptive circuits, and are heavily involved in 
the development [23,30,31] and maintenance of 
chronic pain [14,23,31–33]. Another line of evi-
dence implicating AMPAR in terms of chronic 
pain originates from genetically engineered 
mouse lines, in which genetic deletion of 
a subunit alone (one of the four subunits, GluA1- 
4, which assemble into a tetramer of various com-
binations to make up the functional cation- 
permeable channel) clearly changed pain sensation 
in knock-out (KO) animals [32,34,35].

Spinal AMPAR: Are they any different from 
those across the brain?

The key role that AMPAR plays in synaptic trans-
mission and plasticity makes it difficult to use abla-
tion of this class of receptors in order to manage 
chronic pain because it can cause severe dysfunc-
tions in the CNS. In a wider context, studies using 
generalized genetic manipulations offer a basic pic-
ture of the specific roles of all four AMPAR sub-
units (GluA1-4). Using gene targeting to harbor the 
expression of the AMPAR subunits, it has been 
found that mice deficient in GluA2 exhibit 
impaired motor coordination and behavioral 
abnormalities [36] and died of seizures during the 
first weeks postnatal [37]. Interestingly, mice with 
the genetic deletion of GluA2 were able to express 

long-term potentiation (LTP) [36,38] – an experi-
mental model of synaptic plasticity for learning and 
memory formation. Likewise, double KO animals 
lacking GluA2/A3 expressed LTP, but displayed 
a deficit in basal transmission [39]. Conversely, 
the genetic deletion of GluA1 resulted in impaired 
LTP [40] and robust short-term memory deficit 
[41–43], pointing to a central role of the GluA1 
subunit in synaptic plasticity and LTP.

In the spinal cord pain pathways, LTP at the 
C-fiber synapses was documented following 
a high-frequency stimulation of primary afferents 
[44,45], a mode of presynaptic stimulation similar 
to that used for the hippocampal LTP induction 
[46,47], or in response to noxious peripheral sti-
muli [48,49]. Such LTP caused hyperalgesia that 
could last for several days [50]. Although it high-
lights the causality between LTP at the C-fiber 
synapses and chronic pain, whether and to what 
degree the GluA1-containing AMPAR are engaged 
in nociceptive-induced potentiation remains open 
to question.

A common stoichiometry of AMPAR – identi-
fied in the forebrain neurons – is the receptor 
composition of the two GluA1 and two GluA2 
subunits [51]. The hetero-tetrameric composition 
has been confirmed using a single-cell genetic 
approach coupled with electrophysiology, and it 
was found that most receptors in the hippocampal 
pyramidal neurons are GluA1/A2 heteromers 
(~80%), with minor GluA2/A3 ones [52,53]. The 
GluA4 subunit is amply expressed by interneurons 
and is not involved in the fast transmission in the 
“mature” excitatory neurons of adults [54,55]. 
GluA2 homomers are not thought to occur natu-
rally, and only a few GluA1 homomers (approxi-
mately 8%) were identified [39]. Conversely, most 
of the knowledge, if not all, with regard to the 
AMPAR subunit composition in the spinal cord 
has emerged from immunostaining with quantifi-
cation analysis of the immunoreactivity of 
GluA1-4.

According to the immunofluorescence regional 
analysis, all four AMPAR subunits are expressed in 
the spinal cord [56,57]. Their distribution, how-
ever, is not uniform: a higher immunoreactivity of 
both GluA1 and GluA2 was found in the DH, 
showing the highest GluA1 density in the super-
ficial DH (laminae I and II) – an area where most 
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C-and Aδ-nociceptive afferents terminate to form 
synapses with the laminae I–II DH neurons for 
nociceptive information integration and proces-
sing (for a review see [8,58]) – while the GluA2 
immunoreactivity is equally distributed through-
out the DH [59–61]. In contrast, GluA3 was 
detected in deeper laminae (III to V), an area of 
the low-threshold afferent projections. 
Consequently, it can be interpreted that AMPAR 
in the DH predominantly consist of GluA1/A2 
heteromers. Intriguingly, the GluA4 immunostain-
ing was noticed in the lamina I NK1 receptor- 
positive projection neurons [60], a small group of 
large neurons which convey chronic nociceptive 
transmission from the periphery [62]. Studies 
identifying the GluA1-4 stoichiometry in different 
neuronal types, especially in nociceptive vs. non- 
nociceptive circuits, will be of great importance.

Despite the fact that the AMPAR subunit com-
position in the DH remains largely elusive, electron 
microscopy studies, combined with immunofluor-
escence, have provided insights into the subcellular 
distribution of GluA1/A2. Both GluA1 and GluA2 
have been identified in the postsynaptic and extra-
synaptic membranes of the superficial DH neurons 
[34,57,63]. At synapses, the receptors are concen-
trated in varied densities; their number depends on 
spine geometry, and ranges from tens to hundreds, 
and correlates with the synaptic strength [64,65]. 
For instance, an individual “mature” (mushroom- 
shaped) spine of a CA1 pyramidal neuron can host 
up to 150 AMPAR [66]. Likewise, the number of 
AMPAR in the extrasynaptic plasma membranes 
varies greatly. The density of extrasynaptic 
AMPAR has been, however, many times lower 
than that of the synaptic ones, based on immuno-
gold labeling assessments [64] or studies of func-
tional AMPAR using the two-photon uncaging of 
glutamate combined with non-stationary fluctua-
tion analysis [65,67]. Estimates have shown an 
AMPAR density in immature Purkinje cells of 
approximately 910/μm2 at the synapses compared 
with 19/μm2 in the extrasynaptic membranes [65]. 
Similarly, the AMPAR count was several times less 
in the extrasynaptic membranes than at the 
synapses in the superficial DH [57,63]. Studies 

have also identified presynaptic AMPAR, both in 
the form of functional receptors [68] and as GluA1- 
4 immunoreactivity in primary afferent terminals 
[69]. The AMPAR subunit distribution revealed in 
the DH terminals closely resemble the distribution 
patterns of spinal GluA1-4, showing the predomi-
nant expression of presynaptic GluA4-containing 
CP-AMPAR in the laminae I–III (~70%), preferen-
tially localized in terminals of unmyelinated (noci-
ceptive) fibers, and the GluA2/A3 expression in the 
laminae III–IV, on myelinated fibers.

All four AMPAR subunits are highly homo-
logous (~70% amino acid identity), having con-
served transmembrane and extracellular 
domains, with only diverse C-terminal intracel-
lular tails [70,71]. Most GluA2 subunits undergo 
RNA editing that replaces glutamine with argi-
nine (Q/R editing) in the pore-forming region of 
the channel [72]; this ultimately prevents Ca2+- 
influx through the assembled channel [73]. Thus, 
almost all AMPAR in the adult brain (around 
99%) are GluA2-containing, hence forming Ca2 

+-impermeable channels [74,75], whereas small 
amounts of GluA2-lacking AMPAR are Ca2+- 
permeable (CP). Consistently, AMPAR in the 
superficial DH are predominantly GluA2- 
containing (Ca2+-impermeable) channels. 
Electrophysiological studies have confirmed this 
by recording a weak blocking effect of intracel-
lular polyamines on the AMPAR-mediated cur-
rents (i.e., an almost linear I–V curve) induced 
by pharmacological activation (total AMPAR 
pool) in the lamina II DH neurons [63,76]. 
Meanwhile, the postsynaptic AMPAR at noci-
ceptive synapses – between primary nociceptive 
afferents and the DH neurons – consist of 
a mixed population of GluA2-containing (Ca2+- 
impermeable) receptors, with a relatively large 
proportion of GluA2-lacking, CP-AMPAR. This 
appears due to the compelling blocking effects of 
i) intracellular polyamines (i.e., the inwardly rec-
tified I–V curve) and ii) selective antagonists of 
CP-AMPAR on the excitatory postsynaptic 
AMPAR-mediated currents induced by primary 
nociceptive afferent stimulation (EPSC) 
[22,34,77]. Aside from functional studies, 
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quantitative estimates of the GluA1-labeled par-
ticles at the synapses of the superficial DH were 
found to exceed those of GluA2 [63].

Nociceptive-induced AMPAR trafficking: 
Broken recycling of GluA1/A2 and chronic 
pain
AMPAR are highly dynamic and mobile in plasma 
membrane: the receptors shuttle into and out of 
synapses and diffuse laterally (Figure 1a). AMPAR 
diffuse almost freely due to Brownian forces, either 
individually or within a cluster, before being 
trapped at the synapses. This is how a large frac-
tion of AMPAR is recruited from their extrasynap-
tic pool to synapses for canonical LTP and 
hippocampal learning [78,79]. Another route for 
recruiting AMPAR is exocytosis of the receptors 
from the intracellular stores via recycling endo-
somes transporting AMPAR to the plasma mem-
brane [80–82].

Nociceptive stimuli driven by long-lasting afferent 
activation break down the constituent recycling of 
spinal AMPAR. Experimental findings have made 
clear that the nociceptive-induced changes in 
dynamic AMPAR trafficking in the superficial DH 
neurons relate to the maintenance of persistent pain 
of different origins. Molecular biology studies have 
documented a rapid increase in the amount of 
GluA1, and a decrease in GluR2 in the plasma mem-
brane (surface fraction) induced by peripheral injec-
tion of an inflammatory agent (complete Freund’s 
adjuvant, CFA); both changes were persistent over 
the time course of long-lasting pain in the CFA- 
induced model of persistent peripheral inflamma-
tion [23,34,63]. A similar re-distribution of GluA1- 
containing CP-AMPAR, namely, an increased num-
ber of GluA1 in the plasma membrane while 
a decrease in the cytosol, has been observed in dif-
ferent animal models of pain, such as neurogenic 
peripheral pain induced by capsaicin [83,84], and 
inflammatory pain induced by carrageenan [85] or 

Figure 1. Spinal AMPAR trafficking for nociceptive signaling in normal (healthy) and chronic pain states. (a) After exocytosis 
from the intracellular stores such as the endoplasmic reticulum (ER), AMPAR laterally diffuse across the extrasynaptic plasma 
membrane to and from the postsynaptic density (PSD), undergoing constituent endocytosis/exocytosis cycles via recycling endo-
somes until are immobilized within the nanodomains of the receptors at PSD. (b) In chronic pain, the long-lasting activation of 
nociceptive afferents triggers the mobilization of the GluA2-containing AMPAR at PSD and the receptors undergo internalization 
from the synapses (blue arrow) followed by degradation (endocytosis via recycling endosomes). The GluA1-containing AMPAR 
replenish a pool of surface receptors and are mobilized to synapses (red arrow) to replace the GluA2-containing AMPAR within the 
nanodomains at PSD. Such a re-arrangement of the spinal AMPAR of different subunit compositions represents nociceptive plasticity 
in central pain pathways for the chronic pain maintenance.
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formalin [86]. The nociceptive-induced upregulation 
of CP-AMPAR (GluA2-lacking receptors) in the 
superficial DH neurons was further confirmed 
through recordings of the augmented AMPAR- 
mediated currents, either alone or in combination 
with Ca2+ imaging technique, in persistent inflam-
matory pain [30,63,76], or following acute noxious 
stimulation [84] or after being induced by proin-
flammatory mediators [87,88].

Nociceptive stimuli facilitate the membrane inser-
tion of GluA1-containing AMPAR at the extrasy-
naptic sites (Figure 1b). In the case of persistent 
inflammatory pain, the relative ratio of GluA1 at 
the postsynaptic and extrasynaptic membranes was 
estimated as 0.62 and 2.54, respectively, and 0.79 in 
the cytoplasm [63]. Neuroinflammatory mediators 
also enhanced the recycling of GluA1 homomers 
from the cytosol back to the extrasynaptic mem-
brane, thereby promoting lateral diffusion of 
GluA1/GluA2 heteromers to the synapses [89,90].

However, increasing the number of GluA1- 
containing CP-AMPAR in the plasma membrane 
is insufficient to potentiate synapses [91]. The 
newly added receptors shuttling into the synapses 
have to be trapped and stabilized at postsynaptic 
density (PSD); this occurs via the interaction of an 
individual AMPAR with the scaffold proteins. 
Elegant approaches combined with super- 
resolution imaging for single-molecule localization 
and tracking have enabled the visualization of 
AMPAR in hippocampal neurons. Their stabiliza-
tion inside synapses, along with the receptors’ 
compactness within nanodomains, was reversibly 
regulated by the expression level of the scaffold 
protein PSD-95 [92], or the auxiliary subunit star-
gazin which binds to PDZ domain scaffolds 
[91,93]. Electrophysiological recordings of the 
postsynaptic AMPAR-mediated EPSC in the 
lamina II DH neurons have documented the noci-
ceptive-induced upregulation of CP-AMPAR at 
nociceptive synapses in chronic inflammatory 
pain conditions [19,34,77]. Such upregulation can 
last up to 21 days after the induction of inflamma-
tory pain [94]. A rapid increase in GluA1, but not 
GluA2/A3, in the synaptosomal fraction [83] and 
at the nociceptive synapses established by C-fibers 
[84], was also confirmed in a model of capsaicin 
pain. Changes in the trafficking of spinal AMPAR 
in persistent pain conditions include the 

complementary boosted internalization of GluA2- 
containing, Ca2+-impermeable AMPAR from the 
synapses between the nociceptive afferents and the 
DH neurons (Figure 1b). Experimental evidence 
consists of electrophysiological recordings showing 
the inwardly rectified (GluA2-lacking) AMPAR- 
mediated EPSC in the lamina II DH neurons 
[19,34,77] and the quantification of the relative 
ratio of GluA2 across cellular compartments, 
which dropped to 0.61 at synapses, while increased 
to 1.2 in the cytoplasm, as rapidly as within 24 h of 
the onset of inflammatory pain [63]. Studies utiliz-
ing the latest advances involving super-resolution 
imaging in the superficial DH are in high demand 
to provide new insights into the dynamic re- 
distribution of AMPAR following nociceptive sti-
muli for single-particle tracking with nanoscale 
resolution. Using such an approach has allowed, 
to date, the identification of the GluA1 nanodo-
mains at nociceptive terminals on peptidergic 
afferent fibers in the conditions of inflammatory 
pain [95]. However, whether it mirrors the orga-
nization and the distribution of the nanodomains 
of the receptors at the postsynaptic membrane at 
nociceptive synapses remains enigmatic. Likewise, 
the trafficking of spinal AMPAR of various sub-
unit composition regarding different neuronal 
subtypes is still one of the major outstanding ques-
tions in normal states, let alone in cases of chronic 
pain.

AMPAR phosphorylation as a molecular 
mechanism for broken trafficking

The phosphorylation of AMPAR subunit(s) is a key 
regulatory factor that determines not only biophysical 
properties but also the trafficking of the receptors, lead-
ing to the modulation of synaptic plasticity. GluA1 and/ 
or GluA2 can undergo phosphorylation at different 
substrates (amino acid residues) at the C-tail, which 
contains multiple phosphorylation sites and protein- 
binding motifs. Phosphorylated receptors thus exhibit 
changes in single-channel properties [96] and interac-
tion with scaffold proteins [96,97].

The mechanistic basis of the internalization of GluA2- 
containing AMPAR from nociceptive synapses, as deci-
phered by Park et al. [34], includes the phosphorylation 
of GluA2 at Serine (S) 880 by the protein kinase 
C (PKC) – the most heavily studied protein kinase – in 
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the postsynaptic compartments of DH neurons; it dis-
rupts the binding of the receptor to synaptic proteins, 
such as the AMPAR-binding protein (ABP)/glutamate 
receptor-interacting protein (GRIP), stargazing, and pro-
tein interacting with C kinase 1 (PICK1) [98]. The 
phosphorylated receptor consequently becomes capable 
of diffusing and shuttling out the synapse. The upstream 
trigger in this mechanism has been the activation of PKC 
subtype α, which is Ca2+-dependent process, induced by 
the activation of postsynaptic NMDA receptors 
(NMDAR), thereby  NMDAR-mediated Ca2+ influx, 
following the neuronal depolarization by nociceptive 
afferent stimuli [34]. In summary, the PKCα-dependent 
phosphorylation of GluA2 sets off a cascade of intracel-
lular events, resulting in GluA2 internalization from 
nociceptive synapses, and eventually pain hypersensitivity 
[14]. Using the targeted mutation of the GluA2 phos-
phorylation site (by editing S882 to alanine, K882A) 
prevents the phosphorylation of GluA2 at S880 by 
PKC, and alleviates pain hypersensitivity in animals 
with persistent peripheral inflammation [34].

The phosphorylation of GluA1, at S831 and 
S845, has been found in neurogenic pain induced 
by capsaicin [59,99]. This was effectively blocked 
by the pharmacological inhibition of PKC [100]. 
Using genetic approaches (gene-silencing) com-
bined with the spinal delivery of genetic materials, 
the PKCα-dependent upregulation of GluA1- 
containing CP-AMPAR has been validated in per-
sistent inflammatory pain; moreover, the transient 
knockdown of spinal PKCα recovered both upre-
gulated AMPAR-mediated currents and Ca2+ 

influx in the lamina II DH neurons, returning 
them back to normal levels [76] and alleviating 
persistent inflammatory pain [22].

Among other PKC isoforms, PKC gamma was 
found to be capable of phosphorylating GluA1 at 
S831, but not at S845, in cases of neuropathic pain 
[101], and to enhance the membrane insertion of 
GluA1 in post-surgical pain [102]. In addition to 
S831 and S845, the other substrate on the GluA1 
subunit – the S818 phosphorylation site (the PKC 
substrate only) – has been found to be critical for 
the synaptic incorporation of GluA1-containing 
CP-AMPAR, and the hippocampal LTP [103]. 
However, the implications of this highly conserved 
GluA1 residue for nociceptive-induced trafficking 
of the receptors remains unknown.

Apart from PKC, other protein kinases also 
phosphorylate the GluA1 subunit. The role of pro-
tein kinase A (PKA) in promoting the membrane 
insertion of GluA1 is fairly notable. PKA targeted 
the S831 and S845 sites on the GluA1 in inflam-
matory pain [85] and capsaicin-induced pain 
models [104]. Meanwhile, the engagement of Ca2 

+-calmodulin-dependent kinase II (CaMKII) in the 
phosphorylation of spinal GluA1 remains, to some 
degree, debatable, with conflicting evidence across 
the literature. Some of the studies have reported 
no link between the phosphorylation of spinal 
GluA1, at S831 and/nor S845 sites, and the activa-
tion of CaMKII in chronic injury [101] or thermal 
pain models [105], while others have shown an 
increased expression of CaMKII that triggered 
the membrane insertion of GluA1 in a capsaicin 
pain model [83,106], as well as the CaMKII alpha- 
dependent GluA1 phosphorylation at S831 in post-
operative pain [107]. In comparison, the insertion 
of CP-AMPAR into the synapses in the brain was 
found to depend upon CaMK activation [108], 
while the CaMKII-dependent phosphorylation of 
GluA1 at S831 clearly potentiated synaptic trans-
mission [109]. Consequently, knock-in mutations 
in GluA1 phosphorylation sites targeted by 
CaMKII and PKA produced deficits in hippocam-
pal LTP and unambiguous memory defects [110], 
indicating that the PKA-driven phosphorylation of 
GluA1 is not sufficient for the receptors’ incor-
poration into synapses, but requires also CaMKII 
activation [111].

Perturbed trafficking of spinal AMPAR in 
chronic pain: To what degree does it underlie 
nociceptive plasticity in the DH?

Nociceptive-induced changes in functional 
AMPAR lead to the altered excitability of the DH 
neurons; they become over-excited, causing overall 
hyperexcitability of the DH, a state that is asso-
ciated with chronic pain in persistent peripheral 
inflammation [112], or after spinal cord injury 
[89,113]. The re-distribution of spinal AMPAR 
across neuronal compartments implies nociceptive 
neural plasticity evoked by a long-lasting presy-
naptic drive from nociceptive afferents. This 
AMPAR-mediated plasticity largely contributes to 
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central sensitization and pain hypersensitivity 
(Figure 2).

Nociceptive-induced changes in spinal AMPAR 
appear to be cell-type specific. A prominent upre-
gulation of CP-AMPAR has been documented in 
lamina II DH neurons characterized by intrinsic 
tonic firing properties in persistent inflammatory 
pain [30,63,76]. Neurons exhibiting tonic firing 
properties are a mixed population of heteroge-
neous cell types, overlapping inhibitory and, to 
a lesser extent, excitatory interneurons [114,115]. 
Different patterns of GluA1-4 expression were 
detected in the superficial DH, even in normal 
conditions: a majority of GABA and NK1 recep-
tor-positive neurons expressed CP-AMPAR [116], 
with a major GluA1-immunoreactivity (78%) 
identified for inhibitory lamina I–II neurons, 
while almost all GluR2/3-immunoreactivity (97%) 
was identified for excitatory neurons [117].

Electrophysiological studies have revealed 
a shift in the relative balance between synaptic 
excitation and inhibition within the superficial 
DH, by documenting an increased synaptic excita-
tion accompanied by a decreased synaptic inhibi-
tion that same neurons receive in persistent 
inflammatory pain [112] and after spinal cord 
injury [113]. The disrupted balance in terms of 
boosted neuronal excitation leads to nociceptive 
circuits becoming hyper-excitable and involved in 

aberrant sensory processing (Figure 2). Although 
the identity of neurons with perturbed AMPAR 
trafficking remains largely unclear, the excitatory 
drive was found to be impaired in GABAergic 
neurons in case of neuropathic pain [118]. The 
loss of GABAergic inhibition in the superficial 
DH has been established in pain states of 
a diverse nature: neuropathic [119], injury- 
induced [120,121] or inflammatory pain [122]. 
A recent study has revealed that such a loss may 
be due to a loss of GABAergic interneurons [123], 
suggesting a morphological basis for the disrupted 
balance between synaptic excitation and inhibition 
in chronic pain.

The mechanisms of nociceptive plasticity in the 
DH circuits also include presynaptic changes. It 
has been shown that ectopic firing by primary 
nociceptive afferents is associated with the 
enhanced release of glutamate [124,125]. Thus, 
boosted release, often pertaining to “spillover”, 
prompts the activation of perisynaptic/extrasynap-
tic receptors. In such a scenario, extrasynaptic 
glutamate escapes from the nociceptive terminals 
lead to the activation of an amount of extrasynap-
tic AMPAR, which are highly expressed in the 
lamina I–II DH neurons. The activation of extra-
synaptic AMPAR consolidates changes in the post-
synaptic AMPAR-mediated transmission, and 
amplifies the hyper-activation of the DH neurons, 

Figure 2. Nociceptive-induced changes in the trafficking of spinal AMPAR (neuronal level) cause a broken balance between synaptic 
excitation and inhibition that leads to overall hyper-excitability and central sensitization of the DH (network level); aberrant signaling 
in central pain pathways turns pain chronic (systemic level). Various scenarios for targeting the broken GluA1 and/or GluA2 recycling 
can be implemented to suppress the AMPAR-mediated nociceptive plasticity, and recover the relative balance between neuronal 
excitation and inhibition in the DH circuits, thereby alleviating chronic pain.
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causing over-excitation within nociceptive circuits. 
Studies of the brain circuits over the last few 
decades have postulated an increased release prob-
ability in LTP [47,126,127]. The implementation of 
recent advances in genetically engineered optical 
sensors for the detection of glutamate release at 
the single synapse level would enable the detection 
of changes in the quantal content of glutamate 
released by nociceptive afferents in cases of 
chronic pain.

The extrasynaptic escape of glutamate plays an 
important role in inter-synaptic cross-talk [128], 
potentially boosting robust cross-talk between 
nociceptive synapses and their neighbors within 
highly interconnected DH circuits. Furthermore, 
an elegant hypothesis of “silent synapses” depicts 
the AMPAR role in synaptic plasticity in the brain 
[129,130], serving as a form of morphological 
plasticity, in which a proportion of synapses with 
absent or nonfunctional AMPAR in the superficial 
DH neurons can be switched on upon a long- 
lasting nociceptive afferent drive. In addition to 
the nociceptive-driven subcellular re-arrangement 
of AMPAR, such a morphological re-arrangement 
between non-active and active synapses would 
extend nociceptive signaling, and lead to an 
increase in pain hypersensitivity due to 
a complex of changes in the central pain pathways.

Would targeting spinal AMPAR provide relief 
in chronic pain without side effects? 
Challenges and perspectives

Up-to-date knowledge of broken AMPAR traffick-
ing as a cellular mechanism that turns pain 
chronic in central sensory pathways has identified 
new therapeutic targets and favors developing tar-
get-based strategies, which can be predicted as 
an effective treatment against chronic pain. The 
current understanding of deciphered signaling cas-
cades highlights a critical step – potentially best 
suited for reliable alleviation of chronic pain – that 
focuses on restoring the broken GluA1/GluA2 
recycling in the superficial DH neurons to 
a normal state. A crucial role that GluA1- 
containing CP-AMPAR plays in LTP and synaptic 
plasticity precludes the deletion of GluA1 (in order 
to prevent systemic side effects), but it can be 
applicable when utilized exclusively in nociceptive 

pathways (Figure 2). Such an approach – the dele-
tion of GluA1 in primary nociceptors – results in 
the ablation of GluA1-containing AMPAR in the 
DH nociceptive terminals, and reduces mechanical 
hypersensitivity in mice with chronic pain of an 
inflammatory or arthritic origin [17]; no changes 
in pain sensation were found after a similar dele-
tion of GluA2. A major challenge, however, 
remains with regard to suppressing the activity- 
induced upregulation of GluA1-containing CP- 
AMPAR in the superficial DH neurons.

Several strategies focusing on spinal AMPAR 
have been probed in parallel. Experimental 
attempts comprise, as of now, a number of differ-
ent strategies. These can be subdivided into two 
main directions: pharmacological or genetic mod-
ulation of the GluA1, and/or GluA2 recycling. 
Amongst the promising pharmacological 
approaches is the combination of the advantages 
of using activity-dependent antagonists of CP- 
AMPAR, such as dicationic compounds, with loca-
lized spinal administration (e.g., intrathecal deliv-
ery to a targeted spinal cord region) [31]. The 
exact mechanism of activity-dependent inhibition 
has been described in terms of the exceptional 
ability of dicationic compounds to modulate glu-
tamatergic transmission in the brain [131,132] and 
to restore the nociceptive-induced upregulation of 
AMPAR-mediated currents in lamina II DH neu-
rons in persistent inflammatory pain [63,76]. In 
rodents, dicationic compounds reduced hyperalge-
sia and shortened the period of inflammatory pain 
maintenance [31]. Using various tests by addres-
sing potential changes in the animals’ sensitivity to 
thermal or mechanical stimuli, locomotion activ-
ity, or exploratory behavior (anxiety), no adverse 
effects were observed following treatment.

Novel therapeutic strategies have focused on 
targeting the broken GluA1/GluA2 recycling via 
interfering with intracellular signaling cascades. 
One of those can act to suppress the upstream 
trigger, which is the activation of PKCα. The 
pharmacological inhibition of spinal PKCα 
(using a selective PKCα inhibitor peptide, C2- 
4) or genetic inhibition of PKCα (with antisense 
oligonucleotides) has both effectively reduced 
nociceptive hypersensitivity in animals, and also 
provided relief in pain-induced locomotive defi-
cit and anxiety in persistent peripheral 
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inflammation [22,76]. At the cellular level, ther-
apeutic effects were manifested in the form of 
restored AMPAR-mediated currents in the 
lamina II DH neurons and at nociceptive 
synapses [22,76]. Targeting scaffold proteins reg-
ulating the postsynaptic trapping of AMPAR at 
PSD can be another alternative (Figure 2). This 
has been recently validated using an engineered 
peptide inhibitor of PICK1 to alleviate mechan-
ical hyperalgesia in injury-induced neuropathic 
pain [133]. Likewise, the peptide GluA2-3y, 
which inhibits endocytosis of GluA2-containing 
AMPAR, revealed an antinociceptive effect on 
neuropathic pain [134]. Targeting transmem-
brane AMPAR regulatory proteins (TARP), 
whose specific expression patterns were identi-
fied in the superficial DH [135], seemed 
a promising direction for modulating CP- 
AMPAR-mediated plasticity at nociceptive 
synapses, prone to fewer side effects. A recent 
study has suggested selective TARP γ-8 blockage 
for the treatment of chronic pain [136].

In conclusion, the ongoing development of 
reliable and well-predictable strategies against 
chronic pain, further to the current approaches 
and directions noted here, remains active. 
Emerging advances have been made for targeted 
treatment options based on the recently discov-
ered signaling cascades and newly identified pro-
teins regulating AMPAR trafficking; this will 
help focus on refining approaches for fine- 
tuning the AMPAR-mediated nociceptive plasti-
city in central pain pathways in such a way to 
identify the most powerful therapies against 
chronic pain, with great care being taken to 
reduce (or prevent) any side effects.
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