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Background: An increasing number of observational studies have revealed

an association among the gut microbiota, gut metabolites, and epilepsy.

However, this association is easily influenced by confounders such as diet,

and the causality of this association remains obscure.

Methods: Aiming to explore the causal relationship and ascertain specific

gut microbe taxa for epilepsy, we conducted a bi-directional Mendelian

randomization (MR) study based on the genome-wide association study

(GWAS) data of epilepsy from the International League Against Epilepsy, with

the gut microbiota GWAS results from MiBioGen, and summary-level GWAS

data of gut microbiota-dependent metabolites trimethylamine N-oxide and

its predecessors.

Results: Nine phyla, 15 classes, 19 orders, 30 families, and 96 genera

were analyzed. A suggestive association of host-genetic-driven increase in

family Veillonellaceae with a higher risk of childhood absence epilepsy (odds

ratio [OR]: 1.033, confidential interval [CI]: 1.015–1.051, PIVW = 0.0003),

class Melainabacteria with a lower risk of generalized epilepsy with tonic-

clonic seizures (OR = 0.986, CI = 0.979–0.994, PIVW = 0.0002), class

Betaproteobacteria (OR = 0.958, CI = 0.937–0.979, PIVW = 0.0001), and

order Burkholderiales (OR = 0.960, CI = 0.937–0.984, PIVW = 0.0010) with a

lower risk of juvenile myoclonic epilepsy were identified after multiple-testing

correction. Our sensitivity analysis revealed no evidence of pleiotropy, reverse

causality, weak instrument bias, or heterogeneity.

Conclusion: This is the first MR analysis to explore the potential causal

relationship among the gut microbiota, metabolites, and epilepsy. Four gut

microbiota features (two class levels, one order level, and one family level)
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were identified as potential interventional targets for patients with childhood

absence epilepsy, generalized epilepsy with tonic-clonic seizures, and

juvenile myoclonic epilepsy. Previous associations in numerous observational

studies may had been interfered by confounders. More rigorous studies

were needed to ascertain the relationship among the gut microbiota,

metabolites, and epilepsy.

KEYWORDS

gut microbiota, gut metabolites, epilepsy, bi-directional Mendelian randomization
study, causality

Introduction

Epilepsy is a common neurological disease characterized
by recurrent unprovoked seizures, besetting over 50 million
patients worldwide, with an incidence rate of 50–70 per 100,000
people (Deuschl et al., 2020). With the main manifestation of
epileptic seizures and abnormal electroencephalogram results,
epilepsy is a disease with strong heterogeneity, which can be
further classified into several subtypes such as focal epilepsy and
generalized epilepsy. The etiology of epilepsy is also complex
as it involves genetic, structural, infectious, metabolic, immune,
and unknown factors (Beghi, 2020).

Recently, the mutual interaction between the gut microbiota
and the human body is revealed, and the gut microbiota
is considered as a promising therapeutic target through
probiotic supplements and fecal microbiota transplantation
(FMT) (Gomaa, 2020). Among these microbiome-to-host
interactions, the central nervous system (CNS) and gut
microbiota communication, termed the microbiota–gut–brain
(MGB) axis, is a research hotspot, and its interaction routes
are related to metabolites, immune responses, and the enteric
nervous system (Cryan et al., 2019). The potential functions
of the MGB axis in psychiatric and CNS disorders have been
previously summarized (Iannone et al., 2019; Socała et al., 2021).
Epilepsy, one of the most common diseases of the CNS, is
also related to the gut microbiota and metabolites through the
MGB axis at both laboratory and clinical levels (Holmes et al.,
2020; Ding et al., 2021). For example, a distinct gut microbiome
profile has been detected in patients with epilepsy, especially
in those with anti-seizure medication resistance (Peng et al.,
2018; Şafak et al., 2020). Furthermore, high-fat ketogenic diet

Abbreviations: CNS, central nervous system; DRE, drug-resistant
epilepsy; FMT, fecal microbiota transplantation; GWAS, genome-
wide association study; ILAE, International League Against Epilepsy;
IVs, instrumental variables; IVW, inverse variance weighted median;
KD, ketogenic diet; MGB, microbiota–gut–brain; MR, Mendelian
randomization; NAA, N-acetyl aspartic acid; RCT, randomized controlled
trial; SNP, single nucleotide polymorphism; TMAO, trimethylamine
N-oxide.

(KD) is recommended for patients with epilepsy, diet-related
gut microbiome alterations are observed with an anti-seizure
effect (Olson et al., 2018; Ang et al., 2020). Therefore, the gut
microbiota is a promising biomarker and therapeutic target for
epilepsy (De Caro et al., 2019; Arulsamy and Shaikh, 2022;
Russo, 2022). However, the causality among the gut microbiota,
metabolites, and epilepsy remains unclear and requires more
direct evidence.

Randomized controlled trials (RCTs) are the gold standard
for exploring causal relationships. However, an RCT is
not only costly but also difficult for investigating the gut
microbiome and neurological disorders because of potential
confounders. Meanwhile, the Mendelian randomization (MR)
study is an alternative tool for exploring the causal relationship
between exposure and outcome, utilizing single nucleotide
polymorphisms (SNPs) as instrumental variables (IVs) (Smith
and Ebrahim, 2003). An MR study has several types such
as two-sample MR, two-step MR, and bi-directional MR.
The two-sample MR refers to MR based on the exposure
and outcome using a genome-wide association study (GWAS)
dataset without overlap. The bi-directional MR is utilized to
test the effect of exposure on the outcome, and the outcome
on exposure by retrieving different IVs from exposure or
outcome datasets to ascertain the robustness of direction. With
increasing publicly available GWAS data, an MR study is more
feasible for conducting epidemiological research. Moreover,
abundant GWAS data in the gut microbiome, gut-microbiome
metabolites, and epilepsy have been reported recently, thus
providing the research foundation of our MR analysis.

In this study, we conducted the first bi-directional MR
analysis to examine the causal relationship among the gut
microbiome, metabolites, and epilepsy following the “STROBE-
MR” guidelines (Skrivankova et al., 2021a,b). The summary
statistics of epilepsy, gut microbiota, and metabolites are
derived from the International League Against Epilepsy (ILAE)
consortium and large-scale GWAS data. This research not only
improves our understanding of the mutual interaction among
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the gut microbiota, metabolites, and epilepsy but also reveals the
research direction.

Methods

Study design and data sources

The study flowchart is presented in Figure 1A. We
conducted a bidirectional MR study to investigate the causal
relationship among the gut microbiota, metabolites, and
epilepsy. First, genetic variants from previous GWAS summary-
level data are retrieved and used as IVs. Then, a two-sample
MR is conducted using the R software (4.1.3) following the
guideline of the R package “two-sample MR” (0.5.6)1 including

1 https://mrcieu.github.io/TwoSampleMR

three MR methods. Several sensitivity analyses, such as the
pleiotropy test, heterogeneity test, and leave-one-out analysis,
are performed sequentially. Finally, we adopted a reverse MR
method to explore whether a bidirectional relationship exists
among epilepsy, the gut microbiota, and metabolites.

Genome-wide association study (GWAS) statistics
summary-level data of the gut microbiome have been generated
from the largest genome-wide meta-analysis to date, the
MiBioGen study (Kurilshikov et al., 2021). This MiBioGen
consortium curated and analyzed 16S faucal microbiome
data and genome-wide genotypes from 24 cohorts (18,340
individuals) and identified 31 loci affecting the gut microbiome
with genome-wide significance (P < 5 × 10−8). As for gut
metabolite data, we leveraged GWAS summary statistics of the
human metabolome in a community-based cohort containing
2076 participants (Rhee et al., 2013). GWAS summary statistics
for epilepsy are retrieved from the OpenGWAS database

FIGURE 1

Study design and Mendelian randomization core assumption. (A) Data resource and study design of our bi-directional MR. (B) Three
assumptions in the Mendelian randomization study.
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API2 (Elsworth et al., 2020). The GWAS data in this database
included epilepsy (GWAS ID: ieu-b-8), genetic generalized
epilepsy (ieu-b-9), focal epilepsy (ieu-b-10), focal epilepsy-
documented lesion negative (ieu-b-11), juvenile absence
epilepsy (ieu-b-12), childhood absence epilepsy (ieu-b-13), focal
epilepsy-documented hippocampal sclerosis (ieu-b-14), focal
epilepsy-documented lesions other than hippocampal sclerosis
(ieu-b-15), generalized epilepsy with tonic-clonic seizures
(ieu-b-16), and juvenile myoclonic epilepsy (ieu-b-17) based on
the ILAE classification position paper on epilepsies (Scheffer
et al., 2017; Ilae Consortium, 2018). Detailed information
on the dataset used, without overlap between the exposure
and outcome data, is summarized in Table 1. Additional
information, including demographic characteristics, eligibility
criteria, and ethics approval can be found in the original article
(Ilae Consortium, 2018).

Instrumental variables selection

Bacterial taxa were classified and analyzed at six levels
(phylum, class, order, family, genus, and species) based on
SNPs available in the gut microbiome GWAS summary data.
Candidate IVs were identified at a significance level of
P < 1.0 × 10−5 according to the previously published studies
(Sanna et al., 2019; Ni et al., 2021). The parameters of the clump
function in the R package were set at r2 < 0.1 and kb = 500
kb, guaranteeing the independence of each IV, which was the
same as in a previous publication, to minimize the impact of
linkage disequilibrium violating the randomized allele allocation
(Ni et al., 2021). Furthermore, as our significance level was

2 https://gwas.mrcieu.ac.uk/

set at P < 1.0 × 10−5, the F statistic was used to exclude
the weak instrument bias violating the first assumption of MR
(Burgess and Thompson, 2011). Lastly, the palindromic SNPs
were also excluded from the MR. The IVs adopted in this
study are listed in Supplementary Table 1. Similarly, IVs of gut
metabolites were extracted under a suggestive significance level
of P < 5.0 × 10−5 (Zhuang et al., 2021). The parameters of
the clump function in the R package were set at r2 < 0.2 and
kb = 10,000 kb (Zhuang et al., 2021).

For the outcome data, we collected epilepsy GWAS data
from the MR database (see text footnote 1). The gut microbiome,
metabolites, and epilepsy data were harmonized for subsequent
MR. As the exposure and outcome GWAS datasets were large-
scale GWAS research, the threshold of minor allele frequency
was set at 0.01.

Mendelian randomization study

As presented in Figure 1B, this MR was conducted
following the MR model with selected IVs in the previous step,
conforming to three assumptions as follows: (1) SNPs were
robustly associated with the gut microbiome/metabolites; (2)
SNPs were not associated with confounders; (3) SNPs do not
affect the epilepsy outcomes except through the potential effects
of the gut microbiome or metabolites.

A two-sample MR analysis was conducted using three
primary methods: inverse variance weighted median (IVW),
weighted median, and MR Egger to evaluate the causal
relationship among the gut microbiome, metabolites, and
epilepsy (Bowden et al., 2015, 2016; Burgess et al., 2015).
The MR analysis was conducted using two-sample MR
packages according to the developers’ guidelines. IVW was
a classic method based on the meta-analysis of each SNPs

TABLE 1 Characteristics of included GWAS summary-level data of epilepsy, gut microbiota, and gut metabolites.

Trait Consortium of study Sample size Population Journal Year

Epilepsy ILAE

Epilepsy (All documented cases) ieu-b-8 44889 (case: 15212, control: 29677) Mixed Nat Com. 2018

Generalized epilepsy (All documented cases) ieu-b-9 33446 (case: 3769, control: 29677)

Focal epilepsy (All documented cases) ieu-b-10 39348 (case: 9671, control: 29677)

Focal epilepsy-documented lesion negative ieu-b-11 32393 (case: 2716, control: 29677)

Juvenile absence epilepsy ieu-b-12 30092 (case: 415, control: 29677)

Childhood absence epilepsy ieu-b-13 30470 (case: 793, control: 29677)

Focal epilepsy-documented hippocampal sclerosis ieu-b-14 30480 (case: 803, control: 29677)

Focal epilepsy-documented ieu-b-15 32747 (case: 3070, control: 29677)

lesion other than hippocampal sclerosis

Generalized epilepsy with tonic-clonic seizures ieu-b-16 29905 (case: 228, control: 29677)

Juvenile myoclonic epilepsy ieu-b-17 30858 (case: 1181, control: 29677)

Gut microbiota MiBioGen 18340 Mixed Nat Genet. 2021

Gut metabolites FHS 2076 European Cell Metab. 2013

GWAS, Genome-Wide Association Study; ILAE, International League Against Epilepsy; FHS, Framingham heart study.
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Wald ratio, while the weighted median mode calculated
the median effects of SNPs. The MR Egger analysis, albeit
with lower statistical power than IVW, can be applied
in the presence of horizontal pleiotropy. Additionally, we
conducted an MR-PRESSO test using the MR-PRESSO R
package (1.0) to evaluate whether a horizontal pleiotropy
effect violates the assumption of MR (Verbanck et al., 2018).
Based on the MR-PRESSO Global test for overall horizontal
pleiotropy and outlier test for each SNP pleiotropy significance
evaluation, outlier SNPs were removed until the P-value
of the global test remained >0.05. Moreover, the multiple-
testing significance threshold at each level (phylum, class,
order, family, and genus) was set as 0.05/n, where n was
the effective number of independent bacterial taxa at each
taxonomic level. However, owing to the sample size and
restricted power of the gut microbiota GWAS data, IVs at the
species level were insufficient for MR analysis. Therefore, we
conducted MR at the phylum, class, order, family, and genus
levels.

Sensitivity analysis

The MR-Egger regression and MR-PRESSO tests were
conducted to exclude potential pleiotropy. The Q test in the
IVW test was performed to evaluate the heterogeneity of results.
The leave-one-out analysis excluded SNPs individually and
recomputed the effect to test the robustness of the results.
The MR Steiger directionality test was adopted to explore the
robustness of the causality direction.

Reverse Mendelian randomization
analysis

A reverse MR analysis was conducted to explore the reverse
causality from epilepsy (as exposures) to gut microbiota and
metabolites (as outcomes). The procedure was the same as the
abovementioned protocol for the two-sample MR.

This bidirectional MR and sensitivity analysis adhered to the
guidelines of the two-sample MR and MR-PRESSO packages.

Results

Two-sample Mendelian randomization
of gut microbiota (exposure) on
epilepsy (outcome)

Twelve exposure and outcome datasets were acquired for
MR analysis with detailed information such as the consortium,
sample size, and population (Table 1). Under a suggestive
significance level of P < 1 × 10−5, the significant SNPs were

selected from the GWAS summary data of gut microbiota
in the nine phyla, 16 classes, 20 orders, 35 families, and 96
genera. After clumping and harmonization, an MR analysis
was conducted between each pair of exposure and outcome
to explore causality. The significant threshold for each level
was corrected based on multiple testing as follows: phylum
P = 5.56 × 10−3 (0.05/9); class P = 3.13 × 10−3 (0.05/16);
order P = 2.50 × 10−3 (0.05/20); family P = 1.43 × 10−3

(0.05/35); genus P = 5.21 × 10−4 (0.05/96); and gut metabolites
P = 1.25 × 10−2 (0.05/4).

After data preprocessing, an MR analysis was
performed for each pair of exposure (gut microbiota)
and outcome (epilepsy) based on three MR methods
(IVW, weighted median, and MR Egger). Under the
corrected significant threshold, four correlations between
gut microbiome features and epilepsy were identified
using the IVW method (Table 2) as follows: family
Veillonellaceae with a higher risk of childhood absence
epilepsy (PIVW = 3.00 × 10−4), class Melainabacteria
with a lower risk of generalized epilepsy with tonic-clonic
seizures (PIVW = 2.00 × 10−4), and class Betaproteobacteria
(PIVW = 1.18 × 10−4) and order Burkholderiales
(PIVW = 1.03 × 10−3) with a lower risk of juvenile
myoclonic epilepsy. These correlations are depicted in
scatter and forest plots in Figures 2, 3, respectively. More
information on single SNP is summarized in Supplementary
Table 1.

In the heterogeneity (IVW test and MR-Egger regression),
pleiotropy (MR-PRESSO test and MR-Egger regression test)
and weak instrument bias tests (F statistic), no evidence
of heterogeneity, pleiotropy, or weak instrument bias was
noted. Additional details are summarized in Supplementary
Table 2. Furthermore, the MR Steiger directionality test revealed
a robust direction from the gut microbiota to epilepsy in
all results. The leave-one-out sensitivity analysis illustrated
the robustness of our results, as no single SNP drives
causal association (Supplementary Figure 1). Funnel plots
of these four significant results excluded a potential bias
(Supplementary Figure 2).

Reverse Mendelian randomization
analysis of epilepsy (exposure) on gut
microbiota (outcome)

With a significant P-value set at 1 × 10−5, IVs were extracted
from significant epilepsy GWAS datasets in previous MR
analysis of gut microbiota on epilepsy; however, no significant
results were identified in this reverse MR analysis. The reverse
analysis indicated the absence of causality from epilepsy to
the gut microbiota, which was in accordance with our MR
steiger results.

Frontiers in Molecular Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnmol.2022.994270
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/


fnmol-15-994270 November 1, 2022 Time: 14:36 # 6

Ouyang et al. 10.3389/fnmol.2022.994270

TABLE 2 Gut microbiota on epilepsy result.

Exposure Outcome
(ID)

No. SNP R2 F IVW WME MR-Egger MR-PRESSO

B P B P b P B P

Family Veillonellaceae ieu-b-13 11 1.58% 20.73 0.0321 0.0003 0.0287 0.0155 0.0535 0.3439 0.0304 0.0003

Class Melainabacteria ieu-b-16 7 3.53% 18.04 −0.0138 0.0002 −0.0158 0.0027 −0.0127 0.3846 −0.0100 0.0243

Class Betaproteobacteria ieu-b-17 11 1.44% 20.10 −0.0429 0.0001 −0.0444 0.0029 0.0256 0.5821 −0.0429 0.0005

Order Burkholderiales ieu-b-17 9 1.20% 20.29 −0.0405 0.0010 −0.0455 0.0052 0.0235 0.6080 −0.0405 0.0034

FIGURE 2

Scatter plots of significant causality of the gut microbiota and epilepsy. (A) Scatter plots of the family Veillonellaceae on childhood absence
epilepsy. (B) Scatter plots of the class Melainabacteria on generalized epilepsy with tonic-clonic seizures. (C) Scatter plots of the class
Betaproteobacteria and (D) The order Burkholderiales on juvenile myoclonic epilepsy. The lines move obliquely upward from left to right
exhibiting a positive correlation between the gut microbiota and epilepsy with horizontal and vertical lines indicating the 95% confidence
interval of each association. The lines with a negative correlation are inclined downward from left to right, indicating a protective effect of the
gut microbiota on epilepsy.

Bi-directional Mendelian
randomization analysis Mendelian
randomization of gut metabolites and
neurological disorders

In the gut metabolite and epilepsy MR analysis, the
SNPs concerning carnitine, choline, trimethylamine N-oxide
(TMAO), and betaine were extracted from the GWAS summary
data. With a genome-wide significance level set at P < 5 × 10−5,
which was the same as the parameters in previous publications,
SNPs were extracted for subsequent MR analysis after clumping
(r2 = 0.2, kb = 10,000) and harmonization (Zhuang et al.,
2021). Similar to the gut microbiota and epilepsy MR analysis,
three MR methods (IVW, weighted median, and MR-Egger)

were adopted to explore the potential causality with multiple
sensitivity analyses. No significant causality between gut
metabolites and epilepsy was found. For reverse MR analysis,
IVs extracted from epilepsy under significance levels were not
identified in the gut metabolite GWAS dataset.

All results on phylum, class, order, family, genus, or
metabolite levels are summarized in Supplementary Tables 3–8.

Discussion

To the best of our knowledge, this is the first MR
study to reveal the potential causal relationship among the
gut microbiome, metabolites, and epilepsy based on large
GWAS summary-level data. The potential contributory or
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FIGURE 3

Association of genetically predicted gut microbiota with epilepsy by three different MR methods: inverse variance weighted, weighted median,
and MR Egger. A positive correlation between the family Veillonellaceae and childhood absence epilepsy, negative correlations between the
class Melainabacteria and generalized epilepsy with tonic-clonic seizures, between the class Betaproteobacteria and juvenile myoclonic
epilepsy, and between the order Burkholderials and juvenile myoclonic epilepsy were suggested. OR: odds ratio; CI: confidential interval.

protective effect of the family Veillonellaceae on childhood
absence epilepsy, class Melainabacteria on generalized epilepsy
with tonic-clonic seizures, class Betaproteobacteria, and order
Burkholderials on juvenile myoclonic epilepsy are demonstrated
in this MR analysis.

The association between the gut microbiota and epilepsy
has been summarized in a systematic review published in
2020 with an increasing number of studies published over
the past two years; however, the gut microbiota alteration
is inconsistent in all the studies (Arulsamy et al., 2020).
Some studies have revealed that the richness of numerous
gut microbiomes, such as Proteobacteria and Fusobacterial
phyla, as possible biomarkers for epilepsy diagnosis increased
in patients with epilepsy (Şafak et al., 2020; Dong et al.,
2022). Regarding the gut microbiota characteristics of patients
with drug-resistant epilepsy (DRE), the Firmicutes phylum
is commonly increased in DRE, and bifidobacteria exhibits
a potential protective function against epilepsy (Peng et al.,
2018; Lee et al., 2020, 2021). In addition to the altered gut
microbiota composition of patients with epilepsy, KD therapy,
commonly recommended for patients with DRE, also exerts a
therapeutic effect due to its influence on the gut microbiota (Fan
et al., 2019; Tang et al., 2021). Decreased Proteobacteria and
Firmicutes and increased Bacteroidetes are commonly observed

after KD therapy (Xie et al., 2017; Zhang et al., 2018; Gong
et al., 2021). In addition to KD therapy, FMT is also a promising
strategy for epilepsy, and a case report has demonstrated
that epilepsy in a girl with Crohn’s disease was cured after
FMT (He et al., 2017). Therefore, we summarized the diverse
gut microbiota changes to directly exhibit these observational
results of the gut microbiota and epilepsy in Supplementary
Table 9.

The abovementioned studies have confirmed the close
relationship between the gut microbiota and epilepsy, and
KD therapy may alter the bacteria to further control seizures.
However, a direct causal relationship is unclear and may
be affected by confounding factors. Intriguingly, numerous
correlations summarized in Supplementary Table 9 are not
identified in our MR analysis after multiple-testing corrections
for several reasons. Supplementary Tables 3–8 exhibit that
the function of one gut microbiome in epilepsy is diverse
in different subtypes of epilepsy. As previous observational
studies did not focus on the specific subtype of epilepsy, the
association identified in our MR analysis may be more specific
and robust. Moreover, although confounders such as antibiotic
use have been controlled in most studies, previous observational
studies of Proteobacteria and epilepsy may be affected by other
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influencing factors such as diet or age (Sullivan et al., 2001;
Greenhalgh et al., 2016; Rinninella et al., 2019).

Family Veillonellaceae, which belongs to the Firmicutes
phylum, is a potential risk factor for childhood absence epilepsy.
Similar to previous results, the abundance of Firmicutes is
increased in patients with DRE (Xie et al., 2017; Peng et al., 2018;
Lee et al., 2021). Furthermore, a relatively increased level of
Firmicutes in other neurological disorders, such as Parkinson’s
disease, has been reported (Bedarf et al., 2017). Although direct
evidence between Veillonellaceae and epilepsy is lacking, the
family Veillonellaceae is positively related to non-social fear
behavior in infants, which requires further elucidation based on
a subsequent longitudinal study of endocrine, metabolites, and
immune alteration (Carlson et al., 2021). Family Veillonellaceae
is also negatively correlated with orientation and delayed
recall scores in anamnestic mild cognitive impairment research
(Liu et al., 2021). Moreover, Veillonellaceae can influence
normal brain functions and is involved in several neurological
disorders. From another perspective, Ruminococcus, another
microbiome belonging to the Firmicutes phylum, reportedly has
a lower level of N-acetyl aspartic acid (NAA) and serotonin
(Bedarf et al., 2017; Mudd et al., 2017). However, NAA is
important for neuronal health. As serotonin can inhibit the
T-type calcium channel with reduced bursting electrical activity,
increased Ruminococcus may sensitize epileptiform discharge
because of decreased NAA and serotonin (Petersen et al.,
2017). Whether Veillonellaceae influences childhood absence
epilepsy by modulating neurotransmitter levels, similarly with
Ruminococcus, is also worth exploring.

Additionally, our MR analysis identified the class
Betaproteobacteria and order Burkholderia, which belong
to the Proteobacteria phylum, are potential protective factors
of juvenile myoclonic epilepsy. Previous associations between
the microbiome and the phylum Proteobacteria have been
widely reported, as discussed above and summarized in
Supplementary Table 9. Alterations in the Proteobacteria
phylum in patients with epilepsy are not consistent. As a
common phylum in the human body, Proteobacteria are related
to diseases such as obesity (Shin et al., 2015; Greenhalgh et al.,
2016). Although Escherichia particularly E. coli, Salmonella,
and Vibrio, which belong to the Gammaproteobacteria class,
are notorious pathogens, the Proteobacteria phylum should
not be considered a risk factor for all neurological diseases
(Singh et al., 2015). A more specific association at the class,
order, or family level of the phylum Proteobacteria is absent.
Unfortunately, as for mechanisms underlying this association,
studies that have identified a direct correlation among juvenile
myoclonic epilepsy and class Betaproteobacteria and order
Burkholderial are lacking. From the MGB axis perspective, the
gut microbiota is associated with neurodevelopment, and a
recent observational study has reported that gut microbiota such
as Bifidobacterium, Bacteroidetes, and Lachnospiraceae can
influence neurodevelopment in infants (Oliphant et al., 2021;

Beghetti et al., 2022). The neurodevelopmental modulation
capability of the gut microbiota may be correlated with the
release of neuroactive substances, short-chain fatty acids
(SCFAs), and alterations in intestinal or blood-brain barrier
integrity alteration (Louis et al., 2010; Hsiao et al., 2013;
Sarkar et al., 2016). As the association between juvenile
myoclonic epilepsy and neurodevelopment has been discussed
previously, the causality of class Betaproteobacteria or order
Burkholderial and juvenile myoclonic epilepsy may be relevant
to their neurodevelopment modulation capability (Lin et al.,
2014). Additionally, the effect of each gut microbiome
on epilepsy may not rely on one specific pathway but an
integrative model including the immune system, nervous
system, neurotransmitters, SCFAs, and the hypothalamic–
pituitary–adrenal axis (Ding et al., 2021). Another interesting
result of class Melainabacteria in generalized epilepsy with
tonic-clonic seizures is that the phylum Melainabacteria
has been identified as an accurate biomarker of zinc status
(Chen et al., 2021). Because zinc levels are associated
with neurodevelopment, Melainabacteria may influence
generalized epilepsy by modulating zinc levels. Additionally,
Melainabacteria, which interacts with other gut microbiomes
and exerts an influence on the human body, is also essential
for gut biodiversity. Lastly, after our MR analysis of the gut
microbiota, the causality of gut microbiota and the three
subtypes of generalized epilepsy, childhood absence epilepsy,
juvenile myoclonic epilepsy, and generalized epilepsy with
tonic-clonic seizures, are identified without any focal epilepsy.
A possible reason for this result is that the gut microbiota
releases factors to the systemic circulation with a potential role
in triggering an immune response or impacting the permeability
of the blood-brain barrier, functioning in the bilateral brain
rather than a focal area (Logsdon et al., 2018).

Regarding gut metabolites, TMAO may be generated from
L-carnitine, betaine, choline, and other choline-containing
compounds that participate in the gut microbiome and hepatic
flavin-dependent monooxygenases (Zeisel and Warrier, 2017).
The relationship between TMAO and its predecessors with
multiple chronic diseases, such as cardiovascular diseases and
cancer, has also been previously studied (Cho and Caudill,
2017). The neuroprotective function of dietary choline and
the therapeutic potential of carnitine in multiple neurological
disorders, including epilepsy, have been reviewed previously
(Blusztajn et al., 2017; Maldonado et al., 2020). Moreover,
in a kainite-induced temporal lobe epilepsy model, acetyl-
L-carnitine exerts its anticonvulsant effect by ameliorating
oxidative stress, pyroptosis, and neuroinflammation (Tashakori-
Miyanroudi et al., 2022). However, after multiple testing
corrections of our MR analysis, the causality of genetically
predicted TMAO, choline, carnitine, and betaine on epilepsy
is not determined. A previous MR analysis has also revealed
no direct causality of TMAO in Alzheimer’s disease (Zhuang
et al., 2021). Hence, the previous association between TMAO
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and multiple neurological disorders may be interfered with by
confounders. The role of TMAO in the CNS of the human body
requires further investigation.

This MR study has multiple advantages over previous
studies. First, this is the first MR to explore the potential
causal relationship between the gut microbiota, metabolites,
and epilepsy. Second, our MR study is based on the largest
GWAS-summary-level data on the gut microbiome from the
MiBioGen study. A bidirectional MR analysis is conducted to
ensure the robustness of our results. Several microbiomes have
been identified as potential therapeutic targets in patients with
epilepsy. As the gut microbiota GWAS dataset is based on three
ancestries, the generalizability of our results applies to different
populations. The non-significant causalities of our results also
provide important information that previous observational
studies may had been easily interfered with by confounders.
Lastly, whether gut metabolites such as TMAO are potential
predisposing factors for epilepsy has also been studied. Our MR
analysis indicates that specific gut microbiome functions should
be considered in a specific subtype of epilepsy, rather than from
a general perspective.

Nevertheless, this study has some limitations. First, as SNPs
in the MiBioGen study less than 5 × 10−8 are not sufficient for
MR analysis, the significance level of gut microbiota IV selection
is set at 1 × 10−5 instead of 5 × 10−8, which is the same as
that in a previous publication (Ni et al., 2021). However, the
F-statistics are guaranteed to be > 10 to exclude potential weak
instrument bias and make the statistical results more robust
(Burgess and Thompson, 2011). Second, as the epilepsy ILAE
GWAS dataset lacks exposure levels and periods, the effect
of gut microbiomes and metabolites on epilepsy exposed to
different levels or timings must be further ascertained. Third,
although previous observational studies mainly focused on
the relationship between the gut microbiota and DRE, MR
has not been conducted to explore the causality between gut
microbiota, metabolites, and DRE due to the lack of GWAS
summary-level data on DRE, which is worth researching in
future. Fourth, direct mechanistic research to support our
findings is still lacking. To obtain more direct evidence of the
relationship between the gut microbiota and epilepsy, more
research is required to explore the effects of these bacteria
on the immune response, blood-brain barrier permeability,
neuronal excitability, and brain development. Lastly, the gut
microbiota is easily influenced by environmental factors, such
as diet. However, horizontal pleiotropy is excluded from our
MR analysis based on the following two sensitivity analyses:
MR-Egger and MR-PRESSO results.

Collectively, we comprehensively analyzed the potential
causal relationship among the gut microbiota, metabolites,
and epilepsy. This bi-directional MR study ascertained the
predisposing or protective effects of the family Veillonellaceae
on childhood absence epilepsy, class Melainabacteria
on generalized epilepsy with tonic-clonic seizures, class
Betaproteobacteria, and order Burkholderials on juvenile

myoclonic epilepsy, which are promising gut biomarkers and
novel therapeutic targets of epilepsy.
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SUPPLEMENTARY FIGURE 1

Mendelian randomization leave-one-out sensitivity analysis of
significant results. (A) Leave-one-out analysis of the family

Veillonellaceae on childhood absence epilepsy. (B) Leave-one-out
analysis of the class Melainabacteria on generalized epilepsy with
tonic-clonic seizures. Leave-one-out analysis of (C) the class
Betaproteobacteria and (D) the order Burkholderiales on juvenile
myoclonic epilepsy.

SUPPLEMENTARY FIGURE 2

Funnel plots demonstrating significant results. (A) Funnel plots of the
family Veillonellaceae on childhood absence epilepsy. (B) Funnel plots
of the class Melainabacteria on generalized epilepsy with tonic-clonic
seizures. Funnel plots of (C) the class Betaproteobacteria and (D) the
order Burkholderiales on juvenile myoclonic epilepsy.
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