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CRISPR editing of retroviral proviruses has been limited to HIV-1. We propose human T-
cell leukemia virus type 1 (HTLV-1) as an excellent model to advance CRISPR/Cas9
genome editing technologies against actively expressing and latent retroviral proviruses.
HTLV-1 is a tumorigenic human retrovirus responsible for the development of both
leukemia/lymphoma (ATL) and a neurological disease (HAM/TSP). The virus
immortalizes and persists in CD4+ T lymphocytes that survive for the lifetime of the
host. The most important drivers of HTLV-1-mediated transformation and proliferation are
the tax and hbz viral genes. Tax, transcribed from the plus-sense or genome strand, is
essential for de novo infection and cellular immortalization. Hbz, transcribed from the
minus-strand, supports proliferation and survival of infected cells in both its protein and
mRNA forms. Abrogating the function or expression of tax and/or hbz by genome editing
and mutagenic double-strand break repair may disable HTLV-1-infected cell growth/
survival and prevent immune modulatory effects and ultimately HTLV-1-associated
disease. In addition, the HTLV-1 viral genome is highly conserved with remarkable
sequence homogeneity, both within the same host and even among different HTLV
isolates. This offers more focused guide RNA targeting. In addition, there are several well-
established animal models for studying HTLV-1 infection in vivo as well as cell
immortalization in vitro. Therefore, studies with HTLV-1 may provide a better basis to
assess and advance in vivo genome editing against retroviral infections.
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INTRODUCTION

Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic human retrovirus that transforms
CD4+ T-cells and causes a variety of diseases including adult T-cell leukemia/lymphoma (ATL) and a
neurodegenerative disease called HTLV-1-associatedmyelopathy/tropical spastic paraparesis (HAM/
TSP) (Uchiyama et al., 1977; Poiesz et al., 1980; Yoshida et al., 1982; Gessain et al., 1985; Osame et al.,
1986). Despite advances in the field, several unknowns remain regarding HTLV-1-mediated disease
development, disease progression, and the lack of effective treatment options. Although HTLV-1
encodes several accessory genes important in the viral life cycle, the two viral proteins which are
essential to the pathophysiology of ATL and HAM/TSP are Tax and Hbz. Tax is required for de novo
infection and cellular immortalization (Bex and Gaynor, 1998; Grassmann et al., 2005), while Hbz
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supports the proliferation and survival of the infected cell
(Arnold et al., 2006; Arnold et al., 2008). Based on a large
body of research, targeting these genes will hinder HTLV-1-
infected cell growth or survival. To date, CRISPR editing of
retroviral proviruses has been largely limited to HIV-1 (Ebina
et al., 2013; Rihn et al., 2013; Hu et al., 2014; Liao et al., 2015;
Rihn et al., 2015; Zhu et al., 2015; Kaminski et al., 2016; Yoder
and Bundschuh, 2016; Yin et al., 2017; Lebbink et al., 2017;
Ophinni et al., 2018; Yin et al., 2018; Wang et al., 2018; Darcis
et al., 2019; Yoder, 2019). Several detailed reviews of CRISPR
gene editing to target HIV-1 have been previously published
(Deng et al., 2018; Panfil et al., 2018; Das et al., 2019), and
therefore will not be discussed herein. In this review, we explore
the use of CRISPR gene editing to disable HTLV-1 and prevent
or treat HTLV-1-associated disease.
STRUCTURE OF HTLV-1 GENOME

HTLV-1 is a complex deltaretrovirus that contains the common
retroviral structural and enzymatic genes; gag, pro, pol, and env
(Figure 1). There is also a unique region in the 3’ end of the
integrated proviral genome. This region was originally termed ‘pX’
and it encodes several regulatory and accessory genes on both the
sense and antisense genomic strands. The viral gene Tax is located
within the pX region. Tax is encoded by a doubly spliced mRNA
with transcription initiating in the 5’ LTR and terminating within
the 3’ LTR. Hbz is located on the antisense strand of the proviral
genome within the pX and env regions. Hbz is encoded by a singly
spliced mRNA with transcription initiating in the 3’ LTR. The
HTLV-1 proviral genome is roughly 9kb in length and is flanked by
5’ and 3’ long terminal repeats (LTRs). The LTRs are exact
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
duplicates which consist of a U3, R, and U5 region. These
regions facilitate viral integration into the host genome and
contain promoter elements, polyadenylation signal sequences, and
other regulatory sequences necessary for proper viral transcription.
HTLV-1 INFECTION, PERSISTENCE,
AND DISEASE

HTLV-1 infects an estimated 5–10 million individuals and is
found in areas of endemic infection worldwide (Gessain and
Cassar, 2012). Regions with prevalent infection include
Southwestern Japanese archipelago, parts of the Caribbean, foci
in South America, areas in intertropical Africa, the middle East,
clusters in Australo-Melanesia, and Romania. Unfortunately,
HTLV-1 infection rate is based strictly on reliable epidemiologic
data of people in HTLV-1 endemic areas. Consequently, the
infection rate of HTLV-1 is estimated to be much higher, since
epidemiological data is lacking from several more densely
populated areas of the world (Martin et al., 2018).

HTLV-1 can infect a wide range of human cell types,
including CD4+ T cells, CD8+ T cells, B cells, dendritic cells,
monocytes, and macrophages (Franchini et al., 1985; Ghez et al.,
2006; Furuta et al., 2017). However, HTLV-1 is considered a T-
cell tropic virus as it is predominantly found in CD4+ T cells in
vivo (Panfil et al., 2016; Enose-Akahata et al., 2017). This distinct
tropism is not at the level of viral entry, but is instead the result of
post-infection T cell proliferation and clonal expansion of virally
infected CD4+ T cells (Kannian et al., 2012). Viral transmission
primarily occurs in a cell-to-cell mediated fashion, with cell-free
viral infection extremely ineffective (Fan et al., 1992; Pique and
Jones, 2012; Alais et al., 2015). Due to the nature of reverse
FIGURE 1 | Schematic of HTLV-1 proviral genome. The viral gag, pro, pol, and env structural/enzymatic genes are flanked by 5’ and 3’ LTRs. The pX region at the
3’ end of the viral genome contains several regulatory and accessory genes. The dotted lines represent spliced regions of each gene product. Drawing is intended to
be illustrative and not to exact scale.
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transcriptase, retroviruses like HIV-1 are generally genetically
unstable. Remarkably, the HTLV-1 genome is genetically stable
and this stability is mostly due to viral amplification that occurs
via clonal expansion of infected cells vs. viral replication and
subsequent new infections (which is the case for HIV-1)
(Furukawa et al., 1992; Wattel et al., 1995; Gillet et al., 2011;
Kulkarni and Bangham, 2018). As a result, HTLV-1 has relatively
low sequence variation.

HTLV-1 is the etiologic infectious agent of both adult T-cell
leukemia/lymphoma (ATL), an aggressive and fatal disease of
CD4+ T cells (Uchiyama et al., 1977; Poiesz et al., 1980; Yoshida
et al., 1982), and HTLV-1-associated myelopathy/tropical spastic
paraparesis (HAM/TSP), a chronic inflammatory disease of the
central nervous system (CNS) (Gessain et al., 1985; Osame et al.,
1986). The incidence of disease related to HTLV-1 infection is 5–
10% and occurs after an extensive asymptomatic clinical latency
period of up to several decades. The current treatment strategy
for ATL varies depending on the severity of the disease and the
geographical region. Ultimately, ATL is chemotherapy-resistant
and patients consistently relapse (Utsunomiya et al., 2015; Yves
et al., 2015). Disease development of HAM/TSP can progress
slowly or rapidly, without remission (Matsuura et al., 2016), and
is caused by persistent immune activation against proliferating
HTLV-1-infected T-cells that infiltrate the CNS. Although there
is no cure for HAM/TSP, a number of treatments are available to
target pain or inflammation (Enose-Akahata et al., 2017). A
recent uncontrolled, phase 1–2a study in Japan suggested the use
of mogamulizumab (an anti-CCR4 monoclonal antibody)
decreased the number of HTLV-1-infected cells and the levels
of inflammatory markers in HAM/TSP patients (Sato et al.,
2018). Overall, the precise details of HTLV-1-associated
disease development remain poorly defined. However, several
studies have shown at least two viral genes, Tax and Hbz, play a
critical role in infection, persistence, and disease development
(Matsuoka and Green, 2009; Cheng et al., 2012; Andrade et al.,
2013; Enose-Akahata et al., 2017). Therapies that control the
expression of HTLV-1 gene products represent a potential
treatment for preventing and treating both ATL and HAM/TSP.

The oncoprotein Tax acts as a viral transcriptional activator
of both HTLV-1 gene expression (through activation of the viral
LTR) and various cellular signaling pathways such as the CREB,
NF-kB, and AP-1 pathways (Bex and Gaynor, 1998; Grassmann
et al., 2005). Aberrant activation of these signaling pathways
helps drive clonal proliferation and survival of HTLV-1-infected
CD4+ T cells. Tax also causes deregulation of the cell cycle by
silencing cellular checkpoints that guard against DNA structural
damage and abnormal chromosomal segregation, thus leading to
the accumulation of mutations in HTLV-1 infected cells (Arima
and Tei, 2001; Giam and Semmes, 2016). Many of the
transcriptional effects of Tax, such as LTR activation and NF-
kB activation, can be counteracted by the viral protein Hbz
(Gaudray et al., 2002; Lemasson et al., 2007; Clerc et al., 2008).
Hbz also plays a vital role in regulating genomic integrity,
apoptosis, autophagy, and escape from the host immune
system surveilance (Matsuoka and Mesnard, 2020). Somewhat
surprisingly, Hbz promotes cell proliferation through both its
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
mRNA and protein forms (Mitobe et al., 2015). This
accumulating evidence implies that in addition to the viral
oncoprotein Tax, Hbz plays a critical role throughout the
course of HTLV-1-mediated oncogenesis. It also suggests the
balance between Tax and Hbz expression helps determine
the outcome of HTLV-1 infection.

HTLV-1 persists in vivo in approximately 103 to 106 clones of
T cells that survive for the lifetime of the infected host (Bangham
et al., 2019). Originally believed to be transcriptionally silent,
accumulating evidence suggests the virus is not constantly latent
in vivo. Recent studies have shown the plus strand of the proviral
genome (i.e. Tax) is transcribed in intense, intermittent bursts
triggered by cellular stress and modulated by hypoxia and
glycolysis (Billman et al., 2017; Kulkarni et al., 2017). These
studies also found the minus-strand (i.e. Hbz) is transcribed at
lower, more constant levels and is silent in a proportion of cells at
given times (Miura et al., 2019). This data supports the
observation of persistently activated cytotoxic T lymphocytes
(CTLs) directed against plus strand viral antigens. This would
suggest that both Tax and Hbz are present (albeit at varying
levels and times) in asymptomatic HTLV-1-infected individuals.

Inarguably one of the most important viral regulatory
proteins for HTLV-1, Tax oncoprotein expression is typically
low or undetectable in most ATL cells (Furukawa et al., 2001;
Koiwa et al., 2002; Takeda et al., 2004). Recently however, Tax
was found to be expressed in a minor fraction of leukemic cells at
any given time, and this expression was spontaneously switched
between ‘on’ and ‘off’ states (Mahgoub et al., 2018). This study
was performed using the MT-1 cell line and this transient Tax
expression is critical for maintaining the infected cell population
through activation of anti-apoptotic machinery which persists
even after Tax expression is lost. Conversely, Hbz is the only viral
gene that remains intact and is consistently found in all ATL
cases (Satou et al., 2006). This suggests Hbz expression supports
infected cell survival and ultimately, leukemogenesis. Work from
our group has shown that shRNA-mediated Hbz knockdown in
leukemic cells correlated with a significant decrease in T cell
proliferation in culture (Arnold et al., 2008). Engraftment of
these leukemic cells in NOD.Cg-PrkdcSCIDIL2rgtm1Wjl/SzJ
(NOG) mice will form solid tumors that also infiltrate multiple
tissues. When Hbz is knocked down, tumor formation and organ
infiltration is significantly decreased compared to animals
inoculated with wild-type cells. This data confirms Hbz
expression enhances the proliferative capacity of HTLV-1-
infected T cells and plays a critical role in cell survival
and tumorigenesis.

In HAM/TSP patients CD4+CD25+ T cells are the main
reservoir for HTLV-1, with elevated proviral load strongly
correlated with disease pathogenesis (Nagai et al., 1998; Enose-
Akahata et al., 2017). Tax mRNA and protein are rarely
detectable or below the limit of detection in fresh uncultured
PBMCs of HAM/TSP patients. However, Tax mRNA is detected
in cells isolated from the spinal cord and cerebellar sections,
while Tax protein is detected in the cerebral spinal fluid (CSF)
cells of HAM/TSP patients (Lehky et al., 1995; Moritoyo et al.,
1999; Cartier and Ramirez, 2005). The chronic presence of Tax in
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the CSF is thought to induce direct cell damage, such as axonal
degeneration in the CNS. The expression of Tax also directly
contributes to lymphocyte activation and immunopathogenesis
in HAM/TSP (Andrade et al., 2013). Hbz mRNA is detected in
PBMCs from HAM/TSP patients, but the transcript level is
significantly lower than in ATL patients (Saito et al., 2009).
However, the level of Hbz mRNA does appear to correlate with
proviral load and HAM/TSP disease severity. Similar
immunological features of HAM/TSP have been demonstrated
in Hbz transgenic mice (Satou et al., 2011), again supporting a
role for Hbz in HAM/TSP disease pathology.
GENE EDITING TO DISABLE HTLV-1

Clustered regularly interspersed short palindromic repeat
(CRISPR)/Cas9 genome editing is a relatively new technology
that utilizes a guide RNA (gRNA) to target a site-specific DNA
double strand break (DSB) by the Cas9 endonuclease. In human
cells, DSBs are largely repaired by the error prone non-
homologous end-joining pathway, which typically introduces
insertions and deletions at the repair junction. Error-prone
DSB repair can alter the reading frame of genes, disrupt DNA
regulatory motifs, or disrupt the structures of encoded RNA
elements. CRISPR is an innovative and powerful genome editing
technology that has the potential for development as an HTLV-1
disease therapeutic strategy. In a 2013 report, zinc finger
nucleases (ZFNs) that specifically recognized the HTLV-1
LTRs were utilized to disrupt LTR promoter function and
inhibit the proliferation of HTLV-1-positive cell lines (Tanaka
et al., 2013). This study positively supports the use of genome
editing for HTLV-1-infected cells. However, CRISPR/Cas9
technology offers several advantages over ZFNs and transcription
activator-like effector nucleases (TALENs) including simplicity,
cost effectiveness, and efficiency. Strong support for CRISPR/
Cas9 genome targeting of HTLV-1 was also recently reported
in 2018. Nakagawa et al. used two different gRNAs targeting
Hbz and found ATL cell proliferation was reduced in vitro
(Nakagawa et al., 2018).

To date CRISPR editing of retroviral proviruses has been
largely limited to HIV-1 (Ebina et al., 2013; Rihn et al., 2013; Hu
et al., 2014; Liao et al., 2015; Rihn et al., 2015; Zhu et al., 2015;
Kaminski et al., 2016; Yoder and Bundschuh, 2016; Yin et al.,
2017; Lebbink et al., 2017; Ophinni et al., 2018; Yin et al., 2018;
Wang et al., 2018; Darcis et al., 2019; Yoder, 2019). In contrast,
HTLV-1 offers more focused gRNA targeting because the viral
genome is highly conserved with remarkable sequence
homogeneity, both within the same host and even among
different HTLV isolates. CRISPR/Cas9 also offers the benefit of
being able to disable both latent and actively replicating HTLV-1.
The most important drivers of HTLV-1-mediated transformation
and proliferation are the Tax and Hbz genes (Giam and Semmes,
2016; Enose-Akahata et al., 2017; Matsuoka and Mesnard, 2020).
Abrogating the function or expression of Tax and/or Hbz by
genome editing and mutagenic DSB repair may disable HTLV-1-
infected cell growth/survival and prevent immune modulatory
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
effects and ultimately HTLV-1-associated disease. The viral
LTRs are involved in integration of the viral genome into the
host chromatin and also serve as promoters to drive expression
of all viral genes. These three target regions (Tax, Hbz, LTR)
would have the potential to effectively treat newly HTLV-1-
infected individuals, asymptomatic viral carriers, and ATL and
HAM/TSP patients. Also, given the nature of over-lapping
reading frames between Hbz and the 3’LTR, and Tax and the
3’LTR, one can carefully design gRNAs that disrupt two viral
elements at once.
IN VITRO AND IN VIVO HTLV-1 MODELS

Several in vitro and in vivo models exist to study HTLV-1
immortalization, persistence, and tumorigenesis. Importantly,
in vivo animal models could provide a system to eventually
test delivery of CRISPR/Cas9 gene editing components in an
animal model with known, effective, and measurable gRNA-viral
targets. The different types of in vitro and in vivo HTLV-1
models are described below:

HTLV has the ability to transform primary T-cells in vitro
using co-culture immortalization assays (Anderson et al., 2004).
HTLV-1 predominantly transforms CD4+ T-cells using this
technique – identical to what is observed in HTLV-infected
asymptomatic individuals and HTLV-1-mediated disease.
Because cell-free infection by HTLV is inefficient, in vitro
infection and immortalization requires irradiated HTLV
producer cells co-cultured with freshly isolated peripheral
blood mononuclear cells (PBMCs). The initiation of
immortalization/transformation is apparent within 5–6 weeks
following co-culture as detected by expansion of cells from the
peripheral blood lymphocyte mixed cell population. This
technique has been extremely useful for examining the
requirement of specific gene products on HTLV-1-mediated
immortalization in the absence of a functional immune system
(Ye et al., 2003; Anderson et al., 2004; Younis et al., 2005; Arnold
et al., 2006; Xie et al., 2006; Kannian et al., 2012; Martinez
et al., 2019).

NOD.Cg-PrkdcSCIDIL2rgtm1Wjl/SzJ (NOG) mice
inoculated subcutaneously with HTLV-1-infected cell lines
(Hut-102, SLB-1, ATL-ED, TL-Om1) will develop tumors
(Dewan et al., 2003; Ohsugi et al., 2005; Arnold et al., 2008).
The transplanted HTLV-1-infected cell lines will also secrete
human IL-2Ra, which can be used as a biomarker for cellular
proliferation in vivo. This allows for simultaneous measurement
of tumor formation and growth along with cellular proliferation
in vivo. Previously, this mouse model has been successfully used
by our lab to show that shRNA knockdown of Hbz decreases
proliferation of HTLV-1-infected cell in vivo (Arnold et al.,
2008). The decrease in proliferation in vivo correlated with a
decrease in tumor size and infiltration of tumor cells to
surrounding tissue.

Humanized immune system (HIS) mice model T-cell tropism
and lymphoproliferative disease after HTLV-1 infection. The
HIS mice are created by injecting human umbilical-cord stem
December 2020 | Volume 10 | Article 580371
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cells into the livers of immunodeficient neonatal NSG mice,
resulting in the development of human lymphocytes that appear
phenotypically normal but cannot mount an adaptive immune
response (Huey and Niewiesk, 2018; Huey et al., 2018). HIS mice
inoculated with HTLV-1 consistently reproduce the three key
stages of HTLV-1-induced tumorigenesis in a very compact time
frame (approximately 4–5 weeks): 1) persistent infection,
2) chronic proliferation of CD4+ T-cells, and 3) development
of lymphoproliferative disease. Importantly, disease in these
mice can be induced using an infectious molecular HTLV-1
clone. Humanized mice can also be generated by intra-bone
marrow injection of human CD133+ hematopoietic stem cells
into NOG mice (Tezuka et al., 2014). Intraperitoneal injection of
HTLV-1-transformed cells in these mice also successfully
recapitulates ATL disease development.

HTLV-1 infection of rabbits mimic early infection in humans
(Arnold et al., 2006; Kannian et al., 2012). Twelve-week old New
Zealand white rabbits inoculated with HTLV-1 become
persistently infected. The early rabbit humoral antibody
responses against Gag and Env mimic asymptomatic early viral
infection in humans. These animals do not develop disease, but
enable the study of early viral infection events in the presence of a
functional immune system. Using infectious molecular HTLV-1
clones, our group has been able to modify the virus to facilitate in
vivo study of the functional properties of HTLV-1 proteins
(Arnold et al., 2006; Kannian et al., 2012; Martinez et al.,
2019). Our in vivo rabbit model system is advantageous since
HTLV-1 long term latency is mediated in part by the host
immune response.
CONCLUDING REMARKS

The progression from HTLV-1 infection to disease development
(ATL, HAM/TSP) can take up to several decades. Thus, the
integrated HTLV-1 proviral genome is clinically latent for long
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
periods of time. The current lack of effective therapies for both
ATL and HAM/TSP indicates a need for innovative clinical
approaches. HTLV-1 Tax and Hbz are major drivers of
transformation, proliferation, and immunological inducing
effects. The viral LTRs are also integrally involved in these
processes by driving viral transcription and directing
integration into the host genome. Targeting any of these viral
genes or elements with gene editing would unquestionably alter
HTLV-1-infected cell growth/survival and prevent immune
modulatory effects and ultimately HTLV-1-associated disease.
HTLV-1 is an excellent model to advance genome editing
technologies against actively expressing and latent retroviral
proviruses. To date CRISPR editing of retroviral proviruses has
been limited to HIV-1. In contrast, HTLV-1 offers more focused
gRNA targeting because the viral genome is highly conserved
with remarkable sequence homogeneity, both within the same
host and even among different HTLV isolates. In addition, there
are well-established animal models for studying HTLV-1
infection in vivo (rabbits, NOG mice, humanized mice) as well
as cell immortalization in vitro. Studies with HTLV-1 may
provide a better basis to assess and advance in vivo genome
editing against retroviral infections.
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